intel-iommu.c 143.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/cacheflush.h>
46
#include <asm/iommu.h>
47

48
#include "irq_remapping.h"
L
Lu Baolu 已提交
49
#include "intel-pasid.h"
50

F
Fenghua Yu 已提交
51 52 53
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

54
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
55
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
56
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58 59 60 61 62

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

63
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
64

F
Fenghua Yu 已提交
65
#define MAX_AGAW_WIDTH 64
66
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
67

68 69 70 71 72 73 74 75
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76

77 78 79
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

80
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
81

82 83 84 85
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

104 105 106 107 108 109 110
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
111
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
112 113 114 115
}

static inline int width_to_agaw(int width)
{
116
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
143

144 145
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
146
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
169 170 171
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

172
static void __init check_tylersburg_isoch(void);
173 174
static int rwbf_quirk;

175 176 177 178 179
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
180
int intel_iommu_tboot_noforce;
181
static int no_platform_optin;
182

183 184
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
205

206 207
	return re->hi & VTD_PAGE_MASK;
}
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
230 231 232
{
	return (context->lo & 1);
}
233

234
bool context_present(struct context_entry *context)
235 236 237 238 239 240
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
261
	context->lo &= ~VTD_PAGE_MASK;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

277 278 279 280 281
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

282 283 284 285 286
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
287

288 289 290 291 292 293
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
294 295
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
296 297

/* si_domain contains mulitple devices */
298
#define DOMAIN_FLAG_STATIC_IDENTITY		BIT(0)
299

300 301 302 303 304 305 306 307
/*
 * This is a DMA domain allocated through the iommu domain allocation
 * interface. But one or more devices belonging to this domain have
 * been chosen to use a private domain. We should avoid to use the
 * map/unmap/iova_to_phys APIs on it.
 */
#define DOMAIN_FLAG_LOSE_CHILDREN		BIT(1)

308 309 310 311
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

312 313 314 315 316
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
317
	struct dmar_dev_scope *devices;	/* target devices */
318 319 320 321 322 323
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
324
	struct dmar_dev_scope *devices;	/* target devices */
325 326 327 328 329 330 331 332 333 334
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
335 336 337
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

338
static void domain_exit(struct dmar_domain *domain);
339
static void domain_remove_dev_info(struct dmar_domain *domain);
340
static void dmar_remove_one_dev_info(struct device *dev);
341
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
342 343
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
344
static bool device_is_rmrr_locked(struct device *dev);
345 346
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
347

348
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
349 350 351
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
352
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
353

354
int intel_iommu_sm;
355 356 357
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

358
static int dmar_map_gfx = 1;
359
static int dmar_forcedac;
M
mark gross 已提交
360
static int intel_iommu_strict;
361
static int intel_iommu_superpage = 1;
362
static int iommu_identity_mapping;
363
static int intel_no_bounce;
364

365 366 367
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
368

369 370 371
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

372
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
373
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
374 375 376
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

377 378 379
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

380 381
/*
 * Iterate over elements in device_domain_list and call the specified
382
 * callback @fn against each element.
383 384 385 386 387
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
388
	unsigned long flags;
389 390
	struct device_domain_info *info;

391
	spin_lock_irqsave(&device_domain_lock, flags);
392 393
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
394 395
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
396
			return ret;
397
		}
398
	}
399
	spin_unlock_irqrestore(&device_domain_lock, flags);
400 401 402 403

	return 0;
}

404
const struct iommu_ops intel_iommu_ops;
405

406 407 408 409 410
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

411 412 413 414 415
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

416 417 418 419 420 421 422 423 424
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

425 426 427 428 429 430
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

431 432 433 434 435
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
436 437
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
438
			pr_info("IOMMU enabled\n");
439
		} else if (!strncmp(str, "off", 3)) {
440
			dmar_disabled = 1;
441
			no_platform_optin = 1;
J
Joerg Roedel 已提交
442
			pr_info("IOMMU disabled\n");
443 444
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
445
			pr_info("Disable GFX device mapping\n");
446
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
447
			pr_info("Forcing DAC for PCI devices\n");
448
			dmar_forcedac = 1;
M
mark gross 已提交
449
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
450
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
451
			intel_iommu_strict = 1;
452
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
453
			pr_info("Disable supported super page\n");
454
			intel_iommu_superpage = 0;
455 456 457
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
458 459 460 461
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
462 463 464
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
465 466 467 468 469 470 471 472 473 474 475 476 477
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

478 479
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
480 481 482 483 484 485 486 487
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
488 489 490 491 492
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
493 494 495 496 497 498 499 500 501 502 503 504 505
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
506 507
}

508
void *alloc_pgtable_page(int node)
509
{
510 511
	struct page *page;
	void *vaddr = NULL;
512

513 514 515
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
516
	return vaddr;
517 518
}

519
void free_pgtable_page(void *vaddr)
520 521 522 523 524 525
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
526
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
527 528
}

K
Kay, Allen M 已提交
529
static void free_domain_mem(void *vaddr)
530 531 532 533 534 535
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
536
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
537 538 539 540 541 542 543
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

544 545 546 547 548
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

549 550 551 552 553 554 555 556
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
557
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
558 559 560 561 562
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
563
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
564 565 566 567 568 569 570 571
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

590
/* This functionin only returns single iommu in a domain */
591
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
592 593 594
{
	int iommu_id;

595
	/* si_domain and vm domain should not get here. */
596 597 598
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

599 600 601
	for_each_domain_iommu(iommu_id, domain)
		break;

602 603 604 605 606 607
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
608 609
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
610 611
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
612 613
	bool found = false;
	int i;
614

615
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
616

617
	for_each_domain_iommu(i, domain) {
618
		found = true;
W
Weidong Han 已提交
619 620 621 622 623
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
624 625 626 627 628 629 630 631 632 633 634 635
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
636 637
}

638
static int domain_update_iommu_snooping(struct intel_iommu *skip)
639
{
640 641 642
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
643

644 645 646 647 648 649 650
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
651 652
		}
	}
653 654 655
	rcu_read_unlock();

	return ret;
656 657
}

658
static int domain_update_iommu_superpage(struct intel_iommu *skip)
659
{
660
	struct dmar_drhd_unit *drhd;
661
	struct intel_iommu *iommu;
662
	int mask = 0xf;
663 664

	if (!intel_iommu_superpage) {
665
		return 0;
666 667
	}

668
	/* set iommu_superpage to the smallest common denominator */
669
	rcu_read_lock();
670
	for_each_active_iommu(iommu, drhd) {
671 672 673 674
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
675 676
		}
	}
677 678
	rcu_read_unlock();

679
	return fls(mask);
680 681
}

682 683 684 685
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
686 687
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
688 689
}

690 691
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
692 693 694 695 696
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

697
	entry = &root->lo;
698
	if (sm_supported(iommu)) {
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

724 725 726 727 728
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

756
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
757 758
{
	struct dmar_drhd_unit *drhd = NULL;
759
	struct intel_iommu *iommu;
760
	struct device *tmp;
761
	struct pci_dev *pdev = NULL;
762
	u16 segment = 0;
763 764
	int i;

765 766 767
	if (iommu_dummy(dev))
		return NULL;

768
	if (dev_is_pci(dev)) {
769 770
		struct pci_dev *pf_pdev;

771
		pdev = to_pci_dev(dev);
772 773 774 775 776 777 778

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

779 780 781 782
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
783
		segment = pci_domain_nr(pdev->bus);
784
	} else if (has_acpi_companion(dev))
785 786
		dev = &ACPI_COMPANION(dev)->dev;

787
	rcu_read_lock();
788
	for_each_active_iommu(iommu, drhd) {
789
		if (pdev && segment != drhd->segment)
790
			continue;
791

792
		for_each_active_dev_scope(drhd->devices,
793 794
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
795 796 797 798
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
799
				if (pdev && pdev->is_virtfn)
800 801
					goto got_pdev;

802 803
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
804
				goto out;
805 806
			}

807
			if (is_downstream_to_pci_bridge(dev, tmp))
808
				goto got_pdev;
809
		}
810

811 812 813 814
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
815
			goto out;
816
		}
817
	}
818
	iommu = NULL;
819
 out:
820
	rcu_read_unlock();
821

822
	return iommu;
823 824
}

W
Weidong Han 已提交
825 826 827 828 829 830 831
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

832 833 834
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
835
	int ret = 0;
836 837 838
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
839 840 841
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
857
		context = iommu_context_addr(iommu, i, 0, 0);
858 859
		if (context)
			free_pgtable_page(context);
860

861
		if (!sm_supported(iommu))
862 863 864 865 866 867
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

868 869 870 871 872 873 874
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

875
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
876
				      unsigned long pfn, int *target_level)
877
{
878
	struct dma_pte *parent, *pte;
879
	int level = agaw_to_level(domain->agaw);
880
	int offset;
881 882

	BUG_ON(!domain->pgd);
883

884
	if (!domain_pfn_supported(domain, pfn))
885 886 887
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

888 889
	parent = domain->pgd;

890
	while (1) {
891 892
		void *tmp_page;

893
		offset = pfn_level_offset(pfn, level);
894
		pte = &parent[offset];
895
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
896
			break;
897
		if (level == *target_level)
898 899
			break;

900
		if (!dma_pte_present(pte)) {
901 902
			uint64_t pteval;

903
			tmp_page = alloc_pgtable_page(domain->nid);
904

905
			if (!tmp_page)
906
				return NULL;
907

908
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
909
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
910
			if (cmpxchg64(&pte->val, 0ULL, pteval))
911 912
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
913
			else
914
				domain_flush_cache(domain, pte, sizeof(*pte));
915
		}
916 917 918
		if (level == 1)
			break;

919
		parent = phys_to_virt(dma_pte_addr(pte));
920 921 922
		level--;
	}

923 924 925
	if (!*target_level)
		*target_level = level;

926 927 928 929
	return pte;
}

/* return address's pte at specific level */
930 931
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
932
					 int level, int *large_page)
933
{
934
	struct dma_pte *parent, *pte;
935 936 937 938 939
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
940
		offset = pfn_level_offset(pfn, total);
941 942 943 944
		pte = &parent[offset];
		if (level == total)
			return pte;

945 946
		if (!dma_pte_present(pte)) {
			*large_page = total;
947
			break;
948 949
		}

950
		if (dma_pte_superpage(pte)) {
951 952 953 954
			*large_page = total;
			return pte;
		}

955
		parent = phys_to_virt(dma_pte_addr(pte));
956 957 958 959 960 961
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
962
static void dma_pte_clear_range(struct dmar_domain *domain,
963 964
				unsigned long start_pfn,
				unsigned long last_pfn)
965
{
966
	unsigned int large_page;
967
	struct dma_pte *first_pte, *pte;
968

969 970
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
971
	BUG_ON(start_pfn > last_pfn);
972

973
	/* we don't need lock here; nobody else touches the iova range */
974
	do {
975 976
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
977
		if (!pte) {
978
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
979 980
			continue;
		}
981
		do {
982
			dma_clear_pte(pte);
983
			start_pfn += lvl_to_nr_pages(large_page);
984
			pte++;
985 986
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

987 988
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
989 990

	} while (start_pfn && start_pfn <= last_pfn);
991 992
}

993
static void dma_pte_free_level(struct dmar_domain *domain, int level,
994 995 996
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1008
		level_pfn = pfn & level_mask(level);
1009 1010
		level_pte = phys_to_virt(dma_pte_addr(pte));

1011 1012 1013 1014 1015
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1016

1017 1018 1019 1020 1021
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1022
		      last_pfn < level_pfn + level_size(level) - 1)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1032 1033 1034 1035
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1036
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1037
				   unsigned long start_pfn,
1038 1039
				   unsigned long last_pfn,
				   int retain_level)
1040
{
1041 1042
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1043
	BUG_ON(start_pfn > last_pfn);
1044

1045 1046
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1047
	/* We don't need lock here; nobody else touches the iova range */
1048
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1049
			   domain->pgd, 0, start_pfn, last_pfn);
1050

1051
	/* free pgd */
1052
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1053 1054 1055 1056 1057
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1077 1078
	pte = page_address(pg);
	do {
1079 1080 1081
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1082 1083
		pte++;
	} while (!first_pte_in_page(pte));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1140 1141 1142
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1143
{
1144
	struct page *freelist;
1145

1146 1147
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1166
static void dma_free_pagelist(struct page *freelist)
1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1176 1177 1178 1179 1180 1181 1182
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1183 1184 1185 1186 1187 1188
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1189
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1190
	if (!root) {
J
Joerg Roedel 已提交
1191
		pr_err("Allocating root entry for %s failed\n",
1192
			iommu->name);
1193
		return -ENOMEM;
1194
	}
1195

F
Fenghua Yu 已提交
1196
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1207
	u64 addr;
1208
	u32 sts;
1209 1210
	unsigned long flag;

1211
	addr = virt_to_phys(iommu->root_entry);
1212 1213
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1214

1215
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1216
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1217

1218
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1219 1220 1221

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1222
		      readl, (sts & DMA_GSTS_RTPS), sts);
1223

1224
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1225 1226
}

1227
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1228 1229 1230 1231
{
	u32 val;
	unsigned long flag;

1232
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1233 1234
		return;

1235
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1236
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1237 1238 1239

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1241

1242
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 1244 1245
}

/* return value determine if we need a write buffer flush */
1246 1247 1248
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1269
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1270 1271 1272 1273 1274 1275
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1276
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1277 1278 1279
}

/* return value determine if we need a write buffer flush */
1280 1281
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1297
		/* IH bit is passed in as part of address */
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1315
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1316 1317 1318 1319 1320 1321 1322 1323 1324
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1325
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1326 1327 1328

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1329
		pr_err("Flush IOTLB failed\n");
1330
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1331
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1332 1333
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1334 1335
}

1336 1337 1338
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1339 1340 1341
{
	struct device_domain_info *info;

1342 1343
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1344 1345 1346 1347
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1348 1349
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1350 1351
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1352 1353 1354
			break;
		}

1355
	return NULL;
Y
Yu Zhao 已提交
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1381
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1382
{
1383 1384
	struct pci_dev *pdev;

1385 1386
	assert_spin_locked(&device_domain_lock);

1387
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1388 1389
		return;

1390
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1403
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1404
	}
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1415 1416 1417
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1418 1419
		info->pri_enabled = 1;
#endif
1420
	if (!pdev->untrusted && info->ats_supported &&
1421
	    pci_ats_page_aligned(pdev) &&
1422
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1423
		info->ats_enabled = 1;
1424
		domain_update_iotlb(info->domain);
1425 1426
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1427 1428 1429 1430
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1431 1432
	struct pci_dev *pdev;

1433 1434
	assert_spin_locked(&device_domain_lock);

1435
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1436 1437
		return;

1438 1439 1440 1441 1442
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1443
		domain_update_iotlb(info->domain);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1464 1465 1466
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1467 1468
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1469
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1470 1471 1472
			continue;

		sid = info->bus << 8 | info->devfn;
1473
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1474 1475
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1476 1477 1478 1479
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1480 1481 1482 1483
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1484
{
1485
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1486
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1487
	u16 did = domain->iommu_did[iommu->seq_id];
1488 1489 1490

	BUG_ON(pages == 0);

1491 1492
	if (ih)
		ih = 1 << 6;
1493
	/*
1494 1495
	 * Fallback to domain selective flush if no PSI support or the size is
	 * too big.
1496 1497 1498
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
1499 1500
	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1501
						DMA_TLB_DSI_FLUSH);
1502
	else
1503
		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1504
						DMA_TLB_PSI_FLUSH);
1505 1506

	/*
1507 1508
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1509
	 */
1510
	if (!cap_caching_mode(iommu->cap) || !map)
1511
		iommu_flush_dev_iotlb(domain, addr, mask);
1512 1513
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
	/* It's a non-present to present mapping. Only flush if caching mode */
	if (cap_caching_mode(iommu->cap))
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1545 1546 1547 1548 1549
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1550 1551 1552
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1553
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1554 1555 1556 1557 1558 1559 1560 1561
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1562
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1563 1564
}

1565
static void iommu_enable_translation(struct intel_iommu *iommu)
1566 1567 1568 1569
{
	u32 sts;
	unsigned long flags;

1570
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1571 1572
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1573 1574 1575

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1576
		      readl, (sts & DMA_GSTS_TES), sts);
1577

1578
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1579 1580
}

1581
static void iommu_disable_translation(struct intel_iommu *iommu)
1582 1583 1584 1585
{
	u32 sts;
	unsigned long flag;

1586
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1587 1588 1589 1590 1591
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1592
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1593

1594
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1595 1596 1597 1598
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1599 1600
	u32 ndomains, nlongs;
	size_t size;
1601 1602

	ndomains = cap_ndoms(iommu->cap);
1603
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1604
		 iommu->name, ndomains);
1605 1606
	nlongs = BITS_TO_LONGS(ndomains);

1607 1608
	spin_lock_init(&iommu->lock);

1609 1610
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1611 1612
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1613 1614
		return -ENOMEM;
	}
1615

1616
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1617 1618 1619 1620 1621 1622 1623 1624
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1625 1626
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1627
		kfree(iommu->domain_ids);
1628
		kfree(iommu->domains);
1629
		iommu->domain_ids = NULL;
1630
		iommu->domains    = NULL;
1631 1632 1633 1634
		return -ENOMEM;
	}

	/*
1635 1636 1637 1638
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1639
	 */
1640 1641
	set_bit(0, iommu->domain_ids);

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1652 1653 1654
	return 0;
}

1655
static void disable_dmar_iommu(struct intel_iommu *iommu)
1656
{
1657
	struct device_domain_info *info, *tmp;
1658
	unsigned long flags;
1659

1660 1661
	if (!iommu->domains || !iommu->domain_ids)
		return;
1662

1663
	spin_lock_irqsave(&device_domain_lock, flags);
1664 1665 1666 1667 1668 1669 1670
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1671
		__dmar_remove_one_dev_info(info);
1672
	}
1673
	spin_unlock_irqrestore(&device_domain_lock, flags);
1674 1675 1676

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1677
}
1678

1679 1680 1681
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1682
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1683 1684 1685 1686
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1687 1688 1689 1690 1691
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1692

W
Weidong Han 已提交
1693 1694
	g_iommus[iommu->seq_id] = NULL;

1695 1696
	/* free context mapping */
	free_context_table(iommu);
1697 1698

#ifdef CONFIG_INTEL_IOMMU_SVM
1699
	if (pasid_supported(iommu)) {
1700 1701 1702
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1703
#endif
1704 1705
}

1706
static struct dmar_domain *alloc_domain(int flags)
1707 1708 1709 1710 1711 1712 1713
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1714
	memset(domain, 0, sizeof(*domain));
1715
	domain->nid = NUMA_NO_NODE;
1716
	domain->flags = flags;
1717
	domain->has_iotlb_device = false;
1718
	INIT_LIST_HEAD(&domain->devices);
1719 1720 1721 1722

	return domain;
}

1723 1724
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1725 1726
			       struct intel_iommu *iommu)
{
1727
	unsigned long ndomains;
1728
	int num;
1729

1730
	assert_spin_locked(&device_domain_lock);
1731
	assert_spin_locked(&iommu->lock);
1732

1733 1734 1735
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1736
		ndomains = cap_ndoms(iommu->cap);
1737 1738 1739 1740 1741 1742
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1743
			return -ENOSPC;
1744
		}
1745

1746 1747 1748 1749 1750
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1751 1752 1753

		domain_update_iommu_cap(domain);
	}
1754

1755
	return 0;
1756 1757 1758 1759 1760
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1761
	int num, count;
1762

1763
	assert_spin_locked(&device_domain_lock);
1764
	assert_spin_locked(&iommu->lock);
1765

1766 1767 1768
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1769 1770 1771
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1772 1773

		domain_update_iommu_cap(domain);
1774
		domain->iommu_did[iommu->seq_id] = 0;
1775 1776 1777 1778 1779
	}

	return count;
}

1780
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1781
static struct lock_class_key reserved_rbtree_key;
1782

1783
static int dmar_init_reserved_ranges(void)
1784 1785 1786 1787 1788
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1789
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1790

M
Mark Gross 已提交
1791 1792 1793
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1794 1795 1796
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1797
	if (!iova) {
J
Joerg Roedel 已提交
1798
		pr_err("Reserve IOAPIC range failed\n");
1799 1800
		return -ENODEV;
	}
1801 1802 1803 1804 1805 1806 1807 1808 1809

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1810 1811 1812
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1813
			if (!iova) {
1814
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1815 1816
				return -ENODEV;
			}
1817 1818
		}
	}
1819
	return 0;
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
{
	int adjust_width, agaw;
	unsigned long sagaw;
	int err;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);

	err = init_iova_flush_queue(&domain->iovad,
				    iommu_flush_iova, iova_entry_free);
	if (err)
		return err;

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

	domain->nid = iommu->node;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
	return 0;
}

1898 1899 1900
static void domain_exit(struct dmar_domain *domain)
{

1901
	/* Remove associated devices and clear attached or cached domains */
1902
	domain_remove_dev_info(domain);
1903

1904 1905 1906
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

1907 1908
	if (domain->pgd) {
		struct page *freelist;
1909

1910 1911 1912
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1913

1914 1915 1916
	free_domain_mem(domain);
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
	context->hi |= (1 << 20);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1967 1968
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1969
				      struct pasid_table *table,
1970
				      u8 bus, u8 devfn)
1971
{
1972
	u16 did = domain->iommu_did[iommu->seq_id];
1973 1974
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1975 1976
	struct context_entry *context;
	unsigned long flags;
1977
	int ret;
1978

1979 1980
	WARN_ON(did == 0);

1981 1982
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1983 1984 1985

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
1986

1987
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
1988

1989 1990 1991 1992
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
1993
	context = iommu_context_addr(iommu, bus, devfn, 1);
1994
	if (!context)
1995
		goto out_unlock;
1996

1997 1998 1999
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2013
		if (did_old < cap_ndoms(iommu->cap)) {
2014 2015 2016 2017
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2018 2019 2020
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2021 2022
	}

2023
	context_clear_entry(context);
2024

2025 2026
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2037 2038

		/*
2039 2040
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2041
		 */
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2081 2082

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2083
	}
F
Fenghua Yu 已提交
2084

2085 2086
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2087
	domain_flush_cache(domain, context, sizeof(*context));
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2100
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2101
	} else {
2102
		iommu_flush_write_buffer(iommu);
2103
	}
Y
Yu Zhao 已提交
2104
	iommu_enable_dev_iotlb(info);
2105

2106 2107 2108 2109 2110
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2111

2112
	return ret;
2113 2114 2115
}

static int
2116
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2117
{
2118
	struct pasid_table *table;
2119
	struct intel_iommu *iommu;
2120
	u8 bus, devfn;
2121

2122
	iommu = device_to_iommu(dev, &bus, &devfn);
2123 2124
	if (!iommu)
		return -ENODEV;
2125

2126
	table = intel_pasid_get_table(dev);
2127
	return domain_context_mapping_one(domain, iommu, table, bus, devfn);
2128 2129 2130 2131 2132 2133 2134 2135
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2136 2137
}

2138
static int domain_context_mapped(struct device *dev)
2139
{
W
Weidong Han 已提交
2140
	struct intel_iommu *iommu;
2141
	u8 bus, devfn;
W
Weidong Han 已提交
2142

2143
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2144 2145
	if (!iommu)
		return -ENODEV;
2146

2147 2148
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2149

2150 2151
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2152 2153
}

2154 2155 2156 2157 2158 2159 2160 2161
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2190 2191 2192
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2193 2194
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2195
	phys_addr_t uninitialized_var(pteval);
2196
	unsigned long sg_res = 0;
2197 2198
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2199

2200
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2201 2202 2203 2204 2205 2206

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;

2207 2208
	if (!sg) {
		sg_res = nr_pages;
2209 2210 2211
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
	}

2212
	while (nr_pages > 0) {
2213 2214
		uint64_t tmp;

2215
		if (!sg_res) {
2216 2217
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2218
			sg_res = aligned_nrpages(sg->offset, sg->length);
2219
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2220
			sg->dma_length = sg->length;
2221
			pteval = (sg_phys(sg) - pgoff) | prot;
2222
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2223
		}
2224

2225
		if (!pte) {
2226 2227
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2228
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2229 2230
			if (!pte)
				return -ENOMEM;
2231
			/* It is large page*/
2232
			if (largepage_lvl > 1) {
2233 2234
				unsigned long nr_superpages, end_pfn;

2235
				pteval |= DMA_PTE_LARGE_PAGE;
2236
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2237 2238 2239 2240

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2241 2242
				/*
				 * Ensure that old small page tables are
2243
				 * removed to make room for superpage(s).
2244 2245
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2246
				 */
2247 2248
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2249
			} else {
2250
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2251
			}
2252

2253 2254 2255 2256
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2257
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2258
		if (tmp) {
2259
			static int dumps = 5;
J
Joerg Roedel 已提交
2260 2261
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2262 2263 2264 2265 2266 2267
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2291
		pte++;
2292 2293
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2294 2295 2296 2297
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2298 2299

		if (!sg_res && nr_pages)
2300 2301 2302 2303 2304
			sg = sg_next(sg);
	}
	return 0;
}

2305
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2306 2307 2308
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2309
	int iommu_id, ret;
2310 2311 2312 2313 2314 2315 2316
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2317 2318
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2319 2320 2321 2322
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2323 2324
}

2325 2326 2327
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2328
{
2329
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2330
}
2331

2332 2333 2334 2335
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2336
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2337 2338
}

2339
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2340
{
2341 2342 2343 2344
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2345 2346
	if (!iommu)
		return;
2347

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2368 2369
}

2370 2371 2372 2373 2374 2375
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2376
		info->dev->archdata.iommu = NULL;
2377 2378
}

2379 2380
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2381
	struct device_domain_info *info, *tmp;
2382
	unsigned long flags;
2383 2384

	spin_lock_irqsave(&device_domain_lock, flags);
2385
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2386
		__dmar_remove_one_dev_info(info);
2387 2388 2389 2390 2391
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

/*
 * find_domain
2392
 * Note: we use struct device->archdata.iommu stores the info
2393
 */
2394
static struct dmar_domain *find_domain(struct device *dev)
2395 2396 2397
{
	struct device_domain_info *info;

2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
		struct iommu_domain *domain;

		dev->archdata.iommu = NULL;
		domain = iommu_get_domain_for_dev(dev);
		if (domain)
			intel_iommu_attach_device(domain, dev);
	}

2407
	/* No lock here, assumes no domain exit in normal case */
2408
	info = dev->archdata.iommu;
2409

2410
	if (likely(info))
2411 2412 2413 2414
		return info->domain;
	return NULL;
}

2415
static inline struct device_domain_info *
2416 2417 2418 2419 2420
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2421
		if (info->iommu->segment == segment && info->bus == bus &&
2422
		    info->devfn == devfn)
2423
			return info;
2424 2425 2426 2427

	return NULL;
}

2428 2429 2430 2431
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2432
{
2433
	struct dmar_domain *found = NULL;
2434 2435
	struct device_domain_info *info;
	unsigned long flags;
2436
	int ret;
2437 2438 2439

	info = alloc_devinfo_mem();
	if (!info)
2440
		return NULL;
2441 2442 2443

	info->bus = bus;
	info->devfn = devfn;
2444 2445 2446
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2447 2448
	info->dev = dev;
	info->domain = domain;
2449
	info->iommu = iommu;
2450
	info->pasid_table = NULL;
2451
	info->auxd_enabled = 0;
2452
	INIT_LIST_HEAD(&info->auxiliary_domains);
2453

2454 2455 2456
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2457 2458
		if (!pdev->untrusted &&
		    !pci_ats_disabled() &&
G
Gil Kupfer 已提交
2459
		    ecap_dev_iotlb_support(iommu->ecap) &&
2460 2461 2462 2463
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2464 2465
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2477 2478
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2479
		found = find_domain(dev);
2480 2481

	if (!found) {
2482
		struct device_domain_info *info2;
2483
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2484 2485 2486 2487
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2488
	}
2489

2490 2491 2492
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2493 2494
		/* Caller must free the original domain */
		return found;
2495 2496
	}

2497 2498 2499 2500 2501
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2502
		spin_unlock_irqrestore(&device_domain_lock, flags);
2503
		free_devinfo_mem(info);
2504 2505 2506
		return NULL;
	}

2507 2508 2509 2510
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2511
	spin_unlock_irqrestore(&device_domain_lock, flags);
2512

2513 2514
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2515 2516
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2517
			dev_err(dev, "PASID table allocation failed\n");
2518
			dmar_remove_one_dev_info(dev);
2519
			return NULL;
2520
		}
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2532
			dev_err(dev, "Setup RID2PASID failed\n");
2533
			dmar_remove_one_dev_info(dev);
2534
			return NULL;
2535 2536
		}
	}
2537

2538
	if (dev && domain_context_mapping(domain, dev)) {
2539
		dev_err(dev, "Domain context map failed\n");
2540
		dmar_remove_one_dev_info(dev);
2541 2542 2543
		return NULL;
	}

2544
	return domain;
2545 2546
}

2547 2548 2549 2550 2551 2552
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2553
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2554
{
2555
	struct device_domain_info *info;
2556
	struct dmar_domain *domain = NULL;
2557
	struct intel_iommu *iommu;
2558
	u16 dma_alias;
2559
	unsigned long flags;
2560
	u8 bus, devfn;
2561

2562 2563 2564 2565
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2566 2567
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2578
		}
2579
		spin_unlock_irqrestore(&device_domain_lock, flags);
2580

2581
		/* DMA alias already has a domain, use it */
2582
		if (info)
2583
			goto out;
2584
	}
2585

2586
	/* Allocate and initialize new domain for the device */
2587
	domain = alloc_domain(0);
2588
	if (!domain)
2589
		return NULL;
2590
	if (domain_init(domain, iommu, gaw)) {
2591 2592
		domain_exit(domain);
		return NULL;
2593
	}
2594

2595 2596 2597
out:
	return domain;
}
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2626 2627
	}

2628
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2629 2630 2631 2632 2633
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2634

2635 2636 2637
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2638
{
2639 2640 2641 2642 2643
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
J
Joerg Roedel 已提交
2644
		pr_err("Reserving iova failed\n");
2645
		return -ENOMEM;
2646 2647
	}

J
Joerg Roedel 已提交
2648
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2649 2650 2651 2652
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2653
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2654

2655 2656 2657
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2658 2659
}

2660 2661 2662 2663
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2664
{
2665 2666 2667 2668 2669
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2670 2671
		dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
			 start, end);
2672 2673 2674
		return 0;
	}

2675
	dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
J
Joerg Roedel 已提交
2676

2677 2678 2679 2680 2681 2682
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2683
		return -EIO;
2684 2685
	}

2686 2687 2688 2689 2690 2691 2692
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2693
		return -EIO;
2694
	}
2695

2696 2697
	return iommu_domain_identity_map(domain, start, end);
}
2698

2699 2700
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2701
static int __init si_domain_init(int hw)
2702
{
2703 2704 2705
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2706

2707
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2708 2709 2710
	if (!si_domain)
		return -EFAULT;

2711
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2712 2713 2714 2715
		domain_exit(si_domain);
		return -EFAULT;
	}

2716 2717 2718
	if (hw)
		return 0;

2719
	for_each_online_node(nid) {
2720 2721 2722 2723 2724 2725 2726 2727 2728
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2729 2730
	}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * Normally we use DMA domains for devices which have RMRRs. But we
	 * loose this requirement for graphic and usb devices. Identity map
	 * the RMRRs for graphic and USB devices so that they could use the
	 * si_domain.
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (device_is_rmrr_locked(dev))
				continue;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2756 2757 2758
	return 0;
}

2759
static int identity_mapping(struct device *dev)
2760 2761 2762
{
	struct device_domain_info *info;

2763
	info = dev->archdata.iommu;
2764 2765
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
		return (info->domain == si_domain);
2766 2767 2768 2769

	return 0;
}

2770
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2771
{
2772
	struct dmar_domain *ndomain;
2773
	struct intel_iommu *iommu;
2774
	u8 bus, devfn;
2775

2776
	iommu = device_to_iommu(dev, &bus, &devfn);
2777 2778 2779
	if (!iommu)
		return -ENODEV;

2780
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2781 2782
	if (ndomain != domain)
		return -EBUSY;
2783 2784 2785 2786

	return 0;
}

2787
static bool device_has_rmrr(struct device *dev)
2788 2789
{
	struct dmar_rmrr_unit *rmrr;
2790
	struct device *tmp;
2791 2792
	int i;

2793
	rcu_read_lock();
2794
	for_each_rmrr_units(rmrr) {
2795 2796 2797 2798 2799 2800
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2801 2802
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2803
				rcu_read_unlock();
2804
				return true;
2805
			}
2806
	}
2807
	rcu_read_unlock();
2808 2809 2810
	return false;
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2854 2855
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2856 2857 2858 2859 2860 2861
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2862 2863
	if (device_rmrr_is_relaxable(dev))
		return false;
2864 2865 2866 2867

	return true;
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2879
static int device_def_domain_type(struct device *dev)
2880
{
2881 2882
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2883

2884
		if (device_is_rmrr_locked(dev))
2885
			return IOMMU_DOMAIN_DMA;
2886

2887 2888 2889 2890 2891
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2892
			return IOMMU_DOMAIN_DMA;
2893

2894
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2895
			return IOMMU_DOMAIN_IDENTITY;
2896

2897
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2898
			return IOMMU_DOMAIN_IDENTITY;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
2919
				return IOMMU_DOMAIN_DMA;
2920
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2921
				return IOMMU_DOMAIN_DMA;
2922
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2923
			return IOMMU_DOMAIN_DMA;
2924 2925
	} else {
		if (device_has_rmrr(dev))
2926
			return IOMMU_DOMAIN_DMA;
2927
	}
2928

2929 2930 2931 2932
	return (iommu_identity_mapping & IDENTMAP_ALL) ?
			IOMMU_DOMAIN_IDENTITY : 0;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2959
		pr_info("%s: Using Register based invalidation\n",
2960 2961 2962 2963
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
2964
		pr_info("%s: Using Queued invalidation\n", iommu->name);
2965 2966 2967
	}
}

2968
static int copy_context_table(struct intel_iommu *iommu,
2969
			      struct root_entry *old_re,
2970 2971 2972
			      struct context_entry **tbl,
			      int bus, bool ext)
{
2973
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2974
	struct context_entry *new_ce = NULL, ce;
2975
	struct context_entry *old_ce = NULL;
2976
	struct root_entry re;
2977 2978 2979
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
2980
	memcpy(&re, old_re, sizeof(re));
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
2996
				memunmap(old_ce);
2997 2998 2999

			ret = 0;
			if (devfn < 0x80)
3000
				old_ce_phys = root_entry_lctp(&re);
3001
			else
3002
				old_ce_phys = root_entry_uctp(&re);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3015 3016
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3028
		memcpy(&ce, old_ce + idx, sizeof(ce));
3029

3030
		if (!__context_present(&ce))
3031 3032
			continue;

3033 3034 3035 3036
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3056 3057 3058 3059 3060 3061 3062 3063
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3064
	memunmap(old_ce);
3065 3066 3067 3068 3069 3070 3071 3072

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3073
	struct root_entry *old_rt;
3074 3075 3076 3077 3078
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3079
	bool new_ext, ext;
3080 3081 3082

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3093 3094 3095 3096 3097

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3098
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3099 3100 3101 3102 3103 3104
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3105
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3147
	memunmap(old_rt);
3148 3149 3150 3151

	return ret;
}

3152
static int __init init_dmars(void)
3153 3154 3155
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3156
	int ret;
3157

3158 3159 3160 3161 3162 3163 3164
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3165 3166 3167 3168 3169
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3170
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3171 3172 3173
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3174
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3175 3176
	}

3177 3178 3179 3180
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3181 3182 3183
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3184
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3185 3186 3187 3188
		ret = -ENOMEM;
		goto error;
	}

3189 3190 3191 3192 3193 3194
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3195 3196 3197 3198 3199
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3200
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3201 3202 3203 3204 3205 3206
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3207
		g_iommus[iommu->seq_id] = iommu;
3208

3209 3210
		intel_iommu_init_qi(iommu);

3211 3212
		ret = iommu_init_domains(iommu);
		if (ret)
3213
			goto free_iommu;
3214

3215 3216
		init_translation_status(iommu);

3217 3218 3219 3220 3221 3222
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3223

3224 3225 3226
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3227
		 * among all IOMMU's. Need to Split it later.
3228 3229
		 */
		ret = iommu_alloc_root_entry(iommu);
3230
		if (ret)
3231
			goto free_iommu;
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3257
		if (!ecap_pass_through(iommu->ecap))
3258
			hw_pass_through = 0;
3259
#ifdef CONFIG_INTEL_IOMMU_SVM
3260
		if (pasid_supported(iommu))
3261
			intel_svm_init(iommu);
3262
#endif
3263 3264
	}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3277
	if (iommu_pass_through)
3278 3279
		iommu_identity_mapping |= IDENTMAP_ALL;

3280
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3281
	dmar_map_gfx = 0;
3282
#endif
3283

3284 3285 3286
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3287 3288
	check_tylersburg_isoch();

3289 3290 3291
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3292

3293 3294 3295 3296 3297 3298 3299
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3300
	for_each_iommu(iommu, drhd) {
3301 3302 3303 3304 3305 3306
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3307
				iommu_disable_protect_mem_regions(iommu);
3308
			continue;
3309
		}
3310 3311 3312

		iommu_flush_write_buffer(iommu);

3313
#ifdef CONFIG_INTEL_IOMMU_SVM
3314
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3315 3316 3317 3318 3319
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3320
			ret = intel_svm_enable_prq(iommu);
3321
			down_write(&dmar_global_lock);
3322 3323 3324 3325
			if (ret)
				goto free_iommu;
		}
#endif
3326 3327
		ret = dmar_set_interrupt(iommu);
		if (ret)
3328
			goto free_iommu;
3329 3330 3331
	}

	return 0;
3332 3333

free_iommu:
3334 3335
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3336
		free_dmar_iommu(iommu);
3337
	}
3338

W
Weidong Han 已提交
3339
	kfree(g_iommus);
3340

3341
error:
3342 3343 3344
	return ret;
}

3345
/* This takes a number of _MM_ pages, not VTD pages */
3346
static unsigned long intel_alloc_iova(struct device *dev,
3347 3348
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3349
{
3350
	unsigned long iova_pfn;
3351

3352 3353
	/* Restrict dma_mask to the width that the iommu can handle */
	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3354 3355
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3356 3357

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3358 3359
		/*
		 * First try to allocate an io virtual address in
3360
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3361
		 * from higher range
3362
		 */
3363
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3364
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3365 3366
		if (iova_pfn)
			return iova_pfn;
3367
	}
3368 3369
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3370
	if (unlikely(!iova_pfn)) {
3371
		dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3372
		return 0;
3373 3374
	}

3375
	return iova_pfn;
3376 3377
}

3378
static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3379
{
3380
	struct dmar_domain *domain, *tmp;
3381 3382 3383
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3384

3385
	/* Device shouldn't be attached by any domains. */
3386 3387
	domain = find_domain(dev);
	if (domain)
3388
		return NULL;
3389 3390 3391 3392

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3411 3412 3413 3414 3415 3416 3417 3418
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:
	if (!domain)
3419
		dev_err(dev, "Allocating domain failed\n");
3420 3421
	else
		domain->domain.type = IOMMU_DOMAIN_DMA;
3422

3423 3424 3425
	return domain;
}

3426
/* Check if the dev needs to go through non-identity map and unmap process.*/
3427
static bool iommu_need_mapping(struct device *dev)
3428
{
3429
	int ret;
3430

3431
	if (iommu_dummy(dev))
3432
		return false;
3433

3434 3435 3436 3437 3438 3439 3440 3441
	ret = identity_mapping(dev);
	if (ret) {
		u64 dma_mask = *dev->dma_mask;

		if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;

		if (dma_mask >= dma_get_required_mask(dev))
3442 3443 3444 3445 3446 3447 3448
			return false;

		/*
		 * 32 bit DMA is removed from si_domain and fall back to
		 * non-identity mapping.
		 */
		dmar_remove_one_dev_info(dev);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		ret = iommu_request_dma_domain_for_dev(dev);
		if (ret) {
			struct iommu_domain *domain;
			struct dmar_domain *dmar_domain;

			domain = iommu_get_domain_for_dev(dev);
			if (domain) {
				dmar_domain = to_dmar_domain(domain);
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
			}
3459
			dmar_remove_one_dev_info(dev);
3460
			get_private_domain_for_dev(dev);
3461
		}
3462 3463

		dev_info(dev, "32bit DMA uses non-identity mapping\n");
3464 3465
	}

3466
	return true;
3467 3468
}

3469 3470
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3471 3472
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3473
	phys_addr_t start_paddr;
3474
	unsigned long iova_pfn;
3475
	int prot = 0;
I
Ingo Molnar 已提交
3476
	int ret;
3477
	struct intel_iommu *iommu;
3478
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3479 3480

	BUG_ON(dir == DMA_NONE);
3481

3482
	domain = find_domain(dev);
3483
	if (!domain)
3484
		return DMA_MAPPING_ERROR;
3485

3486
	iommu = domain_get_iommu(domain);
3487
	size = aligned_nrpages(paddr, size);
3488

3489 3490
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3491 3492
		goto error;

3493 3494 3495 3496 3497
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3498
			!cap_zlr(iommu->cap))
3499 3500 3501 3502
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3503
	 * paddr - (paddr + size) might be partial page, we should map the whole
3504
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3505
	 * might have two guest_addr mapping to the same host paddr, but this
3506 3507
	 * is not a big problem
	 */
3508
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3509
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3510 3511 3512
	if (ret)
		goto error;

3513
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3514 3515
	start_paddr += paddr & ~PAGE_MASK;
	return start_paddr;
3516 3517

error:
3518
	if (iova_pfn)
3519
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3520 3521
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3522
	return DMA_MAPPING_ERROR;
3523 3524
}

3525 3526 3527
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3528
				 unsigned long attrs)
3529
{
3530 3531 3532 3533
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, page_to_phys(page) + offset,
				size, dir, *dev->dma_mask);
	return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3534 3535 3536 3537 3538 3539
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
3540 3541 3542 3543
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, phys_addr, size, dir,
				*dev->dma_mask);
	return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3544 3545
}

3546
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3547
{
3548
	struct dmar_domain *domain;
3549
	unsigned long start_pfn, last_pfn;
3550
	unsigned long nrpages;
3551
	unsigned long iova_pfn;
3552
	struct intel_iommu *iommu;
3553
	struct page *freelist;
3554
	struct pci_dev *pdev = NULL;
3555

3556
	domain = find_domain(dev);
3557 3558
	BUG_ON(!domain);

3559 3560
	iommu = domain_get_iommu(domain);

3561
	iova_pfn = IOVA_PFN(dev_addr);
3562

3563
	nrpages = aligned_nrpages(dev_addr, size);
3564
	start_pfn = mm_to_dma_pfn(iova_pfn);
3565
	last_pfn = start_pfn + nrpages - 1;
3566

3567 3568 3569
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3570
	dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3571

3572
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3573

3574 3575
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3576
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3577
				      nrpages, !freelist, 0);
M
mark gross 已提交
3578
		/* free iova */
3579
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3580
		dma_free_pagelist(freelist);
M
mark gross 已提交
3581
	} else {
3582 3583
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3584 3585 3586 3587 3588
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3589 3590
}

3591 3592
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3593
			     unsigned long attrs)
3594
{
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
	else
		dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
3606 3607
}

3608
static void *intel_alloc_coherent(struct device *dev, size_t size,
3609
				  dma_addr_t *dma_handle, gfp_t flags,
3610
				  unsigned long attrs)
3611
{
3612 3613
	struct page *page = NULL;
	int order;
3614

3615 3616 3617
	if (!iommu_need_mapping(dev))
		return dma_direct_alloc(dev, size, dma_handle, flags, attrs);

3618 3619 3620 3621 3622 3623
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3624 3625
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3626 3627 3628 3629 3630 3631 3632 3633
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3634 3635 3636
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3637
	if (*dma_handle != DMA_MAPPING_ERROR)
3638 3639 3640
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3641

3642 3643 3644
	return NULL;
}

3645
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3646
				dma_addr_t dma_handle, unsigned long attrs)
3647
{
3648 3649 3650
	int order;
	struct page *page = virt_to_page(vaddr);

3651 3652 3653
	if (!iommu_need_mapping(dev))
		return dma_direct_free(dev, size, vaddr, dma_handle, attrs);

3654 3655 3656 3657 3658 3659
	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3660 3661
}

3662
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3663
			   int nelems, enum dma_data_direction dir,
3664
			   unsigned long attrs)
3665
{
3666 3667 3668 3669 3670
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

3671 3672 3673
	if (!iommu_need_mapping(dev))
		return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);

3674 3675 3676 3677 3678
	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3679 3680
}

3681
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3682
			enum dma_data_direction dir, unsigned long attrs)
3683 3684 3685
{
	int i;
	struct dmar_domain *domain;
3686 3687
	size_t size = 0;
	int prot = 0;
3688
	unsigned long iova_pfn;
3689
	int ret;
F
FUJITA Tomonori 已提交
3690
	struct scatterlist *sg;
3691
	unsigned long start_vpfn;
3692
	struct intel_iommu *iommu;
3693 3694

	BUG_ON(dir == DMA_NONE);
3695
	if (!iommu_need_mapping(dev))
3696
		return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3697

3698
	domain = find_domain(dev);
3699 3700 3701
	if (!domain)
		return 0;

3702 3703
	iommu = domain_get_iommu(domain);

3704
	for_each_sg(sglist, sg, nelems, i)
3705
		size += aligned_nrpages(sg->offset, sg->length);
3706

3707
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3708
				*dev->dma_mask);
3709
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3710
		sglist->dma_length = 0;
3711 3712 3713 3714 3715 3716 3717 3718
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3719
			!cap_zlr(iommu->cap))
3720 3721 3722 3723
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3724
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3725

3726
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3727 3728
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3729 3730
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3731
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3732
		return 0;
3733 3734 3735 3736 3737
	}

	return nelems;
}

3738
static const struct dma_map_ops intel_dma_ops = {
3739 3740
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3741 3742
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3743 3744
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3745
	.map_resource = intel_map_resource,
3746
	.unmap_resource = intel_unmap_resource,
3747
	.dma_supported = dma_direct_supported,
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
};

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3761
		pr_err("Couldn't create iommu_domain cache\n");
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3778
		pr_err("Couldn't create devinfo cache\n");
3779 3780 3781 3782 3783 3784 3785 3786 3787
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3788
	ret = iova_cache_get();
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3802
	iova_cache_put();
3803 3804 3805 3806 3807 3808 3809 3810

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3811
	iova_cache_put();
3812 3813
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

3842 3843 3844
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
3845
	struct device *dev;
3846
	int i;
3847 3848 3849

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
3850 3851 3852
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
3853
			/* ignore DMAR unit if no devices exist */
3854 3855 3856 3857 3858
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

3859 3860
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
3861 3862
			continue;

3863 3864
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
3865
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3866 3867 3868 3869
				break;
		if (i < drhd->devices_cnt)
			continue;

3870 3871
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
3872
		if (!dmar_map_gfx) {
3873
			drhd->ignored = 1;
3874 3875
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
3876
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3877 3878 3879 3880
		}
	}
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
3901

3902 3903 3904 3905 3906
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
3907
					   DMA_CCMD_GLOBAL_INVL);
3908 3909
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
3910
		iommu_disable_protect_mem_regions(iommu);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
3923
					   DMA_CCMD_GLOBAL_INVL);
3924
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3925
					 DMA_TLB_GLOBAL_FLUSH);
3926 3927 3928
	}
}

3929
static int iommu_suspend(void)
3930 3931 3932 3933 3934 3935
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
3936
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

3947
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

3958
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

3969
static void iommu_resume(void)
3970 3971 3972 3973 3974 3975
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
3976 3977 3978 3979
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3980
		return;
3981 3982 3983 3984
	}

	for_each_active_iommu(iommu, drhd) {

3985
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

3996
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3997 3998 3999 4000 4001 4002
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4003
static struct syscore_ops iommu_syscore_ops = {
4004 4005 4006 4007
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4008
static void __init init_iommu_pm_ops(void)
4009
{
4010
	register_syscore_ops(&iommu_syscore_ops);
4011 4012 4013
}

#else
4014
static inline void init_iommu_pm_ops(void) {}
4015 4016
#endif	/* CONFIG_PM */

4017
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4018 4019 4020 4021 4022 4023
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4024
		goto out;
4025 4026 4027 4028 4029

	rmrru->hdr = header;
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4030

4031 4032 4033
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4034
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4035
		goto free_rmrru;
4036

4037
	list_add(&rmrru->list, &dmar_rmrr_units);
4038

4039
	return 0;
4040 4041 4042 4043
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4044 4045
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4065 4066 4067 4068
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4069
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4070 4071
		return 0;

4072
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4073 4074 4075 4076 4077
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4078 4079 4080
	if (!atsru)
		return -ENOMEM;

4081 4082 4083 4084 4085 4086 4087
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4088
	atsru->include_all = atsr->flags & 0x1;
4089 4090 4091 4092 4093 4094 4095 4096 4097
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4098

4099
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4100 4101 4102 4103

	return 0;
}

4104 4105 4106 4107 4108 4109
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4138
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4139 4140 4141
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4142
	}
4143 4144 4145 4146

	return 0;
}

4147 4148
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4149
	int sp, ret;
4150 4151 4152 4153 4154 4155
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4156
		pr_warn("%s: Doesn't support hardware pass through.\n",
4157 4158 4159 4160 4161
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4162
		pr_warn("%s: Doesn't support snooping.\n",
4163 4164 4165 4166 4167
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4168
		pr_warn("%s: Doesn't support large page.\n",
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4186
#ifdef CONFIG_INTEL_IOMMU_SVM
4187
	if (pasid_supported(iommu))
4188
		intel_svm_init(iommu);
4189 4190
#endif

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4202 4203

#ifdef CONFIG_INTEL_IOMMU_SVM
4204
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4205 4206 4207 4208 4209
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4229 4230
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256 4257
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4258 4259
	}

4260 4261 4262 4263
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4264 4265 4266 4267
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4268
	int i, ret = 1;
4269
	struct pci_bus *bus;
4270 4271
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4272 4273 4274 4275 4276
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4277
		bridge = bus->self;
4278 4279 4280 4281 4282
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4283
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4284
			return 0;
4285
		/* If we found the root port, look it up in the ATSR */
4286
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4287 4288 4289
			break;
	}

4290
	rcu_read_lock();
4291 4292 4293 4294 4295
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4296
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4297
			if (tmp == &bridge->dev)
4298
				goto out;
4299 4300

		if (atsru->include_all)
4301
			goto out;
4302
	}
4303 4304
	ret = 0;
out:
4305
	rcu_read_unlock();
4306

4307
	return ret;
4308 4309
}

4310 4311
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4312
	int ret;
4313 4314 4315 4316 4317
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4318
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4329
			if (ret < 0)
4330
				return ret;
4331
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4332 4333
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4349
			else if (ret < 0)
4350
				return ret;
4351
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4352 4353 4354 4355 4356 4357 4358 4359 4360
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
J
Joerg Roedel 已提交
4373
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4387
			struct page *freelist;
4388 4389 4390

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4391
				pr_debug("Failed get IOVA for PFN %lx\n",
4392 4393 4394 4395 4396 4397 4398
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4399
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4400 4401 4402 4403
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4404 4405 4406
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4407 4408
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4409
				iommu_flush_iotlb_psi(iommu, si_domain,
4410
					iova->pfn_lo, iova_size(iova),
4411
					!freelist, 0);
4412
			rcu_read_unlock();
4413
			dma_free_pagelist(freelist);
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4429 4430 4431 4432 4433 4434 4435
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4436
		int did;
4437 4438 4439 4440

		if (!iommu)
			continue;

4441
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4442
			domain = get_iommu_domain(iommu, (u16)did);
4443 4444 4445 4446 4447 4448 4449 4450

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4451
static int intel_iommu_cpu_dead(unsigned int cpu)
4452
{
4453 4454
	free_all_cpu_cached_iovas(cpu);
	return 0;
4455 4456
}

4457 4458 4459 4460 4461 4462 4463 4464 4465
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4466 4467
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4468 4469 4470
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4471 4472
}

4473 4474 4475 4476
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4477
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4488
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4489 4490 4491 4492 4493 4494 4495 4496
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4497
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4498 4499 4500 4501 4502 4503 4504 4505
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4506
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4507 4508 4509 4510
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4511 4512 4513 4514
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4515
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4516 4517 4518 4519 4520 4521 4522 4523
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4524
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4525 4526 4527 4528 4529
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4530 4531 4532 4533 4534
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4535 4536
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4550
static inline bool has_untrusted_dev(void)
4551 4552 4553
{
	struct pci_dev *pdev = NULL;

4554 4555 4556
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4557

4558 4559
	return false;
}
4560

4561 4562 4563
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
		iommu_identity_mapping |= IDENTMAP_ALL;

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4582 4583 4584
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4585 4586
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4625 4626
int __init intel_iommu_init(void)
{
4627
	int ret = -ENODEV;
4628
	struct dmar_drhd_unit *drhd;
4629
	struct intel_iommu *iommu;
4630

4631 4632 4633 4634 4635
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4636

4637 4638 4639 4640 4641 4642 4643
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4644 4645 4646
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4647
		goto out_free_dmar;
4648
	}
4649

4650
	if (dmar_dev_scope_init() < 0) {
4651 4652
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4653
		goto out_free_dmar;
4654
	}
4655

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4666
	if (no_iommu || dmar_disabled) {
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4680 4681 4682 4683 4684 4685
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4686
		goto out_free_dmar;
4687
	}
4688

4689
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4690
		pr_info("No RMRR found\n");
4691 4692

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4693
		pr_info("No ATSR found\n");
4694

4695 4696 4697
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4698
		goto out_free_reserved_range;
4699
	}
4700

4701 4702 4703
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4704 4705
	init_no_remapping_devices();

4706
	ret = init_dmars();
4707
	if (ret) {
4708 4709
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4710
		pr_err("Initialization failed\n");
4711
		goto out_free_reserved_range;
4712
	}
4713
	up_write(&dmar_global_lock);
4714

4715
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4716 4717 4718 4719 4720 4721 4722 4723
	/*
	 * If the system has no untrusted device or the user has decided
	 * to disable the bounce page mechanisms, we don't need swiotlb.
	 * Mark this and the pre-allocated bounce pages will be released
	 * later.
	 */
	if (!has_untrusted_dev() || intel_no_bounce)
		swiotlb = 0;
4724
#endif
4725
	dma_ops = &intel_dma_ops;
F
Fenghua Yu 已提交
4726

4727
	init_iommu_pm_ops();
4728

4729 4730 4731 4732 4733 4734 4735
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4736

4737
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4738 4739
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4740 4741
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4742

4743
	down_read(&dmar_global_lock);
4744 4745
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");
4746
	up_read(&dmar_global_lock);
4747

4748 4749
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
4750
		if (!drhd->ignored && !translation_pre_enabled(iommu))
4751 4752 4753 4754 4755 4756
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4757
	intel_iommu_enabled = 1;
4758
	intel_iommu_debugfs_init();
4759

4760
	return 0;
4761 4762 4763 4764 4765

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4766 4767
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4768
	return ret;
4769
}
4770

4771
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4772
{
4773
	struct dmar_domain *domain;
4774 4775 4776
	struct intel_iommu *iommu;
	unsigned long flags;

4777 4778
	assert_spin_locked(&device_domain_lock);

4779
	if (WARN_ON(!info))
4780 4781
		return;

4782
	iommu = info->iommu;
4783
	domain = info->domain;
4784

4785
	if (info->dev) {
4786 4787 4788 4789
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
					PASID_RID2PASID);

4790
		iommu_disable_dev_iotlb(info);
4791
		domain_context_clear_one(iommu, info->bus, info->devfn);
4792
		intel_pasid_free_table(info->dev);
4793
	}
4794

4795
	unlink_domain_info(info);
4796

4797
	spin_lock_irqsave(&iommu->lock, flags);
4798
	domain_detach_iommu(domain, iommu);
4799
	spin_unlock_irqrestore(&iommu->lock, flags);
4800

4801 4802
	/* free the private domain */
	if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
4803 4804
	    !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
	    list_empty(&domain->devices))
4805 4806
		domain_exit(info->domain);

4807
	free_devinfo_mem(info);
4808 4809
}

4810
static void dmar_remove_one_dev_info(struct device *dev)
4811
{
4812
	struct device_domain_info *info;
4813
	unsigned long flags;
4814

4815
	spin_lock_irqsave(&device_domain_lock, flags);
4816
	info = dev->archdata.iommu;
4817 4818
	if (info)
		__dmar_remove_one_dev_info(info);
4819
	spin_unlock_irqrestore(&device_domain_lock, flags);
4820 4821
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4847
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
4848
{
4849
	struct dmar_domain *dmar_domain;
4850 4851
	struct iommu_domain *domain;

4852
	switch (type) {
4853 4854
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
4855
	case IOMMU_DOMAIN_UNMANAGED:
4856
		dmar_domain = alloc_domain(0);
4857 4858 4859 4860
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
4861
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4862 4863 4864 4865
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
4866 4867 4868 4869 4870 4871 4872 4873

		if (type == IOMMU_DOMAIN_DMA &&
		    init_iova_flush_queue(&dmar_domain->iovad,
					  iommu_flush_iova, iova_entry_free)) {
			pr_warn("iova flush queue initialization failed\n");
			intel_iommu_strict = 1;
		}

4874
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
4875

4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
4886
		return NULL;
K
Kay, Allen M 已提交
4887
	}
4888

4889
	return NULL;
K
Kay, Allen M 已提交
4890 4891
}

4892
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
4893
{
4894 4895
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
4896 4897
}

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
	struct device_domain_info *info = dev->archdata.iommu;

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

		pasid = intel_pasid_alloc_id(domain, PASID_MIN,
					     pci_max_pasids(to_pci_dev(dev)),
					     GFP_KERNEL);
		if (pasid <= 0) {
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
	ret = intel_pasid_setup_second_level(iommu, domain, dev,
					     domain->default_pasid);
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5023 5024
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5025
{
5026
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5027 5028
	struct intel_iommu *iommu;
	int addr_width;
5029
	u8 bus, devfn;
5030

5031
	iommu = device_to_iommu(dev, &bus, &devfn);
5032 5033 5034 5035 5036
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5037 5038 5039 5040
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5041 5042 5043
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5044 5045
		return -EFAULT;
	}
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5056 5057
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5058
			free_pgtable_page(pte);
5059 5060 5061
		}
		dmar_domain->agaw--;
	}
5062

5063 5064 5065 5066 5067 5068 5069 5070
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5071 5072
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5073 5074 5075 5076
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5077 5078 5079
	if (is_aux_domain(dev, domain))
		return -EPERM;

5080 5081 5082 5083 5084
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5085
		if (old_domain)
5086 5087 5088 5089 5090 5091 5092 5093
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5094 5095
}

5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5111 5112
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5113
{
5114
	dmar_remove_one_dev_info(dev);
5115
}
5116

5117 5118 5119 5120 5121 5122
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5123 5124
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5125
			   size_t size, int iommu_prot)
5126
{
5127
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5128
	u64 max_addr;
5129
	int prot = 0;
5130
	int ret;
5131

5132 5133 5134
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return -EINVAL;

5135 5136 5137 5138
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5139 5140
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5141

5142
	max_addr = iova + size;
5143
	if (dmar_domain->max_addr < max_addr) {
5144 5145 5146
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5147
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5148
		if (end < max_addr) {
J
Joerg Roedel 已提交
5149
			pr_err("%s: iommu width (%d) is not "
5150
			       "sufficient for the mapped address (%llx)\n",
5151
			       __func__, dmar_domain->gaw, max_addr);
5152 5153
			return -EFAULT;
		}
5154
		dmar_domain->max_addr = max_addr;
5155
	}
5156 5157
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5158
	size = aligned_nrpages(hpa, size);
5159 5160
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5161
	return ret;
K
Kay, Allen M 已提交
5162 5163
}

5164
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5165
				unsigned long iova, size_t size)
K
Kay, Allen M 已提交
5166
{
5167
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5168 5169 5170
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5171
	int iommu_id, level = 0;
5172 5173 5174

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5175
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5176 5177
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return 0;
5178 5179 5180

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5181

5182 5183 5184 5185 5186 5187 5188
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5189
	for_each_domain_iommu(iommu_id, dmar_domain)
5190 5191
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5192 5193

	dma_free_pagelist(freelist);
5194

5195 5196
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5197

5198
	return size;
K
Kay, Allen M 已提交
5199 5200
}

5201
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5202
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5203
{
5204
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5205
	struct dma_pte *pte;
5206
	int level = 0;
5207
	u64 phys = 0;
K
Kay, Allen M 已提交
5208

5209 5210 5211
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return 0;

5212
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
K
Kay, Allen M 已提交
5213
	if (pte)
5214
		phys = dma_pte_addr(pte);
K
Kay, Allen M 已提交
5215

5216
	return phys;
K
Kay, Allen M 已提交
5217
}
5218

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5255
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5256 5257
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5258
		return domain_update_iommu_snooping(NULL) == 1;
5259
	if (cap == IOMMU_CAP_INTR_REMAP)
5260
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5261

5262
	return false;
S
Sheng Yang 已提交
5263 5264
}

5265 5266
static int intel_iommu_add_device(struct device *dev)
{
5267 5268
	struct dmar_domain *dmar_domain;
	struct iommu_domain *domain;
5269
	struct intel_iommu *iommu;
5270
	struct iommu_group *group;
5271
	u8 bus, devfn;
5272
	int ret;
5273

5274 5275
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5276 5277
		return -ENODEV;

5278
	iommu_device_link(&iommu->iommu, dev);
5279

5280 5281 5282
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5283
	group = iommu_group_get_for_dev(dev);
5284

5285 5286
	if (IS_ERR(group))
		return PTR_ERR(group);
5287

5288
	iommu_group_put(group);
5289 5290 5291 5292

	domain = iommu_get_domain_for_dev(dev);
	dmar_domain = to_dmar_domain(domain);
	if (domain->type == IOMMU_DOMAIN_DMA) {
5293
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5294 5295
			ret = iommu_request_dm_for_dev(dev);
			if (ret) {
5296
				dmar_remove_one_dev_info(dev);
5297 5298 5299 5300 5301 5302 5303
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
				domain_add_dev_info(si_domain, dev);
				dev_info(dev,
					 "Device uses a private identity domain.\n");
			}
		}
	} else {
5304
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5305 5306
			ret = iommu_request_dma_domain_for_dev(dev);
			if (ret) {
5307
				dmar_remove_one_dev_info(dev);
5308
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5309
				if (!get_private_domain_for_dev(dev)) {
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
					dev_warn(dev,
						 "Failed to get a private domain.\n");
					return -ENOMEM;
				}

				dev_info(dev,
					 "Device uses a private dma domain.\n");
			}
		}
	}

5321
	return 0;
5322
}
5323

5324 5325
static void intel_iommu_remove_device(struct device *dev)
{
5326 5327 5328 5329 5330 5331 5332
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5333 5334
	dmar_remove_one_dev_info(dev);

5335
	iommu_group_remove_device(dev);
5336

5337
	iommu_device_unlink(&iommu->iommu, dev);
5338 5339
}

5340 5341 5342
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5343
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5344 5345 5346 5347 5348
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5349
	down_read(&dmar_global_lock);
5350 5351 5352
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5353
			struct iommu_resv_region *resv;
5354
			enum iommu_resv_type type;
5355 5356
			size_t length;

5357 5358
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5359 5360
				continue;

5361
			length = rmrr->end_address - rmrr->base_address + 1;
5362 5363 5364 5365

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5366
			resv = iommu_alloc_resv_region(rmrr->base_address,
5367
						       length, prot, type);
5368 5369 5370 5371
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5372 5373
		}
	}
5374
	up_read(&dmar_global_lock);
5375

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
			reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
						      IOMMU_RESV_DIRECT);
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5389 5390
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5391
				      0, IOMMU_RESV_MSI);
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

5402 5403
	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
5404 5405
}

5406
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5407 5408 5409 5410 5411 5412 5413 5414
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5415
	domain = find_domain(dev);
5416 5417 5418 5419 5420 5421 5422
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5423
	info = dev->archdata.iommu;
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5437 5438 5439
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5470
#ifdef CONFIG_INTEL_IOMMU_SVM
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5484
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5485 5486 5487 5488 5489 5490 5491
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
	struct device_domain_info *info = dev->archdata.iommu;

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5610 5611 5612 5613 5614 5615 5616 5617 5618
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5619 5620 5621 5622 5623 5624
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

5625
const struct iommu_ops intel_iommu_ops = {
5626 5627 5628 5629 5630
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5631 5632
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5633
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5634 5635 5636 5637 5638 5639 5640
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
5641
	.apply_resv_region	= intel_iommu_apply_resv_region,
5642
	.device_group		= pci_device_group,
5643 5644 5645 5646
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5647
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5648
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5649
};
5650

5651 5652 5653
static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
{
	/* G4x/GM45 integrated gfx dmar support is totally busted. */
5654
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
	dmar_map_gfx = 0;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);

5666
static void quirk_iommu_rwbf(struct pci_dev *dev)
5667 5668 5669
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5670
	 * but needs it. Same seems to hold for the desktop versions.
5671
	 */
5672
	pci_info(dev, "Forcing write-buffer flush capability\n");
5673 5674 5675 5676
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5677 5678 5679 5680 5681 5682
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5683

5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5694
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5695 5696 5697
{
	unsigned short ggc;

5698
	if (pci_read_config_word(dev, GGC, &ggc))
5699 5700
		return;

5701
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5702
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5703
		dmar_map_gfx = 0;
5704 5705
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5706
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5707 5708
		intel_iommu_strict = 1;
       }
5709 5710 5711 5712 5713 5714
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
5768 5769

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5770 5771
	       vtisochctrl);
}