intel-iommu.c 154.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298 299

/* si_domain contains mulitple devices */
300
#define DOMAIN_FLAG_STATIC_IDENTITY		BIT(0)
301

302 303 304 305 306 307 308 309
/*
 * This is a DMA domain allocated through the iommu domain allocation
 * interface. But one or more devices belonging to this domain have
 * been chosen to use a private domain. We should avoid to use the
 * map/unmap/iova_to_phys APIs on it.
 */
#define DOMAIN_FLAG_LOSE_CHILDREN		BIT(1)

310 311 312 313
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

314 315 316 317 318
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
319
	struct dmar_dev_scope *devices;	/* target devices */
320 321 322 323 324 325
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
326
	struct dmar_dev_scope *devices;	/* target devices */
327 328 329 330 331 332 333 334 335 336
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
337 338 339
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

340
static void domain_exit(struct dmar_domain *domain);
341
static void domain_remove_dev_info(struct dmar_domain *domain);
342
static void dmar_remove_one_dev_info(struct device *dev);
343
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
344 345
static void domain_context_clear(struct intel_iommu *iommu,
				 struct device *dev);
346 347
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
348
static bool device_is_rmrr_locked(struct device *dev);
349 350
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
351 352
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
353

354
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 356 357
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
358
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
359

360
int intel_iommu_sm;
361 362 363
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

364
static int dmar_map_gfx = 1;
365
static int dmar_forcedac;
M
mark gross 已提交
366
static int intel_iommu_strict;
367
static int intel_iommu_superpage = 1;
368
static int iommu_identity_mapping;
369
static int intel_no_bounce;
370

371 372 373
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
374

375 376 377
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

378
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
379
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
380 381 382
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

383 384 385
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

386 387
/*
 * Iterate over elements in device_domain_list and call the specified
388
 * callback @fn against each element.
389 390 391 392 393
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
394
	unsigned long flags;
395 396
	struct device_domain_info *info;

397
	spin_lock_irqsave(&device_domain_lock, flags);
398 399
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
400 401
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
402
			return ret;
403
		}
404
	}
405
	spin_unlock_irqrestore(&device_domain_lock, flags);
406 407 408 409

	return 0;
}

410
const struct iommu_ops intel_iommu_ops;
411

412 413 414 415 416
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

417 418 419 420 421
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

422 423 424 425 426 427 428 429 430
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

431 432 433 434 435 436
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

437 438 439 440 441
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
442 443
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
444
			pr_info("IOMMU enabled\n");
445
		} else if (!strncmp(str, "off", 3)) {
446
			dmar_disabled = 1;
447
			no_platform_optin = 1;
J
Joerg Roedel 已提交
448
			pr_info("IOMMU disabled\n");
449 450
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
451
			pr_info("Disable GFX device mapping\n");
452
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
453
			pr_info("Forcing DAC for PCI devices\n");
454
			dmar_forcedac = 1;
M
mark gross 已提交
455
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
456
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
457
			intel_iommu_strict = 1;
458
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
459
			pr_info("Disable supported super page\n");
460
			intel_iommu_superpage = 0;
461 462 463
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
464 465 466 467
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
468 469 470
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
471 472 473 474 475 476 477 478 479 480 481 482 483
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

484 485
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
486 487 488 489 490 491 492 493
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
494 495 496 497 498
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
499 500 501 502 503 504 505 506 507 508 509 510 511
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
512 513
}

514
void *alloc_pgtable_page(int node)
515
{
516 517
	struct page *page;
	void *vaddr = NULL;
518

519 520 521
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
522
	return vaddr;
523 524
}

525
void free_pgtable_page(void *vaddr)
526 527 528 529 530 531
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
532
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
533 534
}

K
Kay, Allen M 已提交
535
static void free_domain_mem(void *vaddr)
536 537 538 539 540 541
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
542
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
543 544 545 546 547 548 549
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

550 551 552 553 554
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

555 556 557 558 559 560 561 562
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
563
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
564 565 566 567 568
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
569
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
570 571 572 573 574 575 576 577
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

596
/* This functionin only returns single iommu in a domain */
597
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
598 599 600
{
	int iommu_id;

601
	/* si_domain and vm domain should not get here. */
602 603 604
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

605 606 607
	for_each_domain_iommu(iommu_id, domain)
		break;

608 609 610 611 612 613
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
614 615
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
616 617
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
618 619
	bool found = false;
	int i;
620

621
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
622

623
	for_each_domain_iommu(i, domain) {
624
		found = true;
W
Weidong Han 已提交
625 626 627 628 629
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
630 631 632 633 634 635 636 637 638 639 640 641
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
642 643
}

644
static int domain_update_iommu_snooping(struct intel_iommu *skip)
645
{
646 647 648
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
649

650 651 652 653 654 655 656
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
657 658
		}
	}
659 660 661
	rcu_read_unlock();

	return ret;
662 663
}

664
static int domain_update_iommu_superpage(struct intel_iommu *skip)
665
{
666
	struct dmar_drhd_unit *drhd;
667
	struct intel_iommu *iommu;
668
	int mask = 0xf;
669 670

	if (!intel_iommu_superpage) {
671
		return 0;
672 673
	}

674
	/* set iommu_superpage to the smallest common denominator */
675
	rcu_read_lock();
676
	for_each_active_iommu(iommu, drhd) {
677 678 679 680
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
681 682
		}
	}
683 684
	rcu_read_unlock();

685
	return fls(mask);
686 687
}

688 689 690 691
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
692 693
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
694 695
}

696 697
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
698 699 700 701 702
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

703
	entry = &root->lo;
704
	if (sm_supported(iommu)) {
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

730 731 732 733 734
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

762
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
763 764
{
	struct dmar_drhd_unit *drhd = NULL;
765
	struct intel_iommu *iommu;
766
	struct device *tmp;
767
	struct pci_dev *pdev = NULL;
768
	u16 segment = 0;
769 770
	int i;

771 772 773
	if (iommu_dummy(dev))
		return NULL;

774
	if (dev_is_pci(dev)) {
775 776
		struct pci_dev *pf_pdev;

777
		pdev = to_pci_dev(dev);
778 779 780 781 782 783 784

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

785 786 787 788
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
789
		segment = pci_domain_nr(pdev->bus);
790
	} else if (has_acpi_companion(dev))
791 792
		dev = &ACPI_COMPANION(dev)->dev;

793
	rcu_read_lock();
794
	for_each_active_iommu(iommu, drhd) {
795
		if (pdev && segment != drhd->segment)
796
			continue;
797

798
		for_each_active_dev_scope(drhd->devices,
799 800
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
801 802 803 804
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
805
				if (pdev && pdev->is_virtfn)
806 807
					goto got_pdev;

808 809
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
810
				goto out;
811 812
			}

813
			if (is_downstream_to_pci_bridge(dev, tmp))
814
				goto got_pdev;
815
		}
816

817 818 819 820
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
821
			goto out;
822
		}
823
	}
824
	iommu = NULL;
825
 out:
826
	rcu_read_unlock();
827

828
	return iommu;
829 830
}

W
Weidong Han 已提交
831 832 833 834 835 836 837
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

838 839 840
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
841
	int ret = 0;
842 843 844
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
845 846 847
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
863
		context = iommu_context_addr(iommu, i, 0, 0);
864 865
		if (context)
			free_pgtable_page(context);
866

867
		if (!sm_supported(iommu))
868 869 870 871 872 873
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

874 875 876 877 878 879 880
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

881
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
882
				      unsigned long pfn, int *target_level)
883
{
884
	struct dma_pte *parent, *pte;
885
	int level = agaw_to_level(domain->agaw);
886
	int offset;
887 888

	BUG_ON(!domain->pgd);
889

890
	if (!domain_pfn_supported(domain, pfn))
891 892 893
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

894 895
	parent = domain->pgd;

896
	while (1) {
897 898
		void *tmp_page;

899
		offset = pfn_level_offset(pfn, level);
900
		pte = &parent[offset];
901
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
902
			break;
903
		if (level == *target_level)
904 905
			break;

906
		if (!dma_pte_present(pte)) {
907 908
			uint64_t pteval;

909
			tmp_page = alloc_pgtable_page(domain->nid);
910

911
			if (!tmp_page)
912
				return NULL;
913

914
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
915
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
916
			if (cmpxchg64(&pte->val, 0ULL, pteval))
917 918
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
919
			else
920
				domain_flush_cache(domain, pte, sizeof(*pte));
921
		}
922 923 924
		if (level == 1)
			break;

925
		parent = phys_to_virt(dma_pte_addr(pte));
926 927 928
		level--;
	}

929 930 931
	if (!*target_level)
		*target_level = level;

932 933 934 935
	return pte;
}

/* return address's pte at specific level */
936 937
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
938
					 int level, int *large_page)
939
{
940
	struct dma_pte *parent, *pte;
941 942 943 944 945
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
946
		offset = pfn_level_offset(pfn, total);
947 948 949 950
		pte = &parent[offset];
		if (level == total)
			return pte;

951 952
		if (!dma_pte_present(pte)) {
			*large_page = total;
953
			break;
954 955
		}

956
		if (dma_pte_superpage(pte)) {
957 958 959 960
			*large_page = total;
			return pte;
		}

961
		parent = phys_to_virt(dma_pte_addr(pte));
962 963 964 965 966 967
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
968
static void dma_pte_clear_range(struct dmar_domain *domain,
969 970
				unsigned long start_pfn,
				unsigned long last_pfn)
971
{
972
	unsigned int large_page;
973
	struct dma_pte *first_pte, *pte;
974

975 976
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
977
	BUG_ON(start_pfn > last_pfn);
978

979
	/* we don't need lock here; nobody else touches the iova range */
980
	do {
981 982
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
983
		if (!pte) {
984
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
985 986
			continue;
		}
987
		do {
988
			dma_clear_pte(pte);
989
			start_pfn += lvl_to_nr_pages(large_page);
990
			pte++;
991 992
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

993 994
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
995 996

	} while (start_pfn && start_pfn <= last_pfn);
997 998
}

999
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1000 1001 1002
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1014
		level_pfn = pfn & level_mask(level);
1015 1016
		level_pte = phys_to_virt(dma_pte_addr(pte));

1017 1018 1019 1020 1021
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1022

1023 1024 1025 1026 1027
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1028
		      last_pfn < level_pfn + level_size(level) - 1)) {
1029 1030 1031 1032 1033 1034 1035 1036 1037
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1038 1039 1040 1041
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1042
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1043
				   unsigned long start_pfn,
1044 1045
				   unsigned long last_pfn,
				   int retain_level)
1046
{
1047 1048
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1049
	BUG_ON(start_pfn > last_pfn);
1050

1051 1052
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1053
	/* We don't need lock here; nobody else touches the iova range */
1054
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1055
			   domain->pgd, 0, start_pfn, last_pfn);
1056

1057
	/* free pgd */
1058
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1059 1060 1061 1062 1063
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1083 1084
	pte = page_address(pg);
	do {
1085 1086 1087
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1088 1089
		pte++;
	} while (!first_pte_in_page(pte));
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1146 1147 1148
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1149
{
1150
	struct page *freelist;
1151

1152 1153
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1172
static void dma_free_pagelist(struct page *freelist)
1173 1174 1175 1176 1177 1178 1179 1180 1181
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1182 1183 1184 1185 1186 1187 1188
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1189 1190 1191 1192 1193 1194
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1195
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1196
	if (!root) {
J
Joerg Roedel 已提交
1197
		pr_err("Allocating root entry for %s failed\n",
1198
			iommu->name);
1199
		return -ENOMEM;
1200
	}
1201

F
Fenghua Yu 已提交
1202
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1213
	u64 addr;
1214
	u32 sts;
1215 1216
	unsigned long flag;

1217
	addr = virt_to_phys(iommu->root_entry);
1218 1219
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1220

1221
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1222
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1223

1224
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1225 1226 1227

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228
		      readl, (sts & DMA_GSTS_RTPS), sts);
1229

1230
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1231 1232
}

1233
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1234 1235 1236 1237
{
	u32 val;
	unsigned long flag;

1238
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1239 1240
		return;

1241
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1243 1244 1245

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1246
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1247

1248
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1249 1250 1251
}

/* return value determine if we need a write buffer flush */
1252 1253 1254
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1275
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1276 1277 1278 1279 1280 1281
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1282
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1283 1284 1285
}

/* return value determine if we need a write buffer flush */
1286 1287
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1303
		/* IH bit is passed in as part of address */
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1321
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1322 1323 1324 1325 1326 1327 1328 1329 1330
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1331
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1332 1333 1334

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1335
		pr_err("Flush IOTLB failed\n");
1336
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1337
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1338 1339
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1340 1341
}

1342 1343 1344
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1345 1346 1347
{
	struct device_domain_info *info;

1348 1349
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1350 1351 1352 1353
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1354 1355
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1356 1357
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1358 1359 1360
			break;
		}

1361
	return NULL;
Y
Yu Zhao 已提交
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1387
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1388
{
1389 1390
	struct pci_dev *pdev;

1391 1392
	assert_spin_locked(&device_domain_lock);

1393
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1394 1395
		return;

1396
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1409
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1410
	}
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1421 1422 1423
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1424 1425
		info->pri_enabled = 1;
#endif
1426
	if (!pdev->untrusted && info->ats_supported &&
1427
	    pci_ats_page_aligned(pdev) &&
1428
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1429
		info->ats_enabled = 1;
1430
		domain_update_iotlb(info->domain);
1431 1432
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1433 1434 1435 1436
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1437 1438
	struct pci_dev *pdev;

1439 1440
	assert_spin_locked(&device_domain_lock);

1441
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1442 1443
		return;

1444 1445 1446 1447 1448
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1449
		domain_update_iotlb(info->domain);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1470 1471 1472
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1473 1474
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1475
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1476 1477 1478
			continue;

		sid = info->bus << 8 | info->devfn;
1479
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1480 1481
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1482 1483 1484 1485
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1486 1487 1488 1489
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1490
{
1491
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493
	u16 did = domain->iommu_did[iommu->seq_id];
1494 1495 1496

	BUG_ON(pages == 0);

1497 1498
	if (ih)
		ih = 1 << 6;
1499
	/*
1500 1501
	 * Fallback to domain selective flush if no PSI support or the size is
	 * too big.
1502 1503 1504
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
1505 1506
	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507
						DMA_TLB_DSI_FLUSH);
1508
	else
1509
		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510
						DMA_TLB_PSI_FLUSH);
1511 1512

	/*
1513 1514
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515
	 */
1516
	if (!cap_caching_mode(iommu->cap) || !map)
1517
		iommu_flush_dev_iotlb(domain, addr, mask);
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
	/* It's a non-present to present mapping. Only flush if caching mode */
	if (cap_caching_mode(iommu->cap))
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1551 1552 1553 1554 1555
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1556 1557 1558
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1559
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1560 1561 1562 1563 1564 1565 1566 1567
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1568
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1569 1570
}

1571
static void iommu_enable_translation(struct intel_iommu *iommu)
1572 1573 1574 1575
{
	u32 sts;
	unsigned long flags;

1576
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1577 1578
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1579 1580 1581

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1582
		      readl, (sts & DMA_GSTS_TES), sts);
1583

1584
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1585 1586
}

1587
static void iommu_disable_translation(struct intel_iommu *iommu)
1588 1589 1590 1591
{
	u32 sts;
	unsigned long flag;

1592
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1593 1594 1595 1596 1597
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1598
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1599

1600
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1601 1602 1603 1604
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1605 1606
	u32 ndomains, nlongs;
	size_t size;
1607 1608

	ndomains = cap_ndoms(iommu->cap);
1609
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1610
		 iommu->name, ndomains);
1611 1612
	nlongs = BITS_TO_LONGS(ndomains);

1613 1614
	spin_lock_init(&iommu->lock);

1615 1616
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1617 1618
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1619 1620
		return -ENOMEM;
	}
1621

1622
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1623 1624 1625 1626 1627 1628 1629 1630
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1631 1632
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1633
		kfree(iommu->domain_ids);
1634
		kfree(iommu->domains);
1635
		iommu->domain_ids = NULL;
1636
		iommu->domains    = NULL;
1637 1638 1639 1640
		return -ENOMEM;
	}

	/*
1641 1642 1643 1644
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1645
	 */
1646 1647
	set_bit(0, iommu->domain_ids);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1658 1659 1660
	return 0;
}

1661
static void disable_dmar_iommu(struct intel_iommu *iommu)
1662
{
1663
	struct device_domain_info *info, *tmp;
1664
	unsigned long flags;
1665

1666 1667
	if (!iommu->domains || !iommu->domain_ids)
		return;
1668

1669
	spin_lock_irqsave(&device_domain_lock, flags);
1670 1671 1672 1673 1674 1675 1676
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1677
		__dmar_remove_one_dev_info(info);
1678
	}
1679
	spin_unlock_irqrestore(&device_domain_lock, flags);
1680 1681 1682

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1683
}
1684

1685 1686 1687
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1688
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1689 1690 1691 1692
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1693 1694 1695 1696 1697
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1698

W
Weidong Han 已提交
1699 1700
	g_iommus[iommu->seq_id] = NULL;

1701 1702
	/* free context mapping */
	free_context_table(iommu);
1703 1704

#ifdef CONFIG_INTEL_IOMMU_SVM
1705
	if (pasid_supported(iommu)) {
1706 1707 1708
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1709
#endif
1710 1711
}

1712
static struct dmar_domain *alloc_domain(int flags)
1713 1714 1715 1716 1717 1718 1719
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1720
	memset(domain, 0, sizeof(*domain));
1721
	domain->nid = NUMA_NO_NODE;
1722
	domain->flags = flags;
1723
	domain->has_iotlb_device = false;
1724
	INIT_LIST_HEAD(&domain->devices);
1725 1726 1727 1728

	return domain;
}

1729 1730
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1731 1732
			       struct intel_iommu *iommu)
{
1733
	unsigned long ndomains;
1734
	int num;
1735

1736
	assert_spin_locked(&device_domain_lock);
1737
	assert_spin_locked(&iommu->lock);
1738

1739 1740 1741
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1742
		ndomains = cap_ndoms(iommu->cap);
1743 1744 1745 1746 1747 1748
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1749
			return -ENOSPC;
1750
		}
1751

1752 1753 1754 1755 1756
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1757 1758 1759

		domain_update_iommu_cap(domain);
	}
1760

1761
	return 0;
1762 1763 1764 1765 1766
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1767
	int num, count;
1768

1769
	assert_spin_locked(&device_domain_lock);
1770
	assert_spin_locked(&iommu->lock);
1771

1772 1773 1774
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1775 1776 1777
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1778 1779

		domain_update_iommu_cap(domain);
1780
		domain->iommu_did[iommu->seq_id] = 0;
1781 1782 1783 1784 1785
	}

	return count;
}

1786
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1787
static struct lock_class_key reserved_rbtree_key;
1788

1789
static int dmar_init_reserved_ranges(void)
1790 1791 1792 1793 1794
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1795
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1796

M
Mark Gross 已提交
1797 1798 1799
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1800 1801 1802
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1803
	if (!iova) {
J
Joerg Roedel 已提交
1804
		pr_err("Reserve IOAPIC range failed\n");
1805 1806
		return -ENODEV;
	}
1807 1808 1809 1810 1811 1812 1813 1814 1815

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1816 1817 1818
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1819
			if (!iova) {
1820
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1821 1822
				return -ENODEV;
			}
1823 1824
		}
	}
1825
	return 0;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
{
	int adjust_width, agaw;
	unsigned long sagaw;
	int err;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);

	err = init_iova_flush_queue(&domain->iovad,
				    iommu_flush_iova, iova_entry_free);
	if (err)
		return err;

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

	domain->nid = iommu->node;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
	return 0;
}

1904 1905 1906
static void domain_exit(struct dmar_domain *domain)
{

1907
	/* Remove associated devices and clear attached or cached domains */
1908
	domain_remove_dev_info(domain);
1909

1910 1911 1912
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

1913 1914
	if (domain->pgd) {
		struct page *freelist;
1915

1916 1917 1918
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
1919

1920 1921 1922
	free_domain_mem(domain);
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
	context->hi |= (1 << 20);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1973 1974
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1975
				      struct pasid_table *table,
1976
				      u8 bus, u8 devfn)
1977
{
1978
	u16 did = domain->iommu_did[iommu->seq_id];
1979 1980
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1981 1982
	struct context_entry *context;
	unsigned long flags;
1983
	int ret;
1984

1985 1986
	WARN_ON(did == 0);

1987 1988
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1989 1990 1991

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
1992

1993
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
1994

1995 1996 1997 1998
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
1999
	context = iommu_context_addr(iommu, bus, devfn, 1);
2000
	if (!context)
2001
		goto out_unlock;
2002

2003 2004 2005
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2019
		if (did_old < cap_ndoms(iommu->cap)) {
2020 2021 2022 2023
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2024 2025 2026
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2027 2028
	}

2029
	context_clear_entry(context);
2030

2031 2032
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2043 2044

		/*
2045 2046
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2047
		 */
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2087 2088

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2089
	}
F
Fenghua Yu 已提交
2090

2091 2092
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2093
	domain_flush_cache(domain, context, sizeof(*context));
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2106
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2107
	} else {
2108
		iommu_flush_write_buffer(iommu);
2109
	}
Y
Yu Zhao 已提交
2110
	iommu_enable_dev_iotlb(info);
2111

2112 2113 2114 2115 2116
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2117

2118
	return ret;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2137
static int
2138
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2139
{
2140
	struct domain_context_mapping_data data;
2141
	struct pasid_table *table;
2142
	struct intel_iommu *iommu;
2143
	u8 bus, devfn;
2144

2145
	iommu = device_to_iommu(dev, &bus, &devfn);
2146 2147
	if (!iommu)
		return -ENODEV;
2148

2149
	table = intel_pasid_get_table(dev);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2161 2162 2163 2164 2165 2166 2167 2168
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2169 2170
}

2171
static int domain_context_mapped(struct device *dev)
2172
{
W
Weidong Han 已提交
2173
	struct intel_iommu *iommu;
2174
	u8 bus, devfn;
W
Weidong Han 已提交
2175

2176
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2177 2178
	if (!iommu)
		return -ENODEV;
2179

2180 2181
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2182

2183 2184
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2223 2224 2225
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2226 2227
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2228
	phys_addr_t uninitialized_var(pteval);
2229
	unsigned long sg_res = 0;
2230 2231
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2232

2233
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2234 2235 2236 2237 2238 2239

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;

2240 2241
	if (!sg) {
		sg_res = nr_pages;
2242 2243 2244
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
	}

2245
	while (nr_pages > 0) {
2246 2247
		uint64_t tmp;

2248
		if (!sg_res) {
2249 2250
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2251
			sg_res = aligned_nrpages(sg->offset, sg->length);
2252
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2253
			sg->dma_length = sg->length;
2254
			pteval = (sg_phys(sg) - pgoff) | prot;
2255
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2256
		}
2257

2258
		if (!pte) {
2259 2260
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2261
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2262 2263
			if (!pte)
				return -ENOMEM;
2264
			/* It is large page*/
2265
			if (largepage_lvl > 1) {
2266 2267
				unsigned long nr_superpages, end_pfn;

2268
				pteval |= DMA_PTE_LARGE_PAGE;
2269
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2270 2271 2272 2273

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2274 2275
				/*
				 * Ensure that old small page tables are
2276
				 * removed to make room for superpage(s).
2277 2278
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2279
				 */
2280 2281
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2282
			} else {
2283
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2284
			}
2285

2286 2287 2288 2289
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2290
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2291
		if (tmp) {
2292
			static int dumps = 5;
J
Joerg Roedel 已提交
2293 2294
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2295 2296 2297 2298 2299 2300
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2324
		pte++;
2325 2326
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327 2328 2329 2330
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2331 2332

		if (!sg_res && nr_pages)
2333 2334 2335 2336 2337
			sg = sg_next(sg);
	}
	return 0;
}

2338
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339 2340 2341
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2342
	int iommu_id, ret;
2343 2344 2345 2346 2347 2348 2349
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2350 2351
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2352 2353 2354 2355
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2356 2357
}

2358 2359 2360
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2361
{
2362
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2363
}
2364

2365 2366 2367 2368
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2369
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2370 2371
}

2372
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2373
{
2374 2375 2376 2377
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2378 2379
	if (!iommu)
		return;
2380

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2401 2402
}

2403 2404 2405 2406 2407 2408
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2409
		info->dev->archdata.iommu = NULL;
2410 2411
}

2412 2413
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2414
	struct device_domain_info *info, *tmp;
2415
	unsigned long flags;
2416 2417

	spin_lock_irqsave(&device_domain_lock, flags);
2418
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2419
		__dmar_remove_one_dev_info(info);
2420 2421 2422
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2423
static struct dmar_domain *find_domain(struct device *dev)
2424 2425 2426
{
	struct device_domain_info *info;

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO ||
		     dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO))
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
	info = dev->archdata.iommu;
	if (likely(info))
		return info->domain;

	return NULL;
}

static struct dmar_domain *deferred_attach_domain(struct device *dev)
{
2441 2442 2443 2444 2445 2446 2447 2448 2449
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
		struct iommu_domain *domain;

		dev->archdata.iommu = NULL;
		domain = iommu_get_domain_for_dev(dev);
		if (domain)
			intel_iommu_attach_device(domain, dev);
	}

2450
	return find_domain(dev);
2451 2452
}

2453
static inline struct device_domain_info *
2454 2455 2456 2457 2458
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2459
		if (info->iommu->segment == segment && info->bus == bus &&
2460
		    info->devfn == devfn)
2461
			return info;
2462 2463 2464 2465

	return NULL;
}

2466 2467 2468 2469
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2470
{
2471
	struct dmar_domain *found = NULL;
2472 2473
	struct device_domain_info *info;
	unsigned long flags;
2474
	int ret;
2475 2476 2477

	info = alloc_devinfo_mem();
	if (!info)
2478
		return NULL;
2479 2480 2481

	info->bus = bus;
	info->devfn = devfn;
2482 2483 2484
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2485 2486
	info->dev = dev;
	info->domain = domain;
2487
	info->iommu = iommu;
2488
	info->pasid_table = NULL;
2489
	info->auxd_enabled = 0;
2490
	INIT_LIST_HEAD(&info->auxiliary_domains);
2491

2492 2493 2494
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2495 2496
		if (!pdev->untrusted &&
		    !pci_ats_disabled() &&
G
Gil Kupfer 已提交
2497
		    ecap_dev_iotlb_support(iommu->ecap) &&
2498 2499 2500 2501
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2502 2503
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2515 2516
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2517
		found = find_domain(dev);
2518 2519

	if (!found) {
2520
		struct device_domain_info *info2;
2521
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2522 2523 2524 2525
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2526
	}
2527

2528 2529 2530
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2531 2532
		/* Caller must free the original domain */
		return found;
2533 2534
	}

2535 2536 2537 2538 2539
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2540
		spin_unlock_irqrestore(&device_domain_lock, flags);
2541
		free_devinfo_mem(info);
2542 2543 2544
		return NULL;
	}

2545 2546 2547 2548
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2549
	spin_unlock_irqrestore(&device_domain_lock, flags);
2550

2551 2552
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2553 2554
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2555
			dev_err(dev, "PASID table allocation failed\n");
2556
			dmar_remove_one_dev_info(dev);
2557
			return NULL;
2558
		}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2570
			dev_err(dev, "Setup RID2PASID failed\n");
2571
			dmar_remove_one_dev_info(dev);
2572
			return NULL;
2573 2574
		}
	}
2575

2576
	if (dev && domain_context_mapping(domain, dev)) {
2577
		dev_err(dev, "Domain context map failed\n");
2578
		dmar_remove_one_dev_info(dev);
2579 2580 2581
		return NULL;
	}

2582
	return domain;
2583 2584
}

2585 2586 2587 2588 2589 2590
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2591
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2592
{
2593
	struct device_domain_info *info;
2594
	struct dmar_domain *domain = NULL;
2595
	struct intel_iommu *iommu;
2596
	u16 dma_alias;
2597
	unsigned long flags;
2598
	u8 bus, devfn;
2599

2600 2601 2602 2603
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2604 2605
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2616
		}
2617
		spin_unlock_irqrestore(&device_domain_lock, flags);
2618

2619
		/* DMA alias already has a domain, use it */
2620
		if (info)
2621
			goto out;
2622
	}
2623

2624
	/* Allocate and initialize new domain for the device */
2625
	domain = alloc_domain(0);
2626
	if (!domain)
2627
		return NULL;
2628
	if (domain_init(domain, iommu, gaw)) {
2629 2630
		domain_exit(domain);
		return NULL;
2631
	}
2632

2633 2634 2635
out:
	return domain;
}
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2664 2665
	}

2666
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2667 2668 2669 2670 2671
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2672

2673 2674 2675
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2676
{
2677 2678 2679 2680 2681
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
J
Joerg Roedel 已提交
2682
		pr_err("Reserving iova failed\n");
2683
		return -ENOMEM;
2684 2685
	}

J
Joerg Roedel 已提交
2686
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2687 2688 2689 2690
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2691
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2692

2693 2694 2695
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2696 2697
}

2698 2699 2700 2701
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2702
{
2703 2704 2705 2706 2707
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2708 2709
		dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
			 start, end);
2710 2711 2712
		return 0;
	}

2713
	dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
J
Joerg Roedel 已提交
2714

2715 2716 2717 2718 2719 2720
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2721
		return -EIO;
2722 2723
	}

2724 2725 2726 2727 2728 2729 2730
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2731
		return -EIO;
2732
	}
2733

2734 2735
	return iommu_domain_identity_map(domain, start, end);
}
2736

2737 2738
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2739
static int __init si_domain_init(int hw)
2740
{
2741 2742 2743
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2744

2745
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2746 2747 2748
	if (!si_domain)
		return -EFAULT;

2749
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2750 2751 2752 2753
		domain_exit(si_domain);
		return -EFAULT;
	}

2754 2755 2756
	if (hw)
		return 0;

2757
	for_each_online_node(nid) {
2758 2759 2760 2761 2762 2763 2764 2765 2766
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2767 2768
	}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/*
	 * Normally we use DMA domains for devices which have RMRRs. But we
	 * loose this requirement for graphic and usb devices. Identity map
	 * the RMRRs for graphic and USB devices so that they could use the
	 * si_domain.
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (device_is_rmrr_locked(dev))
				continue;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2794 2795 2796
	return 0;
}

2797
static int identity_mapping(struct device *dev)
2798 2799 2800
{
	struct device_domain_info *info;

2801
	info = dev->archdata.iommu;
2802
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO && info != DEFER_DEVICE_DOMAIN_INFO)
2803
		return (info->domain == si_domain);
2804 2805 2806 2807

	return 0;
}

2808
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2809
{
2810
	struct dmar_domain *ndomain;
2811
	struct intel_iommu *iommu;
2812
	u8 bus, devfn;
2813

2814
	iommu = device_to_iommu(dev, &bus, &devfn);
2815 2816 2817
	if (!iommu)
		return -ENODEV;

2818
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2819 2820
	if (ndomain != domain)
		return -EBUSY;
2821 2822 2823 2824

	return 0;
}

2825
static bool device_has_rmrr(struct device *dev)
2826 2827
{
	struct dmar_rmrr_unit *rmrr;
2828
	struct device *tmp;
2829 2830
	int i;

2831
	rcu_read_lock();
2832
	for_each_rmrr_units(rmrr) {
2833 2834 2835 2836 2837 2838
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2839 2840
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2841
				rcu_read_unlock();
2842
				return true;
2843
			}
2844
	}
2845
	rcu_read_unlock();
2846 2847 2848
	return false;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
2892 2893
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
2894 2895 2896 2897 2898 2899
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

2900 2901
	if (device_rmrr_is_relaxable(dev))
		return false;
2902 2903 2904 2905

	return true;
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2917
static int device_def_domain_type(struct device *dev)
2918
{
2919 2920
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2921

2922
		if (device_is_rmrr_locked(dev))
2923
			return IOMMU_DOMAIN_DMA;
2924

2925 2926 2927 2928 2929
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2930
			return IOMMU_DOMAIN_DMA;
2931

2932
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2933
			return IOMMU_DOMAIN_IDENTITY;
2934

2935
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2936
			return IOMMU_DOMAIN_IDENTITY;
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
2957
				return IOMMU_DOMAIN_DMA;
2958
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2959
				return IOMMU_DOMAIN_DMA;
2960
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2961
			return IOMMU_DOMAIN_DMA;
2962 2963
	} else {
		if (device_has_rmrr(dev))
2964
			return IOMMU_DOMAIN_DMA;
2965
	}
2966

2967 2968 2969 2970
	return (iommu_identity_mapping & IDENTMAP_ALL) ?
			IOMMU_DOMAIN_IDENTITY : 0;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
2997
		pr_info("%s: Using Register based invalidation\n",
2998 2999 3000 3001
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
3002
		pr_info("%s: Using Queued invalidation\n", iommu->name);
3003 3004 3005
	}
}

3006
static int copy_context_table(struct intel_iommu *iommu,
3007
			      struct root_entry *old_re,
3008 3009 3010
			      struct context_entry **tbl,
			      int bus, bool ext)
{
3011
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3012
	struct context_entry *new_ce = NULL, ce;
3013
	struct context_entry *old_ce = NULL;
3014
	struct root_entry re;
3015 3016 3017
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
3018
	memcpy(&re, old_re, sizeof(re));
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3034
				memunmap(old_ce);
3035 3036 3037

			ret = 0;
			if (devfn < 0x80)
3038
				old_ce_phys = root_entry_lctp(&re);
3039
			else
3040
				old_ce_phys = root_entry_uctp(&re);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3053 3054
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3066
		memcpy(&ce, old_ce + idx, sizeof(ce));
3067

3068
		if (!__context_present(&ce))
3069 3070
			continue;

3071 3072 3073 3074
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3094 3095 3096 3097 3098 3099 3100 3101
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3102
	memunmap(old_ce);
3103 3104 3105 3106 3107 3108 3109 3110

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3111
	struct root_entry *old_rt;
3112 3113 3114 3115 3116
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3117
	bool new_ext, ext;
3118 3119 3120

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3131 3132 3133 3134 3135

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3136
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3137 3138 3139 3140 3141 3142
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3143
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3185
	memunmap(old_rt);
3186 3187 3188 3189

	return ret;
}

3190
static int __init init_dmars(void)
3191 3192 3193
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3194
	int ret;
3195

3196 3197 3198 3199 3200 3201 3202
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3203 3204 3205 3206 3207
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3208
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3209 3210 3211
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3212
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3213 3214
	}

3215 3216 3217 3218
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3219 3220 3221
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3222
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3223 3224 3225 3226
		ret = -ENOMEM;
		goto error;
	}

3227 3228 3229 3230 3231 3232
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3233 3234 3235 3236 3237
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3238
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3239 3240 3241 3242 3243 3244
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3245
		g_iommus[iommu->seq_id] = iommu;
3246

3247 3248
		intel_iommu_init_qi(iommu);

3249 3250
		ret = iommu_init_domains(iommu);
		if (ret)
3251
			goto free_iommu;
3252

3253 3254
		init_translation_status(iommu);

3255 3256 3257 3258 3259 3260
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3261

3262 3263 3264
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3265
		 * among all IOMMU's. Need to Split it later.
3266 3267
		 */
		ret = iommu_alloc_root_entry(iommu);
3268
		if (ret)
3269
			goto free_iommu;
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3295
		if (!ecap_pass_through(iommu->ecap))
3296
			hw_pass_through = 0;
3297
#ifdef CONFIG_INTEL_IOMMU_SVM
3298
		if (pasid_supported(iommu))
3299
			intel_svm_init(iommu);
3300
#endif
3301 3302
	}

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3315
	if (iommu_default_passthrough())
3316 3317
		iommu_identity_mapping |= IDENTMAP_ALL;

3318
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3319
	dmar_map_gfx = 0;
3320
#endif
3321

3322 3323 3324
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3325 3326
	check_tylersburg_isoch();

3327 3328 3329
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3330

3331 3332 3333 3334 3335 3336 3337
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3338
	for_each_iommu(iommu, drhd) {
3339 3340 3341 3342 3343 3344
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3345
				iommu_disable_protect_mem_regions(iommu);
3346
			continue;
3347
		}
3348 3349 3350

		iommu_flush_write_buffer(iommu);

3351
#ifdef CONFIG_INTEL_IOMMU_SVM
3352
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3353 3354 3355 3356 3357
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3358
			ret = intel_svm_enable_prq(iommu);
3359
			down_write(&dmar_global_lock);
3360 3361 3362 3363
			if (ret)
				goto free_iommu;
		}
#endif
3364 3365
		ret = dmar_set_interrupt(iommu);
		if (ret)
3366
			goto free_iommu;
3367 3368 3369
	}

	return 0;
3370 3371

free_iommu:
3372 3373
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3374
		free_dmar_iommu(iommu);
3375
	}
3376

W
Weidong Han 已提交
3377
	kfree(g_iommus);
3378

3379
error:
3380 3381 3382
	return ret;
}

3383
/* This takes a number of _MM_ pages, not VTD pages */
3384
static unsigned long intel_alloc_iova(struct device *dev,
3385 3386
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3387
{
3388
	unsigned long iova_pfn;
3389

3390 3391
	/* Restrict dma_mask to the width that the iommu can handle */
	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3392 3393
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3394 3395

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3396 3397
		/*
		 * First try to allocate an io virtual address in
3398
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3399
		 * from higher range
3400
		 */
3401
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3402
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3403 3404
		if (iova_pfn)
			return iova_pfn;
3405
	}
3406 3407
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3408
	if (unlikely(!iova_pfn)) {
3409
		dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3410
		return 0;
3411 3412
	}

3413
	return iova_pfn;
3414 3415
}

3416
static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3417
{
3418
	struct dmar_domain *domain, *tmp;
3419 3420 3421
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3422

3423
	/* Device shouldn't be attached by any domains. */
3424 3425
	domain = find_domain(dev);
	if (domain)
3426
		return NULL;
3427 3428 3429 3430

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3449 3450 3451 3452 3453 3454 3455 3456
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:
	if (!domain)
3457
		dev_err(dev, "Allocating domain failed\n");
3458 3459
	else
		domain->domain.type = IOMMU_DOMAIN_DMA;
3460

3461 3462 3463
	return domain;
}

3464
/* Check if the dev needs to go through non-identity map and unmap process.*/
3465
static bool iommu_need_mapping(struct device *dev)
3466
{
3467
	int ret;
3468

3469
	if (iommu_dummy(dev))
3470
		return false;
3471

3472 3473 3474 3475 3476 3477 3478
	ret = identity_mapping(dev);
	if (ret) {
		u64 dma_mask = *dev->dma_mask;

		if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;

3479
		if (dma_mask >= dma_direct_get_required_mask(dev))
3480 3481 3482 3483 3484 3485 3486
			return false;

		/*
		 * 32 bit DMA is removed from si_domain and fall back to
		 * non-identity mapping.
		 */
		dmar_remove_one_dev_info(dev);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		ret = iommu_request_dma_domain_for_dev(dev);
		if (ret) {
			struct iommu_domain *domain;
			struct dmar_domain *dmar_domain;

			domain = iommu_get_domain_for_dev(dev);
			if (domain) {
				dmar_domain = to_dmar_domain(domain);
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
			}
3497
			dmar_remove_one_dev_info(dev);
3498
			get_private_domain_for_dev(dev);
3499
		}
3500 3501

		dev_info(dev, "32bit DMA uses non-identity mapping\n");
3502 3503
	}

3504
	return true;
3505 3506
}

3507 3508
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3509 3510
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3511
	phys_addr_t start_paddr;
3512
	unsigned long iova_pfn;
3513
	int prot = 0;
I
Ingo Molnar 已提交
3514
	int ret;
3515
	struct intel_iommu *iommu;
3516
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3517 3518

	BUG_ON(dir == DMA_NONE);
3519

3520
	domain = deferred_attach_domain(dev);
3521
	if (!domain)
3522
		return DMA_MAPPING_ERROR;
3523

3524
	iommu = domain_get_iommu(domain);
3525
	size = aligned_nrpages(paddr, size);
3526

3527 3528
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3529 3530
		goto error;

3531 3532 3533 3534 3535
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3536
			!cap_zlr(iommu->cap))
3537 3538 3539 3540
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3541
	 * paddr - (paddr + size) might be partial page, we should map the whole
3542
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3543
	 * might have two guest_addr mapping to the same host paddr, but this
3544 3545
	 * is not a big problem
	 */
3546
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3547
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3548 3549 3550
	if (ret)
		goto error;

3551
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3552
	start_paddr += paddr & ~PAGE_MASK;
3553 3554 3555

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3556
	return start_paddr;
3557 3558

error:
3559
	if (iova_pfn)
3560
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3561 3562
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3563
	return DMA_MAPPING_ERROR;
3564 3565
}

3566 3567 3568
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3569
				 unsigned long attrs)
3570
{
3571 3572 3573 3574
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, page_to_phys(page) + offset,
				size, dir, *dev->dma_mask);
	return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3575 3576 3577 3578 3579 3580
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
3581 3582 3583 3584
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, phys_addr, size, dir,
				*dev->dma_mask);
	return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3585 3586
}

3587
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3588
{
3589
	struct dmar_domain *domain;
3590
	unsigned long start_pfn, last_pfn;
3591
	unsigned long nrpages;
3592
	unsigned long iova_pfn;
3593
	struct intel_iommu *iommu;
3594
	struct page *freelist;
3595
	struct pci_dev *pdev = NULL;
3596

3597
	domain = find_domain(dev);
3598 3599
	BUG_ON(!domain);

3600 3601
	iommu = domain_get_iommu(domain);

3602
	iova_pfn = IOVA_PFN(dev_addr);
3603

3604
	nrpages = aligned_nrpages(dev_addr, size);
3605
	start_pfn = mm_to_dma_pfn(iova_pfn);
3606
	last_pfn = start_pfn + nrpages - 1;
3607

3608 3609 3610
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3611
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3612 3613
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3614
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3615
				      nrpages, !freelist, 0);
M
mark gross 已提交
3616
		/* free iova */
3617
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3618
		dma_free_pagelist(freelist);
M
mark gross 已提交
3619
	} else {
3620 3621
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3622 3623 3624 3625 3626
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3627 3628

	trace_unmap_single(dev, dev_addr, size);
3629 3630
}

3631 3632
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3633
			     unsigned long attrs)
3634
{
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
	else
		dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
3646 3647
}

3648
static void *intel_alloc_coherent(struct device *dev, size_t size,
3649
				  dma_addr_t *dma_handle, gfp_t flags,
3650
				  unsigned long attrs)
3651
{
3652 3653
	struct page *page = NULL;
	int order;
3654

3655 3656 3657
	if (!iommu_need_mapping(dev))
		return dma_direct_alloc(dev, size, dma_handle, flags, attrs);

3658 3659 3660 3661 3662 3663
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3664 3665
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3666 3667 3668 3669 3670 3671 3672 3673
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3674 3675 3676
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3677
	if (*dma_handle != DMA_MAPPING_ERROR)
3678 3679 3680
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3681

3682 3683 3684
	return NULL;
}

3685
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3686
				dma_addr_t dma_handle, unsigned long attrs)
3687
{
3688 3689 3690
	int order;
	struct page *page = virt_to_page(vaddr);

3691 3692 3693
	if (!iommu_need_mapping(dev))
		return dma_direct_free(dev, size, vaddr, dma_handle, attrs);

3694 3695 3696 3697 3698 3699
	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3700 3701
}

3702
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3703
			   int nelems, enum dma_data_direction dir,
3704
			   unsigned long attrs)
3705
{
3706 3707 3708 3709 3710
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

3711 3712 3713
	if (!iommu_need_mapping(dev))
		return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);

3714 3715 3716 3717 3718
	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3719 3720

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3721 3722
}

3723
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3724
			enum dma_data_direction dir, unsigned long attrs)
3725 3726 3727
{
	int i;
	struct dmar_domain *domain;
3728 3729
	size_t size = 0;
	int prot = 0;
3730
	unsigned long iova_pfn;
3731
	int ret;
F
FUJITA Tomonori 已提交
3732
	struct scatterlist *sg;
3733
	unsigned long start_vpfn;
3734
	struct intel_iommu *iommu;
3735 3736

	BUG_ON(dir == DMA_NONE);
3737
	if (!iommu_need_mapping(dev))
3738
		return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3739

3740
	domain = deferred_attach_domain(dev);
3741 3742 3743
	if (!domain)
		return 0;

3744 3745
	iommu = domain_get_iommu(domain);

3746
	for_each_sg(sglist, sg, nelems, i)
3747
		size += aligned_nrpages(sg->offset, sg->length);
3748

3749
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3750
				*dev->dma_mask);
3751
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3752
		sglist->dma_length = 0;
3753 3754 3755 3756 3757 3758 3759 3760
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3761
			!cap_zlr(iommu->cap))
3762 3763 3764 3765
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3766
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3767

3768
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3769 3770
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3771 3772
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3773
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3774
		return 0;
3775 3776
	}

3777 3778 3779
	trace_map_sg(dev, iova_pfn << PAGE_SHIFT,
		     sg_phys(sglist), size << VTD_PAGE_SHIFT);

3780 3781 3782
	return nelems;
}

3783 3784 3785 3786 3787 3788 3789
static u64 intel_get_required_mask(struct device *dev)
{
	if (!iommu_need_mapping(dev))
		return dma_direct_get_required_mask(dev);
	return DMA_BIT_MASK(32);
}

3790
static const struct dma_map_ops intel_dma_ops = {
3791 3792
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3793 3794
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3795 3796
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3797
	.map_resource = intel_map_resource,
3798
	.unmap_resource = intel_unmap_resource,
3799
	.dma_supported = dma_direct_supported,
3800 3801
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3802
	.get_required_mask = intel_get_required_mask,
3803 3804
};

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3835
	domain = deferred_attach_domain(dev);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
4062
		pr_err("Couldn't create iommu_domain cache\n");
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
4079
		pr_err("Couldn't create devinfo cache\n");
4080 4081 4082 4083 4084 4085 4086 4087 4088
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
4089
	ret = iova_cache_get();
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
4103
	iova_cache_put();
4104 4105 4106 4107 4108 4109 4110 4111

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
4112
	iova_cache_put();
4113 4114
}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4143 4144 4145
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4146
	struct device *dev;
4147
	int i;
4148 4149 4150

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4151 4152 4153
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4154
			/* ignore DMAR unit if no devices exist */
4155 4156 4157 4158 4159
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4160 4161
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4162 4163
			continue;

4164 4165
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4166
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4167 4168 4169 4170
				break;
		if (i < drhd->devices_cnt)
			continue;

4171 4172
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4173
		if (!dmar_map_gfx) {
4174
			drhd->ignored = 1;
4175 4176
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4177
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4178 4179 4180 4181
		}
	}
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4202

4203 4204 4205 4206 4207
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4208
					   DMA_CCMD_GLOBAL_INVL);
4209 4210
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4211
		iommu_disable_protect_mem_regions(iommu);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4224
					   DMA_CCMD_GLOBAL_INVL);
4225
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4226
					 DMA_TLB_GLOBAL_FLUSH);
4227 4228 4229
	}
}

4230
static int iommu_suspend(void)
4231 4232 4233 4234 4235 4236
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4237
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4248
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4259
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4270
static void iommu_resume(void)
4271 4272 4273 4274 4275 4276
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4277 4278 4279 4280
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4281
		return;
4282 4283 4284 4285
	}

	for_each_active_iommu(iommu, drhd) {

4286
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4297
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4298 4299 4300 4301 4302 4303
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4304
static struct syscore_ops iommu_syscore_ops = {
4305 4306 4307 4308
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4309
static void __init init_iommu_pm_ops(void)
4310
{
4311
	register_syscore_ops(&iommu_syscore_ops);
4312 4313 4314
}

#else
4315
static inline void init_iommu_pm_ops(void) {}
4316 4317
#endif	/* CONFIG_PM */

4318
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4319 4320 4321
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4322 4323 4324 4325 4326 4327
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *)header;
	ret = arch_rmrr_sanity_check(rmrr);
	if (ret)
		return ret;
4328 4329 4330

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4331
		goto out;
4332 4333

	rmrru->hdr = header;
4334

4335 4336
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4337

4338 4339 4340
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4341
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4342
		goto free_rmrru;
4343

4344
	list_add(&rmrru->list, &dmar_rmrr_units);
4345

4346
	return 0;
4347 4348 4349 4350
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4351 4352
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4372 4373 4374 4375
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4376
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4377 4378
		return 0;

4379
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4380 4381 4382 4383 4384
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4385 4386 4387
	if (!atsru)
		return -ENOMEM;

4388 4389 4390 4391 4392 4393 4394
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4395
	atsru->include_all = atsr->flags & 0x1;
4396 4397 4398 4399 4400 4401 4402 4403 4404
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4405

4406
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4407 4408 4409 4410

	return 0;
}

4411 4412 4413 4414 4415 4416
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4445
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4446 4447 4448
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4449
	}
4450 4451 4452 4453

	return 0;
}

4454 4455
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4456
	int sp, ret;
4457 4458 4459 4460 4461 4462
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4463
		pr_warn("%s: Doesn't support hardware pass through.\n",
4464 4465 4466 4467 4468
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4469
		pr_warn("%s: Doesn't support snooping.\n",
4470 4471 4472 4473 4474
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4475
		pr_warn("%s: Doesn't support large page.\n",
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4493
#ifdef CONFIG_INTEL_IOMMU_SVM
4494
	if (pasid_supported(iommu))
4495
		intel_svm_init(iommu);
4496 4497
#endif

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4509 4510

#ifdef CONFIG_INTEL_IOMMU_SVM
4511
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4512 4513 4514 4515 4516
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4536 4537
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4554 4555
}

4556 4557 4558 4559 4560 4561 4562 4563 4564
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4565 4566
	}

4567 4568 4569 4570
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4571 4572 4573 4574
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4575
	int i, ret = 1;
4576
	struct pci_bus *bus;
4577 4578
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4579 4580 4581 4582 4583
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4584
		bridge = bus->self;
4585 4586 4587 4588 4589
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4590
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4591
			return 0;
4592
		/* If we found the root port, look it up in the ATSR */
4593
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4594 4595 4596
			break;
	}

4597
	rcu_read_lock();
4598 4599 4600 4601 4602
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4603
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4604
			if (tmp == &bridge->dev)
4605
				goto out;
4606 4607

		if (atsru->include_all)
4608
			goto out;
4609
	}
4610 4611
	ret = 0;
out:
4612
	rcu_read_unlock();
4613

4614
	return ret;
4615 4616
}

4617 4618
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4619
	int ret;
4620 4621 4622 4623 4624
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4625
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4636
			if (ret < 0)
4637
				return ret;
4638
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4639 4640
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4656
			else if (ret < 0)
4657
				return ret;
4658
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4659 4660 4661 4662 4663 4664 4665 4666 4667
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
J
Joerg Roedel 已提交
4680
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4694
			struct page *freelist;
4695 4696 4697

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4698
				pr_debug("Failed get IOVA for PFN %lx\n",
4699 4700 4701 4702 4703 4704 4705
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4706
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4707 4708 4709 4710
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4711 4712 4713
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4714 4715
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4716
				iommu_flush_iotlb_psi(iommu, si_domain,
4717
					iova->pfn_lo, iova_size(iova),
4718
					!freelist, 0);
4719
			rcu_read_unlock();
4720
			dma_free_pagelist(freelist);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4736 4737 4738 4739 4740 4741 4742
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4743
		int did;
4744 4745 4746 4747

		if (!iommu)
			continue;

4748
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4749
			domain = get_iommu_domain(iommu, (u16)did);
4750 4751 4752 4753 4754 4755 4756 4757

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4758
static int intel_iommu_cpu_dead(unsigned int cpu)
4759
{
4760 4761
	free_all_cpu_cached_iovas(cpu);
	return 0;
4762 4763
}

4764 4765 4766 4767 4768 4769 4770 4771 4772
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4793 4794
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4795 4796 4797
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4798 4799
}

4800 4801 4802 4803
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4804
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4815
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4816 4817 4818 4819 4820 4821 4822 4823
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4824
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4825 4826 4827 4828 4829 4830 4831 4832
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4833
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4834 4835 4836 4837
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4838 4839 4840 4841
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4842
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4843 4844 4845 4846 4847 4848 4849 4850
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4851
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4852 4853 4854 4855 4856
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4857 4858 4859 4860 4861
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4862 4863
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4877
static inline bool has_untrusted_dev(void)
4878 4879 4880
{
	struct pci_dev *pdev = NULL;

4881 4882 4883
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
4884

4885 4886
	return false;
}
4887

4888 4889 4890
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
		iommu_identity_mapping |= IDENTMAP_ALL;

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

4909 4910 4911
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
4912 4913
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4952 4953
int __init intel_iommu_init(void)
{
4954
	int ret = -ENODEV;
4955
	struct dmar_drhd_unit *drhd;
4956
	struct intel_iommu *iommu;
4957

4958 4959 4960 4961 4962
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4963

4964 4965 4966 4967 4968 4969 4970
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4971 4972 4973
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4974
		goto out_free_dmar;
4975
	}
4976

4977
	if (dmar_dev_scope_init() < 0) {
4978 4979
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4980
		goto out_free_dmar;
4981
	}
4982

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4993
	if (no_iommu || dmar_disabled) {
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

5007 5008 5009 5010 5011 5012
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
5013
		goto out_free_dmar;
5014
	}
5015

5016
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
5017
		pr_info("No RMRR found\n");
5018 5019

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
5020
		pr_info("No ATSR found\n");
5021

5022 5023 5024
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
5025
		goto out_free_reserved_range;
5026
	}
5027

5028 5029 5030
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

5031 5032
	init_no_remapping_devices();

5033
	ret = init_dmars();
5034
	if (ret) {
5035 5036
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
5037
		pr_err("Initialization failed\n");
5038
		goto out_free_reserved_range;
5039
	}
5040
	up_write(&dmar_global_lock);
5041

5042
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * If the system has no untrusted device or the user has decided
	 * to disable the bounce page mechanisms, we don't need swiotlb.
	 * Mark this and the pre-allocated bounce pages will be released
	 * later.
	 */
	if (!has_untrusted_dev() || intel_no_bounce)
		swiotlb = 0;
5051
#endif
5052
	dma_ops = &intel_dma_ops;
F
Fenghua Yu 已提交
5053

5054
	init_iommu_pm_ops();
5055

5056 5057 5058 5059 5060 5061 5062
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
5063

5064
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5065 5066
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
5067 5068
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
5069

5070
	down_read(&dmar_global_lock);
5071 5072
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");
5073
	up_read(&dmar_global_lock);
5074

5075 5076
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
5077
		if (!drhd->ignored && !translation_pre_enabled(iommu))
5078 5079 5080 5081 5082 5083
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

5084
	intel_iommu_enabled = 1;
5085
	intel_iommu_debugfs_init();
5086

5087
	return 0;
5088 5089 5090 5091 5092

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
5093 5094
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
5095
	return ret;
5096
}
5097

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

5120
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5121
{
5122
	struct dmar_domain *domain;
5123 5124 5125
	struct intel_iommu *iommu;
	unsigned long flags;

5126 5127
	assert_spin_locked(&device_domain_lock);

5128
	if (WARN_ON(!info))
5129 5130
		return;

5131
	iommu = info->iommu;
5132
	domain = info->domain;
5133

5134
	if (info->dev) {
5135 5136 5137 5138
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
					PASID_RID2PASID);

5139
		iommu_disable_dev_iotlb(info);
5140
		domain_context_clear(iommu, info->dev);
5141
		intel_pasid_free_table(info->dev);
5142
	}
5143

5144
	unlink_domain_info(info);
5145

5146
	spin_lock_irqsave(&iommu->lock, flags);
5147
	domain_detach_iommu(domain, iommu);
5148
	spin_unlock_irqrestore(&iommu->lock, flags);
5149

5150 5151
	/* free the private domain */
	if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5152 5153
	    !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
	    list_empty(&domain->devices))
5154 5155
		domain_exit(info->domain);

5156
	free_devinfo_mem(info);
5157 5158
}

5159
static void dmar_remove_one_dev_info(struct device *dev)
5160
{
5161
	struct device_domain_info *info;
5162
	unsigned long flags;
5163

5164
	spin_lock_irqsave(&device_domain_lock, flags);
5165
	info = dev->archdata.iommu;
5166 5167
	if (info)
		__dmar_remove_one_dev_info(info);
5168
	spin_unlock_irqrestore(&device_domain_lock, flags);
5169 5170
}

5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5196
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5197
{
5198
	struct dmar_domain *dmar_domain;
5199 5200
	struct iommu_domain *domain;

5201
	switch (type) {
5202 5203
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5204
	case IOMMU_DOMAIN_UNMANAGED:
5205
		dmar_domain = alloc_domain(0);
5206 5207 5208 5209
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5210
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5211 5212 5213 5214
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5215 5216 5217 5218 5219 5220 5221 5222

		if (type == IOMMU_DOMAIN_DMA &&
		    init_iova_flush_queue(&dmar_domain->iovad,
					  iommu_flush_iova, iova_entry_free)) {
			pr_warn("iova flush queue initialization failed\n");
			intel_iommu_strict = 1;
		}

5223
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5224

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5235
		return NULL;
K
Kay, Allen M 已提交
5236
	}
5237

5238
	return NULL;
K
Kay, Allen M 已提交
5239 5240
}

5241
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5242
{
5243 5244
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5245 5246
}

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
	struct device_domain_info *info = dev->archdata.iommu;

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

		pasid = intel_pasid_alloc_id(domain, PASID_MIN,
					     pci_max_pasids(to_pci_dev(dev)),
					     GFP_KERNEL);
		if (pasid <= 0) {
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
	ret = intel_pasid_setup_second_level(iommu, domain, dev,
					     domain->default_pasid);
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5372 5373
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5374
{
5375
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5376 5377
	struct intel_iommu *iommu;
	int addr_width;
5378
	u8 bus, devfn;
5379

5380
	iommu = device_to_iommu(dev, &bus, &devfn);
5381 5382 5383 5384 5385
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5386 5387 5388 5389
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5390 5391 5392
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5393 5394
		return -EFAULT;
	}
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5405 5406
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5407
			free_pgtable_page(pte);
5408 5409 5410
		}
		dmar_domain->agaw--;
	}
5411

5412 5413 5414 5415 5416 5417 5418 5419
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5420 5421
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5422 5423 5424 5425
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5426 5427 5428
	if (is_aux_domain(dev, domain))
		return -EPERM;

5429 5430 5431 5432 5433
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5434
		if (old_domain)
5435 5436 5437 5438 5439 5440 5441 5442
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5443 5444
}

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5460 5461
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5462
{
5463
	dmar_remove_one_dev_info(dev);
5464
}
5465

5466 5467 5468 5469 5470 5471
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5472 5473
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5474
			   size_t size, int iommu_prot, gfp_t gfp)
5475
{
5476
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5477
	u64 max_addr;
5478
	int prot = 0;
5479
	int ret;
5480

5481 5482 5483 5484
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5485 5486
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5487

5488
	max_addr = iova + size;
5489
	if (dmar_domain->max_addr < max_addr) {
5490 5491 5492
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5493
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5494
		if (end < max_addr) {
J
Joerg Roedel 已提交
5495
			pr_err("%s: iommu width (%d) is not "
5496
			       "sufficient for the mapped address (%llx)\n",
5497
			       __func__, dmar_domain->gaw, max_addr);
5498 5499
			return -EFAULT;
		}
5500
		dmar_domain->max_addr = max_addr;
5501
	}
5502 5503
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5504
	size = aligned_nrpages(hpa, size);
5505 5506
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5507
	return ret;
K
Kay, Allen M 已提交
5508 5509
}

5510
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5511 5512
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5513
{
5514
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5515 5516 5517
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5518
	int iommu_id, level = 0;
5519 5520 5521

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5522
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5523 5524 5525

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5526

5527 5528 5529 5530 5531 5532 5533
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5534
	for_each_domain_iommu(iommu_id, dmar_domain)
5535 5536
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5537 5538

	dma_free_pagelist(freelist);
5539

5540 5541
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5542

5543
	return size;
K
Kay, Allen M 已提交
5544 5545
}

5546
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5547
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5548
{
5549
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5550
	struct dma_pte *pte;
5551
	int level = 0;
5552
	u64 phys = 0;
K
Kay, Allen M 已提交
5553

5554
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
K
Kay, Allen M 已提交
5555
	if (pte)
5556
		phys = dma_pte_addr(pte);
K
Kay, Allen M 已提交
5557

5558
	return phys;
K
Kay, Allen M 已提交
5559
}
5560

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5597
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5598 5599
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5600
		return domain_update_iommu_snooping(NULL) == 1;
5601
	if (cap == IOMMU_CAP_INTR_REMAP)
5602
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5603

5604
	return false;
S
Sheng Yang 已提交
5605 5606
}

5607 5608
static int intel_iommu_add_device(struct device *dev)
{
5609 5610
	struct dmar_domain *dmar_domain;
	struct iommu_domain *domain;
5611
	struct intel_iommu *iommu;
5612
	struct iommu_group *group;
5613
	u8 bus, devfn;
5614
	int ret;
5615

5616 5617
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5618 5619
		return -ENODEV;

5620
	iommu_device_link(&iommu->iommu, dev);
5621

5622 5623 5624
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5625
	group = iommu_group_get_for_dev(dev);
5626

5627 5628
	if (IS_ERR(group))
		return PTR_ERR(group);
5629

5630
	iommu_group_put(group);
5631 5632 5633 5634

	domain = iommu_get_domain_for_dev(dev);
	dmar_domain = to_dmar_domain(domain);
	if (domain->type == IOMMU_DOMAIN_DMA) {
5635
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5636 5637
			ret = iommu_request_dm_for_dev(dev);
			if (ret) {
5638
				dmar_remove_one_dev_info(dev);
5639 5640 5641 5642 5643 5644 5645
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
				domain_add_dev_info(si_domain, dev);
				dev_info(dev,
					 "Device uses a private identity domain.\n");
			}
		}
	} else {
5646
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5647 5648
			ret = iommu_request_dma_domain_for_dev(dev);
			if (ret) {
5649
				dmar_remove_one_dev_info(dev);
5650
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5651
				if (!get_private_domain_for_dev(dev)) {
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
					dev_warn(dev,
						 "Failed to get a private domain.\n");
					return -ENOMEM;
				}

				dev_info(dev,
					 "Device uses a private dma domain.\n");
			}
		}
	}

5663 5664 5665 5666 5667
	if (device_needs_bounce(dev)) {
		dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
		set_dma_ops(dev, &bounce_dma_ops);
	}

5668
	return 0;
5669
}
5670

5671 5672
static void intel_iommu_remove_device(struct device *dev)
{
5673 5674 5675 5676 5677 5678 5679
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5680 5681
	dmar_remove_one_dev_info(dev);

5682
	iommu_group_remove_device(dev);
5683

5684
	iommu_device_unlink(&iommu->iommu, dev);
5685 5686 5687

	if (device_needs_bounce(dev))
		set_dma_ops(dev, NULL);
5688 5689
}

5690 5691 5692
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5693
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5694 5695 5696 5697 5698
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5699
	down_read(&dmar_global_lock);
5700 5701 5702
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5703
			struct iommu_resv_region *resv;
5704
			enum iommu_resv_type type;
5705 5706
			size_t length;

5707 5708
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5709 5710
				continue;

5711
			length = rmrr->end_address - rmrr->base_address + 1;
5712 5713 5714 5715

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5716
			resv = iommu_alloc_resv_region(rmrr->base_address,
5717
						       length, prot, type);
5718 5719 5720 5721
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5722 5723
		}
	}
5724
	up_read(&dmar_global_lock);
5725

5726 5727 5728 5729 5730
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5731
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5732
						   IOMMU_RESV_DIRECT_RELAXABLE);
5733 5734 5735 5736 5737 5738
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5739 5740
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5741
				      0, IOMMU_RESV_MSI);
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

5752 5753
	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
5754 5755
}

5756
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5757 5758 5759 5760 5761 5762 5763 5764
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5765
	domain = find_domain(dev);
5766 5767 5768 5769 5770 5771 5772
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5773
	info = dev->archdata.iommu;
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5787 5788 5789
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5820
#ifdef CONFIG_INTEL_IOMMU_SVM
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5834
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5835 5836 5837 5838 5839 5840 5841
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
	struct device_domain_info *info = dev->archdata.iommu;

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5960 5961 5962 5963 5964 5965 5966 5967 5968
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5969 5970 5971 5972 5973 5974
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

5975
const struct iommu_ops intel_iommu_ops = {
5976 5977 5978 5979 5980
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5981 5982
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5983
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5984 5985 5986 5987 5988 5989 5990
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
5991
	.apply_resv_region	= intel_iommu_apply_resv_region,
5992
	.device_group		= pci_device_group,
5993 5994 5995 5996
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5997
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5998
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5999
};
6000

6001
static void quirk_iommu_igfx(struct pci_dev *dev)
6002
{
6003
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6004 6005 6006
	dmar_map_gfx = 0;
}

6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6041

6042
static void quirk_iommu_rwbf(struct pci_dev *dev)
6043 6044 6045
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6046
	 * but needs it. Same seems to hold for the desktop versions.
6047
	 */
6048
	pci_info(dev, "Forcing write-buffer flush capability\n");
6049 6050 6051 6052
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6053 6054 6055 6056 6057 6058
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6059

6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6070
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6071 6072 6073
{
	unsigned short ggc;

6074
	if (pci_read_config_word(dev, GGC, &ggc))
6075 6076
		return;

6077
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6078
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6079
		dmar_map_gfx = 0;
6080 6081
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6082
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6083 6084
		intel_iommu_strict = 1;
       }
6085 6086 6087 6088 6089 6090
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6144 6145

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6146 6147
	       vtisochctrl);
}