intel-iommu.c 154.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298 299

/* si_domain contains mulitple devices */
300
#define DOMAIN_FLAG_STATIC_IDENTITY		BIT(0)
301

302 303 304 305 306 307 308 309
/*
 * This is a DMA domain allocated through the iommu domain allocation
 * interface. But one or more devices belonging to this domain have
 * been chosen to use a private domain. We should avoid to use the
 * map/unmap/iova_to_phys APIs on it.
 */
#define DOMAIN_FLAG_LOSE_CHILDREN		BIT(1)

310 311 312 313
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

314 315 316 317 318
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
319
	struct dmar_dev_scope *devices;	/* target devices */
320 321 322 323 324 325
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
326
	struct dmar_dev_scope *devices;	/* target devices */
327 328 329 330 331 332 333 334 335 336
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
337 338 339
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

340
static void domain_exit(struct dmar_domain *domain);
341
static void domain_remove_dev_info(struct dmar_domain *domain);
342
static void dmar_remove_one_dev_info(struct device *dev);
343
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
344 345
static void domain_context_clear(struct intel_iommu *iommu,
				 struct device *dev);
346 347
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
348
static bool device_is_rmrr_locked(struct device *dev);
349 350
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
351 352
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
353

354
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 356 357
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
358
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
359

360 361 362
#ifdef INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
int intel_iommu_sm = 1;
#else
363
int intel_iommu_sm;
364 365
#endif /* INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */

366 367 368
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

369
static int dmar_map_gfx = 1;
370
static int dmar_forcedac;
M
mark gross 已提交
371
static int intel_iommu_strict;
372
static int intel_iommu_superpage = 1;
373
static int iommu_identity_mapping;
374
static int intel_no_bounce;
375

376 377 378
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
379

380 381 382
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

383
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
384
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
385 386 387
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

388 389 390
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

391 392
/*
 * Iterate over elements in device_domain_list and call the specified
393
 * callback @fn against each element.
394 395 396 397 398
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
399
	unsigned long flags;
400 401
	struct device_domain_info *info;

402
	spin_lock_irqsave(&device_domain_lock, flags);
403 404
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
405 406
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
407
			return ret;
408
		}
409
	}
410
	spin_unlock_irqrestore(&device_domain_lock, flags);
411 412 413 414

	return 0;
}

415
const struct iommu_ops intel_iommu_ops;
416

417 418 419 420 421
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

422 423 424 425 426
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

427 428 429 430 431 432 433 434 435
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

436 437 438 439 440 441
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

442 443 444 445 446
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
447 448
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
449
			pr_info("IOMMU enabled\n");
450
		} else if (!strncmp(str, "off", 3)) {
451
			dmar_disabled = 1;
452
			no_platform_optin = 1;
J
Joerg Roedel 已提交
453
			pr_info("IOMMU disabled\n");
454 455
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
456
			pr_info("Disable GFX device mapping\n");
457
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
458
			pr_info("Forcing DAC for PCI devices\n");
459
			dmar_forcedac = 1;
M
mark gross 已提交
460
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
461
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
462
			intel_iommu_strict = 1;
463
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
464
			pr_info("Disable supported super page\n");
465
			intel_iommu_superpage = 0;
466 467 468
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
469 470 471 472
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
473 474 475
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
476 477 478 479 480 481 482 483 484 485 486 487 488
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

489 490
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
491 492 493 494 495 496 497 498
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
499 500 501 502 503
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
504 505 506 507 508 509 510 511 512 513 514 515 516
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
517 518
}

519
void *alloc_pgtable_page(int node)
520
{
521 522
	struct page *page;
	void *vaddr = NULL;
523

524 525 526
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
527
	return vaddr;
528 529
}

530
void free_pgtable_page(void *vaddr)
531 532 533 534 535 536
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
537
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
538 539
}

K
Kay, Allen M 已提交
540
static void free_domain_mem(void *vaddr)
541 542 543 544 545 546
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
547
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
548 549 550 551 552 553 554
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

555 556 557 558 559
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

560 561 562 563 564 565 566 567
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
568
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
569 570 571 572 573
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
574
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
575 576 577 578 579 580 581 582
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

601
/* This functionin only returns single iommu in a domain */
602
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
603 604 605
{
	int iommu_id;

606
	/* si_domain and vm domain should not get here. */
607 608 609
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

610 611 612
	for_each_domain_iommu(iommu_id, domain)
		break;

613 614 615 616 617 618
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
619 620
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
621 622
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
623 624
	bool found = false;
	int i;
625

626
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
627

628
	for_each_domain_iommu(i, domain) {
629
		found = true;
W
Weidong Han 已提交
630 631 632 633 634
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
635 636 637 638 639 640 641 642 643 644 645 646
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
647 648
}

649
static int domain_update_iommu_snooping(struct intel_iommu *skip)
650
{
651 652 653
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
654

655 656 657 658 659 660 661
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
662 663
		}
	}
664 665 666
	rcu_read_unlock();

	return ret;
667 668
}

669
static int domain_update_iommu_superpage(struct intel_iommu *skip)
670
{
671
	struct dmar_drhd_unit *drhd;
672
	struct intel_iommu *iommu;
673
	int mask = 0xf;
674 675

	if (!intel_iommu_superpage) {
676
		return 0;
677 678
	}

679
	/* set iommu_superpage to the smallest common denominator */
680
	rcu_read_lock();
681
	for_each_active_iommu(iommu, drhd) {
682 683 684 685
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
686 687
		}
	}
688 689
	rcu_read_unlock();

690
	return fls(mask);
691 692
}

693 694 695 696
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
697 698
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
699 700
}

701 702
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
703 704 705 706 707
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

708
	entry = &root->lo;
709
	if (sm_supported(iommu)) {
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

735 736 737 738 739
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

767
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
768 769
{
	struct dmar_drhd_unit *drhd = NULL;
770
	struct intel_iommu *iommu;
771
	struct device *tmp;
772
	struct pci_dev *pdev = NULL;
773
	u16 segment = 0;
774 775
	int i;

776 777 778
	if (iommu_dummy(dev))
		return NULL;

779
	if (dev_is_pci(dev)) {
780 781
		struct pci_dev *pf_pdev;

782
		pdev = to_pci_dev(dev);
783 784 785 786 787 788 789

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

790 791 792 793
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
794
		segment = pci_domain_nr(pdev->bus);
795
	} else if (has_acpi_companion(dev))
796 797
		dev = &ACPI_COMPANION(dev)->dev;

798
	rcu_read_lock();
799
	for_each_active_iommu(iommu, drhd) {
800
		if (pdev && segment != drhd->segment)
801
			continue;
802

803
		for_each_active_dev_scope(drhd->devices,
804 805
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
806 807 808 809
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
810
				if (pdev && pdev->is_virtfn)
811 812
					goto got_pdev;

813 814
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
815
				goto out;
816 817
			}

818
			if (is_downstream_to_pci_bridge(dev, tmp))
819
				goto got_pdev;
820
		}
821

822 823 824 825
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
826
			goto out;
827
		}
828
	}
829
	iommu = NULL;
830
 out:
831
	rcu_read_unlock();
832

833
	return iommu;
834 835
}

W
Weidong Han 已提交
836 837 838 839 840 841 842
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

843 844 845
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
846
	int ret = 0;
847 848 849
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
850 851 852
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
868
		context = iommu_context_addr(iommu, i, 0, 0);
869 870
		if (context)
			free_pgtable_page(context);
871

872
		if (!sm_supported(iommu))
873 874 875 876 877 878
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

879 880 881 882 883 884 885
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

886
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
887
				      unsigned long pfn, int *target_level)
888
{
889
	struct dma_pte *parent, *pte;
890
	int level = agaw_to_level(domain->agaw);
891
	int offset;
892 893

	BUG_ON(!domain->pgd);
894

895
	if (!domain_pfn_supported(domain, pfn))
896 897 898
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

899 900
	parent = domain->pgd;

901
	while (1) {
902 903
		void *tmp_page;

904
		offset = pfn_level_offset(pfn, level);
905
		pte = &parent[offset];
906
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
907
			break;
908
		if (level == *target_level)
909 910
			break;

911
		if (!dma_pte_present(pte)) {
912 913
			uint64_t pteval;

914
			tmp_page = alloc_pgtable_page(domain->nid);
915

916
			if (!tmp_page)
917
				return NULL;
918

919
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
920
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
921
			if (cmpxchg64(&pte->val, 0ULL, pteval))
922 923
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
924
			else
925
				domain_flush_cache(domain, pte, sizeof(*pte));
926
		}
927 928 929
		if (level == 1)
			break;

930
		parent = phys_to_virt(dma_pte_addr(pte));
931 932 933
		level--;
	}

934 935 936
	if (!*target_level)
		*target_level = level;

937 938 939 940
	return pte;
}

/* return address's pte at specific level */
941 942
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
943
					 int level, int *large_page)
944
{
945
	struct dma_pte *parent, *pte;
946 947 948 949 950
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
951
		offset = pfn_level_offset(pfn, total);
952 953 954 955
		pte = &parent[offset];
		if (level == total)
			return pte;

956 957
		if (!dma_pte_present(pte)) {
			*large_page = total;
958
			break;
959 960
		}

961
		if (dma_pte_superpage(pte)) {
962 963 964 965
			*large_page = total;
			return pte;
		}

966
		parent = phys_to_virt(dma_pte_addr(pte));
967 968 969 970 971 972
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
973
static void dma_pte_clear_range(struct dmar_domain *domain,
974 975
				unsigned long start_pfn,
				unsigned long last_pfn)
976
{
977
	unsigned int large_page;
978
	struct dma_pte *first_pte, *pte;
979

980 981
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
982
	BUG_ON(start_pfn > last_pfn);
983

984
	/* we don't need lock here; nobody else touches the iova range */
985
	do {
986 987
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
988
		if (!pte) {
989
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
990 991
			continue;
		}
992
		do {
993
			dma_clear_pte(pte);
994
			start_pfn += lvl_to_nr_pages(large_page);
995
			pte++;
996 997
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

998 999
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1000 1001

	} while (start_pfn && start_pfn <= last_pfn);
1002 1003
}

1004
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1005 1006 1007
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1019
		level_pfn = pfn & level_mask(level);
1020 1021
		level_pte = phys_to_virt(dma_pte_addr(pte));

1022 1023 1024 1025 1026
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1027

1028 1029 1030 1031 1032
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1033
		      last_pfn < level_pfn + level_size(level) - 1)) {
1034 1035 1036 1037 1038 1039 1040 1041 1042
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1043 1044 1045 1046
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1047
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1048
				   unsigned long start_pfn,
1049 1050
				   unsigned long last_pfn,
				   int retain_level)
1051
{
1052 1053
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1054
	BUG_ON(start_pfn > last_pfn);
1055

1056 1057
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1058
	/* We don't need lock here; nobody else touches the iova range */
1059
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1060
			   domain->pgd, 0, start_pfn, last_pfn);
1061

1062
	/* free pgd */
1063
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1064 1065 1066 1067 1068
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1088 1089
	pte = page_address(pg);
	do {
1090 1091 1092
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1093 1094
		pte++;
	} while (!first_pte_in_page(pte));
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1151 1152 1153
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1154
{
1155
	struct page *freelist;
1156

1157 1158
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1177
static void dma_free_pagelist(struct page *freelist)
1178 1179 1180 1181 1182 1183 1184 1185 1186
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1187 1188 1189 1190 1191 1192 1193
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1194 1195 1196 1197 1198 1199
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1200
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1201
	if (!root) {
J
Joerg Roedel 已提交
1202
		pr_err("Allocating root entry for %s failed\n",
1203
			iommu->name);
1204
		return -ENOMEM;
1205
	}
1206

F
Fenghua Yu 已提交
1207
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1218
	u64 addr;
1219
	u32 sts;
1220 1221
	unsigned long flag;

1222
	addr = virt_to_phys(iommu->root_entry);
1223 1224
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1225

1226
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1227
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1228

1229
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1230 1231 1232

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1233
		      readl, (sts & DMA_GSTS_RTPS), sts);
1234

1235
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 1237
}

1238
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1239 1240 1241 1242
{
	u32 val;
	unsigned long flag;

1243
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1244 1245
		return;

1246
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1247
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1248 1249 1250

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1251
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1252

1253
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1254 1255 1256
}

/* return value determine if we need a write buffer flush */
1257 1258 1259
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1280
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1281 1282 1283 1284 1285 1286
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1287
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1288 1289 1290
}

/* return value determine if we need a write buffer flush */
1291 1292
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1308
		/* IH bit is passed in as part of address */
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1326
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1327 1328 1329 1330 1331 1332 1333 1334 1335
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1336
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1337 1338 1339

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1340
		pr_err("Flush IOTLB failed\n");
1341
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1342
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1343 1344
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1345 1346
}

1347 1348 1349
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1350 1351 1352
{
	struct device_domain_info *info;

1353 1354
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1355 1356 1357 1358
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1359 1360
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1361 1362
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1363 1364 1365
			break;
		}

1366
	return NULL;
Y
Yu Zhao 已提交
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1392
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1393
{
1394 1395
	struct pci_dev *pdev;

1396 1397
	assert_spin_locked(&device_domain_lock);

1398
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1399 1400
		return;

1401
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1414
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1415
	}
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1426 1427 1428
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1429 1430
		info->pri_enabled = 1;
#endif
1431
	if (!pdev->untrusted && info->ats_supported &&
1432
	    pci_ats_page_aligned(pdev) &&
1433
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1434
		info->ats_enabled = 1;
1435
		domain_update_iotlb(info->domain);
1436 1437
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1438 1439 1440 1441
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1442 1443
	struct pci_dev *pdev;

1444 1445
	assert_spin_locked(&device_domain_lock);

1446
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1447 1448
		return;

1449 1450 1451 1452 1453
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1454
		domain_update_iotlb(info->domain);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1475 1476 1477
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1478 1479
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1480
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1481 1482 1483
			continue;

		sid = info->bus << 8 | info->devfn;
1484
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1485 1486
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1487 1488 1489 1490
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1491 1492 1493 1494
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1495
{
1496
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1497
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1498
	u16 did = domain->iommu_did[iommu->seq_id];
1499 1500 1501

	BUG_ON(pages == 0);

1502 1503
	if (ih)
		ih = 1 << 6;
1504
	/*
1505 1506
	 * Fallback to domain selective flush if no PSI support or the size is
	 * too big.
1507 1508 1509
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
1510 1511
	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1512
						DMA_TLB_DSI_FLUSH);
1513
	else
1514
		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1515
						DMA_TLB_PSI_FLUSH);
1516 1517

	/*
1518 1519
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1520
	 */
1521
	if (!cap_caching_mode(iommu->cap) || !map)
1522
		iommu_flush_dev_iotlb(domain, addr, mask);
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
	/* It's a non-present to present mapping. Only flush if caching mode */
	if (cap_caching_mode(iommu->cap))
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1556 1557 1558 1559 1560
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1561 1562 1563
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1564
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1565 1566 1567 1568 1569 1570 1571 1572
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1573
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1574 1575
}

1576
static void iommu_enable_translation(struct intel_iommu *iommu)
1577 1578 1579 1580
{
	u32 sts;
	unsigned long flags;

1581
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1582 1583
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1584 1585 1586

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1587
		      readl, (sts & DMA_GSTS_TES), sts);
1588

1589
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1590 1591
}

1592
static void iommu_disable_translation(struct intel_iommu *iommu)
1593 1594 1595 1596
{
	u32 sts;
	unsigned long flag;

1597
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1598 1599 1600 1601 1602
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1603
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1604

1605
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1606 1607 1608 1609
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1610 1611
	u32 ndomains, nlongs;
	size_t size;
1612 1613

	ndomains = cap_ndoms(iommu->cap);
1614
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1615
		 iommu->name, ndomains);
1616 1617
	nlongs = BITS_TO_LONGS(ndomains);

1618 1619
	spin_lock_init(&iommu->lock);

1620 1621
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1622 1623
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1624 1625
		return -ENOMEM;
	}
1626

1627
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1628 1629 1630 1631 1632 1633 1634 1635
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1636 1637
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1638
		kfree(iommu->domain_ids);
1639
		kfree(iommu->domains);
1640
		iommu->domain_ids = NULL;
1641
		iommu->domains    = NULL;
1642 1643 1644 1645
		return -ENOMEM;
	}

	/*
1646 1647 1648 1649
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1650
	 */
1651 1652
	set_bit(0, iommu->domain_ids);

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1663 1664 1665
	return 0;
}

1666
static void disable_dmar_iommu(struct intel_iommu *iommu)
1667
{
1668
	struct device_domain_info *info, *tmp;
1669
	unsigned long flags;
1670

1671 1672
	if (!iommu->domains || !iommu->domain_ids)
		return;
1673

1674
	spin_lock_irqsave(&device_domain_lock, flags);
1675 1676 1677 1678 1679 1680 1681
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1682
		__dmar_remove_one_dev_info(info);
1683
	}
1684
	spin_unlock_irqrestore(&device_domain_lock, flags);
1685 1686 1687

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1688
}
1689

1690 1691 1692
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1693
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1694 1695 1696 1697
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1698 1699 1700 1701 1702
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1703

W
Weidong Han 已提交
1704 1705
	g_iommus[iommu->seq_id] = NULL;

1706 1707
	/* free context mapping */
	free_context_table(iommu);
1708 1709

#ifdef CONFIG_INTEL_IOMMU_SVM
1710
	if (pasid_supported(iommu)) {
1711 1712 1713
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1714
#endif
1715 1716
}

1717
static struct dmar_domain *alloc_domain(int flags)
1718 1719 1720 1721 1722 1723 1724
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1725
	memset(domain, 0, sizeof(*domain));
1726
	domain->nid = NUMA_NO_NODE;
1727
	domain->flags = flags;
1728
	domain->has_iotlb_device = false;
1729
	INIT_LIST_HEAD(&domain->devices);
1730 1731 1732 1733

	return domain;
}

1734 1735
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1736 1737
			       struct intel_iommu *iommu)
{
1738
	unsigned long ndomains;
1739
	int num;
1740

1741
	assert_spin_locked(&device_domain_lock);
1742
	assert_spin_locked(&iommu->lock);
1743

1744 1745 1746
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1747
		ndomains = cap_ndoms(iommu->cap);
1748 1749 1750 1751 1752 1753
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1754
			return -ENOSPC;
1755
		}
1756

1757 1758 1759 1760 1761
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1762 1763 1764

		domain_update_iommu_cap(domain);
	}
1765

1766
	return 0;
1767 1768 1769 1770 1771
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1772
	int num, count;
1773

1774
	assert_spin_locked(&device_domain_lock);
1775
	assert_spin_locked(&iommu->lock);
1776

1777 1778 1779
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1780 1781 1782
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1783 1784

		domain_update_iommu_cap(domain);
1785
		domain->iommu_did[iommu->seq_id] = 0;
1786 1787 1788 1789 1790
	}

	return count;
}

1791
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1792
static struct lock_class_key reserved_rbtree_key;
1793

1794
static int dmar_init_reserved_ranges(void)
1795 1796 1797 1798 1799
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1800
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1801

M
Mark Gross 已提交
1802 1803 1804
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1805 1806 1807
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1808
	if (!iova) {
J
Joerg Roedel 已提交
1809
		pr_err("Reserve IOAPIC range failed\n");
1810 1811
		return -ENODEV;
	}
1812 1813 1814 1815 1816 1817 1818 1819 1820

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1821 1822 1823
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1824
			if (!iova) {
1825
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1826 1827
				return -ENODEV;
			}
1828 1829
		}
	}
1830
	return 0;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
{
	int adjust_width, agaw;
	unsigned long sagaw;
	int err;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);

	err = init_iova_flush_queue(&domain->iovad,
				    iommu_flush_iova, iova_entry_free);
	if (err)
		return err;

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

	domain->nid = iommu->node;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
	return 0;
}

1909 1910 1911
static void domain_exit(struct dmar_domain *domain)
{

1912
	/* Remove associated devices and clear attached or cached domains */
1913
	domain_remove_dev_info(domain);
1914

1915 1916 1917
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

1918 1919
	if (domain->pgd) {
		struct page *freelist;
1920

1921 1922 1923
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1924

1925 1926 1927
	free_domain_mem(domain);
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
	context->hi |= (1 << 20);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1978 1979
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1980
				      struct pasid_table *table,
1981
				      u8 bus, u8 devfn)
1982
{
1983
	u16 did = domain->iommu_did[iommu->seq_id];
1984 1985
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1986 1987
	struct context_entry *context;
	unsigned long flags;
1988
	int ret;
1989

1990 1991
	WARN_ON(did == 0);

1992 1993
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1994 1995 1996

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
1997

1998
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
1999

2000 2001 2002 2003
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2004
	context = iommu_context_addr(iommu, bus, devfn, 1);
2005
	if (!context)
2006
		goto out_unlock;
2007

2008 2009 2010
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2024
		if (did_old < cap_ndoms(iommu->cap)) {
2025 2026 2027 2028
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2029 2030 2031
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2032 2033
	}

2034
	context_clear_entry(context);
2035

2036 2037
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2048 2049

		/*
2050 2051
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2052
		 */
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2092 2093

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2094
	}
F
Fenghua Yu 已提交
2095

2096 2097
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2098
	domain_flush_cache(domain, context, sizeof(*context));
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2111
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2112
	} else {
2113
		iommu_flush_write_buffer(iommu);
2114
	}
Y
Yu Zhao 已提交
2115
	iommu_enable_dev_iotlb(info);
2116

2117 2118 2119 2120 2121
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2122

2123
	return ret;
2124 2125
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2142
static int
2143
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2144
{
2145
	struct domain_context_mapping_data data;
2146
	struct pasid_table *table;
2147
	struct intel_iommu *iommu;
2148
	u8 bus, devfn;
2149

2150
	iommu = device_to_iommu(dev, &bus, &devfn);
2151 2152
	if (!iommu)
		return -ENODEV;
2153

2154
	table = intel_pasid_get_table(dev);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2166 2167 2168 2169 2170 2171 2172 2173
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2174 2175
}

2176
static int domain_context_mapped(struct device *dev)
2177
{
W
Weidong Han 已提交
2178
	struct intel_iommu *iommu;
2179
	u8 bus, devfn;
W
Weidong Han 已提交
2180

2181
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2182 2183
	if (!iommu)
		return -ENODEV;
2184

2185 2186
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2187

2188 2189
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2228 2229 2230
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2231 2232
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2233
	phys_addr_t uninitialized_var(pteval);
2234
	unsigned long sg_res = 0;
2235 2236
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2237

2238
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2239 2240 2241 2242 2243 2244

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;

2245 2246
	if (!sg) {
		sg_res = nr_pages;
2247 2248 2249
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
	}

2250
	while (nr_pages > 0) {
2251 2252
		uint64_t tmp;

2253
		if (!sg_res) {
2254 2255
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2256
			sg_res = aligned_nrpages(sg->offset, sg->length);
2257
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2258
			sg->dma_length = sg->length;
2259
			pteval = (sg_phys(sg) - pgoff) | prot;
2260
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2261
		}
2262

2263
		if (!pte) {
2264 2265
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2266
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2267 2268
			if (!pte)
				return -ENOMEM;
2269
			/* It is large page*/
2270
			if (largepage_lvl > 1) {
2271 2272
				unsigned long nr_superpages, end_pfn;

2273
				pteval |= DMA_PTE_LARGE_PAGE;
2274
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2275 2276 2277 2278

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2279 2280
				/*
				 * Ensure that old small page tables are
2281
				 * removed to make room for superpage(s).
2282 2283
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2284
				 */
2285 2286
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2287
			} else {
2288
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2289
			}
2290

2291 2292 2293 2294
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2295
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2296
		if (tmp) {
2297
			static int dumps = 5;
J
Joerg Roedel 已提交
2298 2299
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2300 2301 2302 2303 2304 2305
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2329
		pte++;
2330 2331
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2332 2333 2334 2335
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2336 2337

		if (!sg_res && nr_pages)
2338 2339 2340 2341 2342
			sg = sg_next(sg);
	}
	return 0;
}

2343
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2344 2345 2346
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2347
	int iommu_id, ret;
2348 2349 2350 2351 2352 2353 2354
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2355 2356
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2357 2358 2359 2360
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2361 2362
}

2363 2364 2365
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2366
{
2367
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2368
}
2369

2370 2371 2372 2373
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2374
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2375 2376
}

2377
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2378
{
2379 2380 2381 2382
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2383 2384
	if (!iommu)
		return;
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2406 2407
}

2408 2409 2410 2411 2412 2413
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2414
		info->dev->archdata.iommu = NULL;
2415 2416
}

2417 2418
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2419
	struct device_domain_info *info, *tmp;
2420
	unsigned long flags;
2421 2422

	spin_lock_irqsave(&device_domain_lock, flags);
2423
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2424
		__dmar_remove_one_dev_info(info);
2425 2426 2427
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2428
static struct dmar_domain *find_domain(struct device *dev)
2429 2430 2431
{
	struct device_domain_info *info;

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO ||
		     dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO))
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
	info = dev->archdata.iommu;
	if (likely(info))
		return info->domain;

	return NULL;
}

static struct dmar_domain *deferred_attach_domain(struct device *dev)
{
2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
		struct iommu_domain *domain;

		dev->archdata.iommu = NULL;
		domain = iommu_get_domain_for_dev(dev);
		if (domain)
			intel_iommu_attach_device(domain, dev);
	}

2455
	return find_domain(dev);
2456 2457
}

2458
static inline struct device_domain_info *
2459 2460 2461 2462 2463
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2464
		if (info->iommu->segment == segment && info->bus == bus &&
2465
		    info->devfn == devfn)
2466
			return info;
2467 2468 2469 2470

	return NULL;
}

2471 2472 2473 2474
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2475
{
2476
	struct dmar_domain *found = NULL;
2477 2478
	struct device_domain_info *info;
	unsigned long flags;
2479
	int ret;
2480 2481 2482

	info = alloc_devinfo_mem();
	if (!info)
2483
		return NULL;
2484 2485 2486

	info->bus = bus;
	info->devfn = devfn;
2487 2488 2489
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2490 2491
	info->dev = dev;
	info->domain = domain;
2492
	info->iommu = iommu;
2493
	info->pasid_table = NULL;
2494
	info->auxd_enabled = 0;
2495
	INIT_LIST_HEAD(&info->auxiliary_domains);
2496

2497 2498 2499
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2500 2501
		if (!pdev->untrusted &&
		    !pci_ats_disabled() &&
G
Gil Kupfer 已提交
2502
		    ecap_dev_iotlb_support(iommu->ecap) &&
2503 2504 2505 2506
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2507 2508
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2520 2521
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2522
		found = find_domain(dev);
2523 2524

	if (!found) {
2525
		struct device_domain_info *info2;
2526
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2527 2528 2529 2530
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2531
	}
2532

2533 2534 2535
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2536 2537
		/* Caller must free the original domain */
		return found;
2538 2539
	}

2540 2541 2542 2543 2544
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2545
		spin_unlock_irqrestore(&device_domain_lock, flags);
2546
		free_devinfo_mem(info);
2547 2548 2549
		return NULL;
	}

2550 2551 2552 2553
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2554
	spin_unlock_irqrestore(&device_domain_lock, flags);
2555

2556 2557
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2558 2559
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2560
			dev_err(dev, "PASID table allocation failed\n");
2561
			dmar_remove_one_dev_info(dev);
2562
			return NULL;
2563
		}
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2575
			dev_err(dev, "Setup RID2PASID failed\n");
2576
			dmar_remove_one_dev_info(dev);
2577
			return NULL;
2578 2579
		}
	}
2580

2581
	if (dev && domain_context_mapping(domain, dev)) {
2582
		dev_err(dev, "Domain context map failed\n");
2583
		dmar_remove_one_dev_info(dev);
2584 2585 2586
		return NULL;
	}

2587
	return domain;
2588 2589
}

2590 2591 2592 2593 2594 2595
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2596
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2597
{
2598
	struct device_domain_info *info;
2599
	struct dmar_domain *domain = NULL;
2600
	struct intel_iommu *iommu;
2601
	u16 dma_alias;
2602
	unsigned long flags;
2603
	u8 bus, devfn;
2604

2605 2606 2607 2608
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2609 2610
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2611

2612 2613 2614 2615 2616 2617 2618 2619 2620
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2621
		}
2622
		spin_unlock_irqrestore(&device_domain_lock, flags);
2623

2624
		/* DMA alias already has a domain, use it */
2625
		if (info)
2626
			goto out;
2627
	}
2628

2629
	/* Allocate and initialize new domain for the device */
2630
	domain = alloc_domain(0);
2631
	if (!domain)
2632
		return NULL;
2633
	if (domain_init(domain, iommu, gaw)) {
2634 2635
		domain_exit(domain);
		return NULL;
2636
	}
2637

2638 2639 2640
out:
	return domain;
}
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2669 2670
	}

2671
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2672 2673 2674 2675 2676
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2677

2678 2679 2680
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2681
{
2682 2683 2684 2685 2686
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
J
Joerg Roedel 已提交
2687
		pr_err("Reserving iova failed\n");
2688
		return -ENOMEM;
2689 2690
	}

J
Joerg Roedel 已提交
2691
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2692 2693 2694 2695
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2696
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2697

2698 2699 2700
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2701 2702
}

2703 2704 2705 2706
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2707
{
2708 2709 2710 2711 2712
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2713 2714
		dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
			 start, end);
2715 2716 2717
		return 0;
	}

2718
	dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
J
Joerg Roedel 已提交
2719

2720 2721 2722 2723 2724 2725
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2726
		return -EIO;
2727 2728
	}

2729 2730 2731 2732 2733 2734 2735
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2736
		return -EIO;
2737
	}
2738

2739 2740
	return iommu_domain_identity_map(domain, start, end);
}
2741

2742 2743
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2744
static int __init si_domain_init(int hw)
2745
{
2746 2747 2748
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2749

2750
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2751 2752 2753
	if (!si_domain)
		return -EFAULT;

2754
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2755 2756 2757 2758
		domain_exit(si_domain);
		return -EFAULT;
	}

2759 2760 2761
	if (hw)
		return 0;

2762
	for_each_online_node(nid) {
2763 2764 2765 2766 2767 2768 2769 2770 2771
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2772 2773
	}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * Normally we use DMA domains for devices which have RMRRs. But we
	 * loose this requirement for graphic and usb devices. Identity map
	 * the RMRRs for graphic and USB devices so that they could use the
	 * si_domain.
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (device_is_rmrr_locked(dev))
				continue;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2799 2800 2801
	return 0;
}

2802
static int identity_mapping(struct device *dev)
2803 2804 2805
{
	struct device_domain_info *info;

2806
	info = dev->archdata.iommu;
2807
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO && info != DEFER_DEVICE_DOMAIN_INFO)
2808
		return (info->domain == si_domain);
2809 2810 2811 2812

	return 0;
}

2813
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2814
{
2815
	struct dmar_domain *ndomain;
2816
	struct intel_iommu *iommu;
2817
	u8 bus, devfn;
2818

2819
	iommu = device_to_iommu(dev, &bus, &devfn);
2820 2821 2822
	if (!iommu)
		return -ENODEV;

2823
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2824 2825
	if (ndomain != domain)
		return -EBUSY;
2826 2827 2828 2829

	return 0;
}

2830
static bool device_has_rmrr(struct device *dev)
2831 2832
{
	struct dmar_rmrr_unit *rmrr;
2833
	struct device *tmp;
2834 2835
	int i;

2836
	rcu_read_lock();
2837
	for_each_rmrr_units(rmrr) {
2838 2839 2840 2841 2842 2843
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2844 2845
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2846
				rcu_read_unlock();
2847
				return true;
2848
			}
2849
	}
2850
	rcu_read_unlock();
2851 2852 2853
	return false;
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2897 2898
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2899 2900 2901 2902 2903 2904
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2905 2906
	if (device_rmrr_is_relaxable(dev))
		return false;
2907 2908 2909 2910

	return true;
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2922
static int device_def_domain_type(struct device *dev)
2923
{
2924 2925
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2926

2927
		if (device_is_rmrr_locked(dev))
2928
			return IOMMU_DOMAIN_DMA;
2929

2930 2931 2932 2933 2934
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2935
			return IOMMU_DOMAIN_DMA;
2936

2937
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2938
			return IOMMU_DOMAIN_IDENTITY;
2939

2940
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2941
			return IOMMU_DOMAIN_IDENTITY;
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
2962
				return IOMMU_DOMAIN_DMA;
2963
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2964
				return IOMMU_DOMAIN_DMA;
2965
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2966
			return IOMMU_DOMAIN_DMA;
2967 2968
	} else {
		if (device_has_rmrr(dev))
2969
			return IOMMU_DOMAIN_DMA;
2970
	}
2971

2972 2973 2974 2975
	return (iommu_identity_mapping & IDENTMAP_ALL) ?
			IOMMU_DOMAIN_IDENTITY : 0;
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
3002
		pr_info("%s: Using Register based invalidation\n",
3003 3004 3005 3006
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
3007
		pr_info("%s: Using Queued invalidation\n", iommu->name);
3008 3009 3010
	}
}

3011
static int copy_context_table(struct intel_iommu *iommu,
3012
			      struct root_entry *old_re,
3013 3014 3015
			      struct context_entry **tbl,
			      int bus, bool ext)
{
3016
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3017
	struct context_entry *new_ce = NULL, ce;
3018
	struct context_entry *old_ce = NULL;
3019
	struct root_entry re;
3020 3021 3022
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
3023
	memcpy(&re, old_re, sizeof(re));
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3039
				memunmap(old_ce);
3040 3041 3042

			ret = 0;
			if (devfn < 0x80)
3043
				old_ce_phys = root_entry_lctp(&re);
3044
			else
3045
				old_ce_phys = root_entry_uctp(&re);
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3058 3059
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3071
		memcpy(&ce, old_ce + idx, sizeof(ce));
3072

3073
		if (!__context_present(&ce))
3074 3075
			continue;

3076 3077 3078 3079
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3099 3100 3101 3102 3103 3104 3105 3106
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3107
	memunmap(old_ce);
3108 3109 3110 3111 3112 3113 3114 3115

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3116
	struct root_entry *old_rt;
3117 3118 3119 3120 3121
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3122
	bool new_ext, ext;
3123 3124 3125

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3136 3137 3138 3139 3140

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3141
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3142 3143 3144 3145 3146 3147
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3148
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3190
	memunmap(old_rt);
3191 3192 3193 3194

	return ret;
}

3195
static int __init init_dmars(void)
3196 3197 3198
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3199
	int ret;
3200

3201 3202 3203 3204 3205 3206 3207
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3208 3209 3210 3211 3212
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3213
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3214 3215 3216
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3217
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3218 3219
	}

3220 3221 3222 3223
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3224 3225 3226
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3227
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3228 3229 3230 3231
		ret = -ENOMEM;
		goto error;
	}

3232 3233 3234 3235 3236 3237
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3238 3239 3240 3241 3242
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3243
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3244 3245 3246 3247 3248 3249
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3250
		g_iommus[iommu->seq_id] = iommu;
3251

3252 3253
		intel_iommu_init_qi(iommu);

3254 3255
		ret = iommu_init_domains(iommu);
		if (ret)
3256
			goto free_iommu;
3257

3258 3259
		init_translation_status(iommu);

3260 3261 3262 3263 3264 3265
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3266

3267 3268 3269
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3270
		 * among all IOMMU's. Need to Split it later.
3271 3272
		 */
		ret = iommu_alloc_root_entry(iommu);
3273
		if (ret)
3274
			goto free_iommu;
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3300
		if (!ecap_pass_through(iommu->ecap))
3301
			hw_pass_through = 0;
3302
		intel_svm_check(iommu);
3303 3304
	}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3317
	if (iommu_default_passthrough())
3318 3319
		iommu_identity_mapping |= IDENTMAP_ALL;

3320
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3321
	dmar_map_gfx = 0;
3322
#endif
3323

3324 3325 3326
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3327 3328
	check_tylersburg_isoch();

3329 3330 3331
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3332

3333 3334 3335 3336 3337 3338 3339
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3340
	for_each_iommu(iommu, drhd) {
3341 3342 3343 3344 3345 3346
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3347
				iommu_disable_protect_mem_regions(iommu);
3348
			continue;
3349
		}
3350 3351 3352

		iommu_flush_write_buffer(iommu);

3353
#ifdef CONFIG_INTEL_IOMMU_SVM
3354
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3355 3356 3357 3358 3359
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3360
			ret = intel_svm_enable_prq(iommu);
3361
			down_write(&dmar_global_lock);
3362 3363 3364 3365
			if (ret)
				goto free_iommu;
		}
#endif
3366 3367
		ret = dmar_set_interrupt(iommu);
		if (ret)
3368
			goto free_iommu;
3369 3370 3371
	}

	return 0;
3372 3373

free_iommu:
3374 3375
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3376
		free_dmar_iommu(iommu);
3377
	}
3378

W
Weidong Han 已提交
3379
	kfree(g_iommus);
3380

3381
error:
3382 3383 3384
	return ret;
}

3385
/* This takes a number of _MM_ pages, not VTD pages */
3386
static unsigned long intel_alloc_iova(struct device *dev,
3387 3388
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3389
{
3390
	unsigned long iova_pfn;
3391

3392 3393
	/* Restrict dma_mask to the width that the iommu can handle */
	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3394 3395
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3396 3397

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3398 3399
		/*
		 * First try to allocate an io virtual address in
3400
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3401
		 * from higher range
3402
		 */
3403
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3404
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3405 3406
		if (iova_pfn)
			return iova_pfn;
3407
	}
3408 3409
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3410
	if (unlikely(!iova_pfn)) {
3411
		dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3412
		return 0;
3413 3414
	}

3415
	return iova_pfn;
3416 3417
}

3418
static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3419
{
3420
	struct dmar_domain *domain, *tmp;
3421 3422 3423
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3424

3425
	/* Device shouldn't be attached by any domains. */
3426 3427
	domain = find_domain(dev);
	if (domain)
3428
		return NULL;
3429 3430 3431 3432

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3451 3452 3453 3454 3455 3456 3457 3458
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:
	if (!domain)
3459
		dev_err(dev, "Allocating domain failed\n");
3460 3461
	else
		domain->domain.type = IOMMU_DOMAIN_DMA;
3462

3463 3464 3465
	return domain;
}

3466
/* Check if the dev needs to go through non-identity map and unmap process.*/
3467
static bool iommu_need_mapping(struct device *dev)
3468
{
3469
	int ret;
3470

3471
	if (iommu_dummy(dev))
3472
		return false;
3473

3474 3475 3476 3477 3478 3479 3480
	ret = identity_mapping(dev);
	if (ret) {
		u64 dma_mask = *dev->dma_mask;

		if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;

3481
		if (dma_mask >= dma_direct_get_required_mask(dev))
3482 3483 3484 3485 3486 3487 3488
			return false;

		/*
		 * 32 bit DMA is removed from si_domain and fall back to
		 * non-identity mapping.
		 */
		dmar_remove_one_dev_info(dev);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		ret = iommu_request_dma_domain_for_dev(dev);
		if (ret) {
			struct iommu_domain *domain;
			struct dmar_domain *dmar_domain;

			domain = iommu_get_domain_for_dev(dev);
			if (domain) {
				dmar_domain = to_dmar_domain(domain);
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
			}
3499
			dmar_remove_one_dev_info(dev);
3500
			get_private_domain_for_dev(dev);
3501
		}
3502 3503

		dev_info(dev, "32bit DMA uses non-identity mapping\n");
3504 3505
	}

3506
	return true;
3507 3508
}

3509 3510
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3511 3512
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3513
	phys_addr_t start_paddr;
3514
	unsigned long iova_pfn;
3515
	int prot = 0;
I
Ingo Molnar 已提交
3516
	int ret;
3517
	struct intel_iommu *iommu;
3518
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3519 3520

	BUG_ON(dir == DMA_NONE);
3521

3522
	domain = deferred_attach_domain(dev);
3523
	if (!domain)
3524
		return DMA_MAPPING_ERROR;
3525

3526
	iommu = domain_get_iommu(domain);
3527
	size = aligned_nrpages(paddr, size);
3528

3529 3530
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3531 3532
		goto error;

3533 3534 3535 3536 3537
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3538
			!cap_zlr(iommu->cap))
3539 3540 3541 3542
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3543
	 * paddr - (paddr + size) might be partial page, we should map the whole
3544
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3545
	 * might have two guest_addr mapping to the same host paddr, but this
3546 3547
	 * is not a big problem
	 */
3548
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3549
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3550 3551 3552
	if (ret)
		goto error;

3553
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3554
	start_paddr += paddr & ~PAGE_MASK;
3555 3556 3557

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3558
	return start_paddr;
3559 3560

error:
3561
	if (iova_pfn)
3562
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3563 3564
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3565
	return DMA_MAPPING_ERROR;
3566 3567
}

3568 3569 3570
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3571
				 unsigned long attrs)
3572
{
3573 3574 3575 3576
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, page_to_phys(page) + offset,
				size, dir, *dev->dma_mask);
	return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3577 3578 3579 3580 3581 3582
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
3583 3584 3585 3586
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, phys_addr, size, dir,
				*dev->dma_mask);
	return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3587 3588
}

3589
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3590
{
3591
	struct dmar_domain *domain;
3592
	unsigned long start_pfn, last_pfn;
3593
	unsigned long nrpages;
3594
	unsigned long iova_pfn;
3595
	struct intel_iommu *iommu;
3596
	struct page *freelist;
3597
	struct pci_dev *pdev = NULL;
3598

3599
	domain = find_domain(dev);
3600 3601
	BUG_ON(!domain);

3602 3603
	iommu = domain_get_iommu(domain);

3604
	iova_pfn = IOVA_PFN(dev_addr);
3605

3606
	nrpages = aligned_nrpages(dev_addr, size);
3607
	start_pfn = mm_to_dma_pfn(iova_pfn);
3608
	last_pfn = start_pfn + nrpages - 1;
3609

3610 3611 3612
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3613
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3614 3615
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3616
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3617
				      nrpages, !freelist, 0);
M
mark gross 已提交
3618
		/* free iova */
3619
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3620
		dma_free_pagelist(freelist);
M
mark gross 已提交
3621
	} else {
3622 3623
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3624 3625 3626 3627 3628
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3629 3630

	trace_unmap_single(dev, dev_addr, size);
3631 3632
}

3633 3634
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3635
			     unsigned long attrs)
3636
{
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
	else
		dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
3648 3649
}

3650
static void *intel_alloc_coherent(struct device *dev, size_t size,
3651
				  dma_addr_t *dma_handle, gfp_t flags,
3652
				  unsigned long attrs)
3653
{
3654 3655
	struct page *page = NULL;
	int order;
3656

3657 3658 3659
	if (!iommu_need_mapping(dev))
		return dma_direct_alloc(dev, size, dma_handle, flags, attrs);

3660 3661 3662 3663 3664 3665
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3666 3667
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3668 3669 3670 3671 3672 3673 3674 3675
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3676 3677 3678
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3679
	if (*dma_handle != DMA_MAPPING_ERROR)
3680 3681 3682
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3683

3684 3685 3686
	return NULL;
}

3687
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3688
				dma_addr_t dma_handle, unsigned long attrs)
3689
{
3690 3691 3692
	int order;
	struct page *page = virt_to_page(vaddr);

3693 3694 3695
	if (!iommu_need_mapping(dev))
		return dma_direct_free(dev, size, vaddr, dma_handle, attrs);

3696 3697 3698 3699 3700 3701
	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3702 3703
}

3704
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3705
			   int nelems, enum dma_data_direction dir,
3706
			   unsigned long attrs)
3707
{
3708 3709 3710 3711 3712
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

3713 3714 3715
	if (!iommu_need_mapping(dev))
		return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);

3716 3717 3718 3719 3720
	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3721 3722

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3723 3724
}

3725
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3726
			enum dma_data_direction dir, unsigned long attrs)
3727 3728 3729
{
	int i;
	struct dmar_domain *domain;
3730 3731
	size_t size = 0;
	int prot = 0;
3732
	unsigned long iova_pfn;
3733
	int ret;
F
FUJITA Tomonori 已提交
3734
	struct scatterlist *sg;
3735
	unsigned long start_vpfn;
3736
	struct intel_iommu *iommu;
3737 3738

	BUG_ON(dir == DMA_NONE);
3739
	if (!iommu_need_mapping(dev))
3740
		return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3741

3742
	domain = deferred_attach_domain(dev);
3743 3744 3745
	if (!domain)
		return 0;

3746 3747
	iommu = domain_get_iommu(domain);

3748
	for_each_sg(sglist, sg, nelems, i)
3749
		size += aligned_nrpages(sg->offset, sg->length);
3750

3751
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3752
				*dev->dma_mask);
3753
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3754
		sglist->dma_length = 0;
3755 3756 3757 3758 3759 3760 3761 3762
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3763
			!cap_zlr(iommu->cap))
3764 3765 3766 3767
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3768
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3769

3770
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3771 3772
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3773 3774
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3775
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3776
		return 0;
3777 3778
	}

3779 3780 3781
	trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
		     sg_phys(sglist), size << VTD_PAGE_SHIFT);

3782 3783 3784
	return nelems;
}

3785 3786 3787 3788 3789 3790 3791
static u64 intel_get_required_mask(struct device *dev)
{
	if (!iommu_need_mapping(dev))
		return dma_direct_get_required_mask(dev);
	return DMA_BIT_MASK(32);
}

3792
static const struct dma_map_ops intel_dma_ops = {
3793 3794
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3795 3796
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3797 3798
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3799
	.map_resource = intel_map_resource,
3800
	.unmap_resource = intel_unmap_resource,
3801
	.dma_supported = dma_direct_supported,
3802 3803
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3804
	.get_required_mask = intel_get_required_mask,
3805 3806
};

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3837
	domain = deferred_attach_domain(dev);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
4064
		pr_err("Couldn't create iommu_domain cache\n");
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
4081
		pr_err("Couldn't create devinfo cache\n");
4082 4083 4084 4085 4086 4087 4088 4089 4090
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
4091
	ret = iova_cache_get();
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
4105
	iova_cache_put();
4106 4107 4108 4109 4110 4111 4112 4113

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
4114
	iova_cache_put();
4115 4116
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4145 4146 4147
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4148
	struct device *dev;
4149
	int i;
4150 4151 4152

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4153 4154 4155
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4156
			/* ignore DMAR unit if no devices exist */
4157 4158 4159 4160 4161
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4162 4163
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4164 4165
			continue;

4166 4167
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4168
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4169 4170 4171 4172
				break;
		if (i < drhd->devices_cnt)
			continue;

4173 4174
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4175
		if (!dmar_map_gfx) {
4176
			drhd->ignored = 1;
4177 4178
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4179
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4180 4181 4182 4183
		}
	}
}

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4204

4205 4206 4207 4208 4209
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4210
					   DMA_CCMD_GLOBAL_INVL);
4211 4212
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4213
		iommu_disable_protect_mem_regions(iommu);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4226
					   DMA_CCMD_GLOBAL_INVL);
4227
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4228
					 DMA_TLB_GLOBAL_FLUSH);
4229 4230 4231
	}
}

4232
static int iommu_suspend(void)
4233 4234 4235 4236 4237 4238
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4239
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4250
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4261
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4272
static void iommu_resume(void)
4273 4274 4275 4276 4277 4278
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4279 4280 4281 4282
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4283
		return;
4284 4285 4286 4287
	}

	for_each_active_iommu(iommu, drhd) {

4288
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4299
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4300 4301 4302 4303 4304 4305
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4306
static struct syscore_ops iommu_syscore_ops = {
4307 4308 4309 4310
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4311
static void __init init_iommu_pm_ops(void)
4312
{
4313
	register_syscore_ops(&iommu_syscore_ops);
4314 4315 4316
}

#else
4317
static inline void init_iommu_pm_ops(void) {}
4318 4319
#endif	/* CONFIG_PM */

4320
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4321 4322 4323
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4324 4325 4326 4327 4328 4329
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *)header;
	ret = arch_rmrr_sanity_check(rmrr);
	if (ret)
		return ret;
4330 4331 4332

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4333
		goto out;
4334 4335

	rmrru->hdr = header;
4336

4337 4338
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4339

4340 4341 4342
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4343
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4344
		goto free_rmrru;
4345

4346
	list_add(&rmrru->list, &dmar_rmrr_units);
4347

4348
	return 0;
4349 4350 4351 4352
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4353 4354
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4374 4375 4376 4377
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4378
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4379 4380
		return 0;

4381
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4382 4383 4384 4385 4386
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4387 4388 4389
	if (!atsru)
		return -ENOMEM;

4390 4391 4392 4393 4394 4395 4396
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4397
	atsru->include_all = atsr->flags & 0x1;
4398 4399 4400 4401 4402 4403 4404 4405 4406
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4407

4408
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4409 4410 4411 4412

	return 0;
}

4413 4414 4415 4416 4417 4418
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4447
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4448 4449 4450
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4451
	}
4452 4453 4454 4455

	return 0;
}

4456 4457
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4458
	int sp, ret;
4459 4460 4461 4462 4463 4464
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4465
		pr_warn("%s: Doesn't support hardware pass through.\n",
4466 4467 4468 4469 4470
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4471
		pr_warn("%s: Doesn't support snooping.\n",
4472 4473 4474 4475 4476
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4477
		pr_warn("%s: Doesn't support large page.\n",
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4495
	intel_svm_check(iommu);
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4508 4509

#ifdef CONFIG_INTEL_IOMMU_SVM
4510
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4511 4512 4513 4514 4515
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4535 4536
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4553 4554
}

4555 4556 4557 4558 4559 4560 4561 4562 4563
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4564 4565
	}

4566 4567 4568 4569
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4570 4571 4572 4573
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4574
	int i, ret = 1;
4575
	struct pci_bus *bus;
4576 4577
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4578 4579 4580 4581 4582
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4583
		bridge = bus->self;
4584 4585 4586 4587 4588
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4589
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4590
			return 0;
4591
		/* If we found the root port, look it up in the ATSR */
4592
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4593 4594 4595
			break;
	}

4596
	rcu_read_lock();
4597 4598 4599 4600 4601
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4602
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4603
			if (tmp == &bridge->dev)
4604
				goto out;
4605 4606

		if (atsru->include_all)
4607
			goto out;
4608
	}
4609 4610
	ret = 0;
out:
4611
	rcu_read_unlock();
4612

4613
	return ret;
4614 4615
}

4616 4617
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4618
	int ret;
4619 4620 4621 4622 4623
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4624
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4635
			if (ret < 0)
4636
				return ret;
4637
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4638 4639
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4655
			else if (ret < 0)
4656
				return ret;
4657
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4658 4659 4660 4661 4662 4663 4664 4665 4666
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
J
Joerg Roedel 已提交
4679
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4693
			struct page *freelist;
4694 4695 4696

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4697
				pr_debug("Failed get IOVA for PFN %lx\n",
4698 4699 4700 4701 4702 4703 4704
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4705
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4706 4707 4708 4709
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4710 4711 4712
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4713 4714
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4715
				iommu_flush_iotlb_psi(iommu, si_domain,
4716
					iova->pfn_lo, iova_size(iova),
4717
					!freelist, 0);
4718
			rcu_read_unlock();
4719
			dma_free_pagelist(freelist);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4735 4736 4737 4738 4739 4740 4741
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4742
		int did;
4743 4744 4745 4746

		if (!iommu)
			continue;

4747
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4748
			domain = get_iommu_domain(iommu, (u16)did);
4749 4750 4751 4752 4753 4754 4755 4756

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4757
static int intel_iommu_cpu_dead(unsigned int cpu)
4758
{
4759 4760
	free_all_cpu_cached_iovas(cpu);
	return 0;
4761 4762
}

4763 4764 4765 4766 4767 4768 4769 4770 4771
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4792 4793
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4794 4795 4796
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4797 4798
}

4799 4800 4801 4802
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4803
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4814
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4815 4816 4817 4818 4819 4820 4821 4822
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4823
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4824 4825 4826 4827 4828 4829 4830 4831
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4832
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4833 4834 4835 4836
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4837 4838 4839 4840
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4841
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4842 4843 4844 4845 4846 4847 4848 4849
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4850
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4851 4852 4853 4854 4855
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4856 4857 4858 4859 4860
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4861 4862
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4876
static inline bool has_untrusted_dev(void)
4877 4878 4879
{
	struct pci_dev *pdev = NULL;

4880 4881 4882
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4883

4884 4885
	return false;
}
4886

4887 4888 4889
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
		iommu_identity_mapping |= IDENTMAP_ALL;

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4908 4909 4910
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4911 4912
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4951 4952
int __init intel_iommu_init(void)
{
4953
	int ret = -ENODEV;
4954
	struct dmar_drhd_unit *drhd;
4955
	struct intel_iommu *iommu;
4956

4957 4958 4959 4960 4961
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4962

4963 4964 4965 4966 4967 4968 4969
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4970 4971 4972
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4973
		goto out_free_dmar;
4974
	}
4975

4976
	if (dmar_dev_scope_init() < 0) {
4977 4978
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4979
		goto out_free_dmar;
4980
	}
4981

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4992
	if (no_iommu || dmar_disabled) {
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

5006 5007 5008 5009 5010 5011
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
5012
		goto out_free_dmar;
5013
	}
5014

5015
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
5016
		pr_info("No RMRR found\n");
5017 5018

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
5019
		pr_info("No ATSR found\n");
5020

5021 5022 5023
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
5024
		goto out_free_reserved_range;
5025
	}
5026

5027 5028 5029
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

5030 5031
	init_no_remapping_devices();

5032
	ret = init_dmars();
5033
	if (ret) {
5034 5035
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
5036
		pr_err("Initialization failed\n");
5037
		goto out_free_reserved_range;
5038
	}
5039
	up_write(&dmar_global_lock);
5040

5041
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5042 5043 5044 5045 5046 5047 5048 5049
	/*
	 * If the system has no untrusted device or the user has decided
	 * to disable the bounce page mechanisms, we don't need swiotlb.
	 * Mark this and the pre-allocated bounce pages will be released
	 * later.
	 */
	if (!has_untrusted_dev() || intel_no_bounce)
		swiotlb = 0;
5050
#endif
5051
	dma_ops = &intel_dma_ops;
F
Fenghua Yu 已提交
5052

5053
	init_iommu_pm_ops();
5054

5055 5056 5057 5058 5059 5060 5061
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
5062

5063
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5064 5065
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
5066 5067
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
5068

5069
	down_read(&dmar_global_lock);
5070 5071
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");
5072
	up_read(&dmar_global_lock);
5073

5074 5075
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
5076
		if (!drhd->ignored && !translation_pre_enabled(iommu))
5077 5078 5079 5080 5081 5082
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

5083
	intel_iommu_enabled = 1;
5084
	intel_iommu_debugfs_init();
5085

5086
	return 0;
5087 5088 5089 5090 5091

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
5092 5093
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
5094
	return ret;
5095
}
5096

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

5119
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5120
{
5121
	struct dmar_domain *domain;
5122 5123 5124
	struct intel_iommu *iommu;
	unsigned long flags;

5125 5126
	assert_spin_locked(&device_domain_lock);

5127
	if (WARN_ON(!info))
5128 5129
		return;

5130
	iommu = info->iommu;
5131
	domain = info->domain;
5132

5133
	if (info->dev) {
5134 5135 5136 5137
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
					PASID_RID2PASID);

5138
		iommu_disable_dev_iotlb(info);
5139
		domain_context_clear(iommu, info->dev);
5140
		intel_pasid_free_table(info->dev);
5141
	}
5142

5143
	unlink_domain_info(info);
5144

5145
	spin_lock_irqsave(&iommu->lock, flags);
5146
	domain_detach_iommu(domain, iommu);
5147
	spin_unlock_irqrestore(&iommu->lock, flags);
5148

5149 5150
	/* free the private domain */
	if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5151 5152
	    !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
	    list_empty(&domain->devices))
5153 5154
		domain_exit(info->domain);

5155
	free_devinfo_mem(info);
5156 5157
}

5158
static void dmar_remove_one_dev_info(struct device *dev)
5159
{
5160
	struct device_domain_info *info;
5161
	unsigned long flags;
5162

5163
	spin_lock_irqsave(&device_domain_lock, flags);
5164
	info = dev->archdata.iommu;
5165 5166
	if (info)
		__dmar_remove_one_dev_info(info);
5167
	spin_unlock_irqrestore(&device_domain_lock, flags);
5168 5169
}

5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5195
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5196
{
5197
	struct dmar_domain *dmar_domain;
5198 5199
	struct iommu_domain *domain;

5200
	switch (type) {
5201 5202
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5203
	case IOMMU_DOMAIN_UNMANAGED:
5204
		dmar_domain = alloc_domain(0);
5205 5206 5207 5208
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5209
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5210 5211 5212 5213
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5214 5215 5216 5217 5218 5219 5220 5221

		if (type == IOMMU_DOMAIN_DMA &&
		    init_iova_flush_queue(&dmar_domain->iovad,
					  iommu_flush_iova, iova_entry_free)) {
			pr_warn("iova flush queue initialization failed\n");
			intel_iommu_strict = 1;
		}

5222
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5223

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5234
		return NULL;
K
Kay, Allen M 已提交
5235
	}
5236

5237
	return NULL;
K
Kay, Allen M 已提交
5238 5239
}

5240
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5241
{
5242 5243
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5244 5245
}

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
	struct device_domain_info *info = dev->archdata.iommu;

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5285
		ioasid_free(domain->default_pasid);
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5303 5304 5305 5306 5307
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
	ret = intel_pasid_setup_second_level(iommu, domain, dev,
					     domain->default_pasid);
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5343
		ioasid_free(domain->default_pasid);
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5372 5373
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5374
{
5375
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5376 5377
	struct intel_iommu *iommu;
	int addr_width;
5378
	u8 bus, devfn;
5379

5380
	iommu = device_to_iommu(dev, &bus, &devfn);
5381 5382 5383 5384 5385
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5386 5387 5388 5389
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5390 5391 5392
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5393 5394
		return -EFAULT;
	}
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5405 5406
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5407
			free_pgtable_page(pte);
5408 5409 5410
		}
		dmar_domain->agaw--;
	}
5411

5412 5413 5414 5415 5416 5417 5418 5419
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5420 5421
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5422 5423 5424 5425
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5426 5427 5428
	if (is_aux_domain(dev, domain))
		return -EPERM;

5429 5430 5431 5432 5433
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5434
		if (old_domain)
5435 5436 5437 5438 5439 5440 5441 5442
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5443 5444
}

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5460 5461
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5462
{
5463
	dmar_remove_one_dev_info(dev);
5464
}
5465

5466 5467 5468 5469 5470 5471
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5472 5473
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5474
			   size_t size, int iommu_prot, gfp_t gfp)
5475
{
5476
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5477
	u64 max_addr;
5478
	int prot = 0;
5479
	int ret;
5480

5481 5482 5483 5484
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5485 5486
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5487

5488
	max_addr = iova + size;
5489
	if (dmar_domain->max_addr < max_addr) {
5490 5491 5492
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5493
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5494
		if (end < max_addr) {
J
Joerg Roedel 已提交
5495
			pr_err("%s: iommu width (%d) is not "
5496
			       "sufficient for the mapped address (%llx)\n",
5497
			       __func__, dmar_domain->gaw, max_addr);
5498 5499
			return -EFAULT;
		}
5500
		dmar_domain->max_addr = max_addr;
5501
	}
5502 5503
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5504
	size = aligned_nrpages(hpa, size);
5505 5506
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5507
	return ret;
K
Kay, Allen M 已提交
5508 5509
}

5510
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5511 5512
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5513
{
5514
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5515 5516 5517
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5518
	int iommu_id, level = 0;
5519 5520 5521

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5522
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5523 5524 5525

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5526

5527 5528 5529 5530 5531 5532 5533
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5534
	for_each_domain_iommu(iommu_id, dmar_domain)
5535 5536
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5537 5538

	dma_free_pagelist(freelist);
5539

5540 5541
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5542

5543
	return size;
K
Kay, Allen M 已提交
5544 5545
}

5546
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5547
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5548
{
5549
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5550
	struct dma_pte *pte;
5551
	int level = 0;
5552
	u64 phys = 0;
K
Kay, Allen M 已提交
5553

5554
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
K
Kay, Allen M 已提交
5555
	if (pte)
5556
		phys = dma_pte_addr(pte);
K
Kay, Allen M 已提交
5557

5558
	return phys;
K
Kay, Allen M 已提交
5559
}
5560

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5597
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5598 5599
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5600
		return domain_update_iommu_snooping(NULL) == 1;
5601
	if (cap == IOMMU_CAP_INTR_REMAP)
5602
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5603

5604
	return false;
S
Sheng Yang 已提交
5605 5606
}

5607 5608
static int intel_iommu_add_device(struct device *dev)
{
5609 5610
	struct dmar_domain *dmar_domain;
	struct iommu_domain *domain;
5611
	struct intel_iommu *iommu;
5612
	struct iommu_group *group;
5613
	u8 bus, devfn;
5614
	int ret;
5615

5616 5617
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5618 5619
		return -ENODEV;

5620
	iommu_device_link(&iommu->iommu, dev);
5621

5622 5623 5624
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5625
	group = iommu_group_get_for_dev(dev);
5626

5627 5628
	if (IS_ERR(group))
		return PTR_ERR(group);
5629

5630
	iommu_group_put(group);
5631 5632 5633 5634

	domain = iommu_get_domain_for_dev(dev);
	dmar_domain = to_dmar_domain(domain);
	if (domain->type == IOMMU_DOMAIN_DMA) {
5635
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5636 5637
			ret = iommu_request_dm_for_dev(dev);
			if (ret) {
5638
				dmar_remove_one_dev_info(dev);
5639 5640 5641 5642 5643 5644 5645
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
				domain_add_dev_info(si_domain, dev);
				dev_info(dev,
					 "Device uses a private identity domain.\n");
			}
		}
	} else {
5646
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5647 5648
			ret = iommu_request_dma_domain_for_dev(dev);
			if (ret) {
5649
				dmar_remove_one_dev_info(dev);
5650
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5651
				if (!get_private_domain_for_dev(dev)) {
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
					dev_warn(dev,
						 "Failed to get a private domain.\n");
					return -ENOMEM;
				}

				dev_info(dev,
					 "Device uses a private dma domain.\n");
			}
		}
	}

5663 5664 5665 5666 5667
	if (device_needs_bounce(dev)) {
		dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
		set_dma_ops(dev, &bounce_dma_ops);
	}

5668
	return 0;
5669
}
5670

5671 5672
static void intel_iommu_remove_device(struct device *dev)
{
5673 5674 5675 5676 5677 5678 5679
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5680 5681
	dmar_remove_one_dev_info(dev);

5682
	iommu_group_remove_device(dev);
5683

5684
	iommu_device_unlink(&iommu->iommu, dev);
5685 5686 5687

	if (device_needs_bounce(dev))
		set_dma_ops(dev, NULL);
5688 5689
}

5690 5691 5692
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5693
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5694 5695 5696 5697 5698
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5699
	down_read(&dmar_global_lock);
5700 5701 5702
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5703
			struct iommu_resv_region *resv;
5704
			enum iommu_resv_type type;
5705 5706
			size_t length;

5707 5708
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5709 5710
				continue;

5711
			length = rmrr->end_address - rmrr->base_address + 1;
5712 5713 5714 5715

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5716
			resv = iommu_alloc_resv_region(rmrr->base_address,
5717
						       length, prot, type);
5718 5719 5720 5721
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5722 5723
		}
	}
5724
	up_read(&dmar_global_lock);
5725

5726 5727 5728 5729 5730
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5731
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5732
						   IOMMU_RESV_DIRECT_RELAXABLE);
5733 5734 5735 5736 5737 5738
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5739 5740
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5741
				      0, IOMMU_RESV_MSI);
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

5752 5753
	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
5754 5755
}

5756
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5757 5758 5759 5760 5761 5762 5763 5764
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5765
	domain = find_domain(dev);
5766 5767 5768 5769 5770 5771 5772
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5773
	info = dev->archdata.iommu;
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5787 5788 5789
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5820
#ifdef CONFIG_INTEL_IOMMU_SVM
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5834
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5835 5836 5837 5838 5839 5840 5841
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
	struct device_domain_info *info = dev->archdata.iommu;

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5960 5961 5962 5963 5964 5965 5966 5967 5968
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5969 5970 5971 5972 5973 5974
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

5975
const struct iommu_ops intel_iommu_ops = {
5976 5977 5978 5979 5980
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5981 5982
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5983
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5984 5985 5986 5987 5988 5989 5990
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
5991
	.apply_resv_region	= intel_iommu_apply_resv_region,
5992
	.device_group		= pci_device_group,
5993 5994 5995 5996
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5997
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5998
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5999
};
6000

6001
static void quirk_iommu_igfx(struct pci_dev *dev)
6002
{
6003
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6004 6005 6006
	dmar_map_gfx = 0;
}

6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6041

6042
static void quirk_iommu_rwbf(struct pci_dev *dev)
6043 6044 6045
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6046
	 * but needs it. Same seems to hold for the desktop versions.
6047
	 */
6048
	pci_info(dev, "Forcing write-buffer flush capability\n");
6049 6050 6051 6052
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6053 6054 6055 6056 6057 6058
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6059

6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6070
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6071 6072 6073
{
	unsigned short ggc;

6074
	if (pci_read_config_word(dev, GGC, &ggc))
6075 6076
		return;

6077
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6078
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6079
		dmar_map_gfx = 0;
6080 6081
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6082
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6083 6084
		intel_iommu_strict = 1;
       }
6085 6086 6087 6088 6089 6090
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6144 6145

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6146 6147
	       vtisochctrl);
}