intel_lrc.c 72.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156
#define GEN8_CTX_STATUS_COMPLETED_MASK \
157
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188
#define CTX_REG(reg_state, pos, reg, val) do { \
189
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 191 192 193
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197
} while (0)
198

199
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 201
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202
} while (0)
203

204 205
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
206
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
207

208 209
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
#define WA_TAIL_DWORDS 2
211
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
212
#define PREEMPT_ID 0x1
213

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221
/**
222 223 224
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
225
 * @engine: Engine the descriptor will be used with
226
 *
227 228 229 230 231
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
232 233
 * This is what a descriptor looks like, from LSB to MSB::
 *
234
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
235 236 237 238
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
239
 */
240
static void
241
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
242
				   struct intel_engine_cs *engine)
243
{
244
	struct intel_context *ce = &ctx->engine[engine->id];
245
	u64 desc;
246

247
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
248

249
	desc = ctx->desc_template;				/* bits  0-11 */
250
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
251
								/* bits 12-31 */
252
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275 276 277 278 279 280 281 282
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return ptr_pack_bits(p, first, 1);
317 318
}

319 320 321 322 323 324
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 327
{
	struct drm_i915_gem_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335 336 337 338 339 340 341

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

342 343 344 345 346 347 348 349 350 351 352
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
353 354 355
	}
}

356
void
357 358 359 360 361 362 363 364 365 366
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

367 368 369
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
386
	intel_engine_context_in(rq->engine);
387 388 389 390 391
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
392
	intel_engine_context_out(rq->engine);
393 394 395
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

396 397 398 399 400 401 402 403 404
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

405
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
406
{
407
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
408 409
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
410
	u32 *reg_state = ce->lrc_reg_state;
411

412
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
413

414 415 416 417 418
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
419
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
420
		execlists_update_context_pdps(ppgtt, reg_state);
421 422

	return ce->lrc_desc;
423 424
}

C
Chris Wilson 已提交
425 426 427 428 429 430
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433
	struct execlist_port *port = engine->execlists.port;
434
	unsigned int n;
435

436
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
437 438 439 440 441 442 443 444
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
445
				execlists_context_schedule_in(rq);
446 447 448
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
449 450 451

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
452
				  port[n].context_id, count,
453
				  rq->global_seqno);
454 455 456 457
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
458

459
		elsp_write(desc, engine->execlists.elsp);
460
	}
461
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
462 463
}

464
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
465
{
466
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
467
		i915_gem_context_force_single_submission(ctx));
468
}
469

470 471 472 473 474
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
475

476 477
	if (ctx_single_port_submission(prev))
		return false;
478

479
	return true;
480 481
}

482 483 484 485 486 487 488 489 490 491 492
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

507
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
508
	for (n = execlists_num_ports(&engine->execlists); --n; )
509
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
510

511
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
512
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
513 514
}

515
static void execlists_dequeue(struct intel_engine_cs *engine)
516
{
517 518
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
519 520
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
521
	struct drm_i915_gem_request *last = port_request(port);
522
	struct rb_node *rb;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
544
	 */
545

546
	spin_lock_irq(&engine->timeline->lock);
547 548
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
549 550 551 552 553 554 555 556 557 558
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
559
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
560 561 562
		if (port_count(&port[0]) > 1)
			goto unlock;

563 564 565 566 567 568 569 570 571 572
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

573
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
574 575 576 577 578 579 580
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
581 582
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
620 621 622 623 624 625 626 627 628 629 630 631 632 633
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
634
			 */
635 636 637 638 639 640
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
641
				if (port == last_port) {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
666 667

				GEM_BUG_ON(port_isset(port));
668
			}
669

670 671
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
672
			trace_i915_gem_request_in(rq, port_index(port, execlists));
673 674
			last = rq;
			submit = true;
675
		}
676

677
		rb = rb_next(rb);
678
		rb_erase(&p->node, &execlists->queue);
679 680
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
681
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
682
	} while (rb);
683
done:
684
	execlists->first = rb;
685
	if (submit)
686
		port_assign(port, last);
C
Chris Wilson 已提交
687
unlock:
688
	spin_unlock_irq(&engine->timeline->lock);
689

690 691
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
692
		execlists_submit_ports(engine);
693
	}
694 695
}

696
void
697
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
698
{
699
	struct execlist_port *port = execlists->port;
700
	unsigned int num_ports = execlists_num_ports(execlists);
701

702
	while (num_ports-- && port_isset(port)) {
703 704
		struct drm_i915_gem_request *rq = port_request(port);

705
		GEM_BUG_ON(!execlists->active);
706
		intel_engine_context_out(rq->engine);
707
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
708 709
		i915_gem_request_put(rq);

710 711 712
		memset(port, 0, sizeof(*port));
		port++;
	}
713 714
}

715 716
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
717
	struct intel_engine_execlists * const execlists = &engine->execlists;
718 719 720 721 722 723 724
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
725
	execlists_cancel_port_requests(execlists);
726 727 728 729 730 731 732 733 734

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
735
	rb = execlists->first;
736 737 738 739 740 741 742 743 744 745 746
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
747
		rb_erase(&p->node, &execlists->queue);
748 749 750 751 752 753 754
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

755

756 757
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
758
	GEM_BUG_ON(port_isset(execlists->port));
759 760 761 762 763 764 765 766 767 768 769 770

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

771
/*
772 773 774
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
775
static void execlists_submission_tasklet(unsigned long data)
776
{
777 778
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
779
	struct execlist_port * const port = execlists->port;
780
	struct drm_i915_private *dev_priv = engine->i915;
781
	bool fw = false;
782

783 784 785 786 787 788 789 790 791
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

792 793 794 795 796
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
797 798 799
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
800
		unsigned int head, tail;
801

802
		if (unlikely(execlists->csb_use_mmio)) {
803 804
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
805
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
806 807
		}

808 809 810 811 812 813 814 815 816 817 818
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
819
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
820 821 822 823 824 825
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

826 827 828
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
829
			execlists->csb_head = head;
830 831 832 833 834
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

835
			head = execlists->csb_head;
836 837
			tail = READ_ONCE(buf[write_idx]);
		}
838
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
839
			  engine->name,
840 841
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
842

843
		while (head != tail) {
844
			struct drm_i915_gem_request *rq;
845
			unsigned int status;
846
			unsigned int count;
847 848 849

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

868
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
869
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
870
				  engine->name, head,
871 872
				  status, buf[2*head + 1],
				  execlists->active);
873 874 875 876 877 878 879 880 881

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

882 883 884
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

885 886 887
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

888
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
889
			    buf[2*head + 1] == PREEMPT_ID) {
890 891
				GEM_TRACE("%s preempt-idle\n", engine->name);

892 893
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
894

895 896 897 898
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
899 900 901 902
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
903 904
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
905 906
				continue;

907 908 909
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

910
			/* Check the context/desc id for this event matches */
911
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
912

913
			rq = port_unpack(port, &count);
914 915
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
916
				  port->context_id, count,
917
				  rq ? rq->global_seqno : 0);
918 919
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
920
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
921 922
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
923
				GEM_BUG_ON(!i915_gem_request_completed(rq));
924
				execlists_context_schedule_out(rq);
925 926
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
927

928
				execlists_port_complete(execlists, port);
929 930
			} else {
				port_set(port, port_pack(rq, count));
931
			}
932

933 934
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
935
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
936 937 938
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
939
		}
940

941 942
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
943 944 945
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
946 947
	}

948
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
949
		execlists_dequeue(engine);
950

951 952
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
953 954
}

955 956 957 958 959 960 961
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
962
	if (ptr_unmask_bits(p, 1))
963
		tasklet_hi_schedule(&engine->execlists.tasklet);
964 965
}

966
static void execlists_submit_request(struct drm_i915_gem_request *request)
967
{
968
	struct intel_engine_cs *engine = request->engine;
969
	unsigned long flags;
970

971 972
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
973

974
	insert_request(engine, &request->priotree, request->priotree.priority);
975

976
	GEM_BUG_ON(!engine->execlists.first);
977 978
	GEM_BUG_ON(list_empty(&request->priotree.link));

979
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
980 981
}

982 983 984 985 986
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

987 988 989
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
990
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
991 992

	GEM_BUG_ON(!locked);
993 994

	if (engine != locked) {
995 996
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
997 998 999 1000 1001 1002 1003
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
1004
	struct intel_engine_cs *engine;
1005 1006 1007 1008
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1009 1010
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1011 1012 1013
	if (i915_gem_request_completed(request))
		return;

1014 1015 1016
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1017 1018
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1019 1020 1021 1022

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1023 1024
	/*
	 * Recursively bump all dependent priorities to match the new request.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1041
	list_for_each_entry(dep, &dfs, dfs_link) {
1042 1043
		struct i915_priotree *pt = dep->signaler;

1044 1045
		/*
		 * Within an engine, there can be no cycle, but we may
1046 1047 1048 1049 1050
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1051 1052
			GEM_BUG_ON(p == dep); /* no cycles! */

1053
			if (i915_priotree_signaled(p->signaler))
1054 1055
				continue;

1056
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1057 1058
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1059
		}
1060 1061
	}

1062 1063
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1064 1065 1066 1067
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1068
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1069 1070 1071 1072 1073 1074 1075
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1076 1077 1078
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1091 1092 1093
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1094
		}
1095 1096
	}

1097
	spin_unlock_irq(&engine->timeline->lock);
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1123 1124 1125
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1126
{
1127
	struct intel_context *ce = &ctx->engine[engine->id];
1128
	void *vaddr;
1129
	int ret;
1130

1131
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1132

1133 1134
	if (likely(ce->pin_count++))
		goto out;
1135
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1136

1137 1138 1139 1140 1141
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1142
	GEM_BUG_ON(!ce->state);
1143

1144
	ret = __context_pin(ctx, ce->state);
1145
	if (ret)
1146
		goto err;
1147

1148
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1149 1150
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1151
		goto unpin_vma;
1152 1153
	}

1154
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1155
	if (ret)
1156
		goto unpin_map;
1157

1158
	intel_lr_context_descriptor_update(ctx, engine);
1159

1160 1161
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1162
		i915_ggtt_offset(ce->ring->vma);
1163

1164
	ce->state->obj->pin_global++;
1165
	i915_gem_context_get(ctx);
1166 1167
out:
	return ce->ring;
1168

1169
unpin_map:
1170 1171 1172
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1173
err:
1174
	ce->pin_count = 0;
1175
	return ERR_PTR(ret);
1176 1177
}

1178 1179
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1180
{
1181
	struct intel_context *ce = &ctx->engine[engine->id];
1182

1183
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1184
	GEM_BUG_ON(ce->pin_count == 0);
1185

1186
	if (--ce->pin_count)
1187
		return;
1188

1189
	intel_ring_unpin(ce->ring);
1190

1191
	ce->state->obj->pin_global--;
1192 1193
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1194

1195
	i915_gem_context_put(ctx);
1196 1197
}

1198
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1199 1200 1201
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1202
	int ret;
1203

1204 1205
	GEM_BUG_ON(!ce->pin_count);

1206 1207 1208 1209 1210 1211
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1212 1213 1214
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1243 1244
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1245
{
1246 1247 1248 1249 1250 1251 1252 1253 1254
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1255 1256 1257 1258
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1259 1260 1261 1262 1263 1264 1265

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1266 1267
}

1268 1269 1270 1271 1272 1273
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1274
 *
1275 1276
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1277
 *
1278 1279 1280 1281
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1282
 */
1283
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1284
{
1285
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1286
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1287

1288
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1289 1290
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1291

1292 1293
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1294 1295 1296 1297 1298 1299 1300
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1301

C
Chris Wilson 已提交
1302 1303
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1304
	/* Pad to end of cacheline */
1305 1306
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1307 1308 1309 1310 1311 1312 1313

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1314
	return batch;
1315 1316
}

1317
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1318
{
C
Chris Wilson 已提交
1319 1320
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1321
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1322
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1323

1324
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1325 1326 1327 1328 1329
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1330

1331 1332
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1333
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1334 1335 1336 1337 1338 1339 1340
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1341
	}
1342

1343
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1358 1359 1360 1361 1362 1363
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1364 1365
	}

C
Chris Wilson 已提交
1366 1367
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1368
	/* Pad to end of cacheline */
1369 1370
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1371

1372
	return batch;
1373 1374
}

1375 1376 1377
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1378
{
1379 1380 1381
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1382

1383
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1384 1385
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1386

1387
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1388 1389 1390
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1391 1392
	}

1393 1394 1395 1396 1397
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1398
	return 0;
1399 1400 1401 1402

err:
	i915_gem_object_put(obj);
	return err;
1403 1404
}

1405
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1406
{
1407
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1408 1409
}

1410 1411
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1412
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1413
{
1414
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1415 1416 1417
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1418
	struct page *page;
1419 1420
	void *batch, *batch_ptr;
	unsigned int i;
1421
	int ret;
1422

1423
	if (GEM_WARN_ON(engine->id != RCS))
1424
		return -EINVAL;
1425

1426
	switch (INTEL_GEN(engine->i915)) {
1427 1428
	case 10:
		return 0;
1429 1430
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1431
		wa_bb_fn[1] = NULL;
1432 1433 1434
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1435
		wa_bb_fn[1] = NULL;
1436 1437 1438
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1439
		return 0;
1440
	}
1441

1442
	ret = lrc_setup_wa_ctx(engine);
1443 1444 1445 1446 1447
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1448
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1449
	batch = batch_ptr = kmap_atomic(page);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1462 1463
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1464
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1465 1466
	}

1467 1468
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1469 1470
	kunmap_atomic(batch);
	if (ret)
1471
		lrc_destroy_wa_ctx(engine);
1472 1473 1474 1475

	return ret;
}

1476 1477 1478 1479 1480 1481 1482 1483
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1484
static void enable_execlists(struct intel_engine_cs *engine)
1485
{
1486
	struct drm_i915_private *dev_priv = engine->i915;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1498
	struct intel_engine_execlists * const execlists = &engine->execlists;
1499 1500 1501 1502 1503
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1504

1505
	intel_engine_reset_breadcrumbs(engine);
1506
	intel_engine_init_hangcheck(engine);
1507

1508
	enable_execlists(engine);
1509
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1510

1511 1512
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1513
	execlists->csb_head = -1;
1514
	execlists->active = 0;
1515

1516
	/* After a GPU reset, we may have requests to replay */
1517
	if (execlists->first)
1518
		tasklet_schedule(&execlists->tasklet);
1519

1520
	return 0;
1521 1522
}

1523
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1524
{
1525
	struct drm_i915_private *dev_priv = engine->i915;
1526 1527
	int ret;

1528
	ret = gen8_init_common_ring(engine);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1542
	return init_workarounds_ring(engine);
1543 1544
}

1545
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1546 1547 1548
{
	int ret;

1549
	ret = gen8_init_common_ring(engine);
1550 1551 1552
	if (ret)
		return ret;

1553
	return init_workarounds_ring(engine);
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1574 1575 1576
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1577
	struct intel_engine_execlists * const execlists = &engine->execlists;
1578
	struct intel_context *ce;
1579
	unsigned long flags;
1580

1581 1582
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1583 1584 1585

	reset_irq(engine);

1586 1587
	spin_lock_irqsave(&engine->timeline->lock, flags);

1588 1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1597
	execlists_cancel_port_requests(execlists);
1598

1599
	/* Push back any incomplete requests for replay after the reset. */
1600
	__unwind_incomplete_requests(engine);
1601

1602
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1614
	if (!request || request->fence.error != -EIO)
1615
		return;
1616

1617 1618 1619 1620 1621 1622 1623
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1624
	ce = &request->ctx->engine[engine->id];
1625 1626 1627
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1628
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1629 1630
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1631
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1632

1633 1634 1635
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1636
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1637
	unwind_wa_tail(request);
1638 1639
}

1640 1641 1642
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1643
	struct intel_engine_cs *engine = req->engine;
1644
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1645 1646
	u32 *cs;
	int i;
1647

1648 1649 1650
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1651

1652
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1653
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1654 1655
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1656 1657 1658 1659
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1660 1661
	}

1662 1663
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1664 1665 1666 1667

	return 0;
}

1668
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1669
			      u64 offset, u32 len,
1670
			      const unsigned int flags)
1671
{
1672
	u32 *cs;
1673 1674
	int ret;

1675 1676 1677 1678
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1679 1680
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1681
	if (req->ctx->ppgtt &&
1682 1683 1684 1685 1686 1687
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1688

1689
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1690 1691
	}

1692 1693 1694
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1713 1714
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1715
	/* FIXME(BDW): Address space and security selectors. */
1716 1717 1718
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1719 1720 1721
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1722 1723 1724 1725

	return 0;
}

1726
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1727
{
1728
	struct drm_i915_private *dev_priv = engine->i915;
1729 1730 1731
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1732 1733
}

1734
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1735
{
1736
	struct drm_i915_private *dev_priv = engine->i915;
1737
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1738 1739
}

1740
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1741
{
1742
	u32 cmd, *cs;
1743

1744 1745 1746
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1747 1748 1749

	cmd = MI_FLUSH_DW + 1;

1750 1751 1752 1753 1754 1755 1756
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1757
	if (mode & EMIT_INVALIDATE) {
1758
		cmd |= MI_INVALIDATE_TLB;
1759
		if (request->engine->id == VCS)
1760
			cmd |= MI_INVALIDATE_BSD;
1761 1762
	}

1763 1764 1765 1766 1767
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1768 1769 1770 1771

	return 0;
}

1772
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1773
				  u32 mode)
1774
{
1775
	struct intel_engine_cs *engine = request->engine;
1776 1777
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1778
	bool vf_flush_wa = false, dc_flush_wa = false;
1779
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1780
	int len;
1781 1782 1783

	flags |= PIPE_CONTROL_CS_STALL;

1784
	if (mode & EMIT_FLUSH) {
1785 1786
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1787
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1788
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1789 1790
	}

1791
	if (mode & EMIT_INVALIDATE) {
1792 1793 1794 1795 1796 1797 1798 1799 1800
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1801 1802 1803 1804
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1805
		if (IS_GEN9(request->i915))
1806
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1807 1808 1809 1810

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1811
	}
1812

M
Mika Kuoppala 已提交
1813 1814 1815 1816 1817 1818 1819 1820
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1821 1822 1823
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1824

1825 1826
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1827

1828 1829 1830
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1831

1832
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1833

1834 1835
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1836

1837
	intel_ring_advance(request, cs);
1838 1839 1840 1841

	return 0;
}

1842 1843 1844 1845 1846
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1847
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1848
{
C
Chris Wilson 已提交
1849 1850
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1851 1852
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1853
}
1854

1855
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1856
{
1857 1858
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1859

1860 1861
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1862 1863 1864
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1865
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1866

1867
	gen8_emit_wa_tail(request, cs);
1868
}
1869 1870
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1871
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1872
					u32 *cs)
1873
{
1874 1875 1876
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1877 1878
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1879 1880 1881
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1882
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1883

1884
	gen8_emit_wa_tail(request, cs);
1885
}
1886
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1887

1888
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1889 1890 1891
{
	int ret;

1892
	ret = intel_ring_workarounds_emit(req);
1893 1894 1895
	if (ret)
		return ret;

1896 1897 1898 1899 1900 1901 1902 1903
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1904
	return i915_gem_render_state_emit(req);
1905 1906
}

1907 1908
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1909
 * @engine: Engine Command Streamer.
1910
 */
1911
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1912
{
1913
	struct drm_i915_private *dev_priv;
1914

1915 1916 1917 1918
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1919 1920 1921
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1922

1923
	dev_priv = engine->i915;
1924

1925 1926
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1927
	}
1928

1929 1930
	if (engine->cleanup)
		engine->cleanup(engine);
1931

1932
	intel_engine_cleanup_common(engine);
1933

1934
	lrc_destroy_wa_ctx(engine);
1935

1936
	engine->i915 = NULL;
1937 1938
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1939 1940
}

1941
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1942
{
1943
	engine->submit_request = execlists_submit_request;
1944
	engine->cancel_requests = execlists_cancel_requests;
1945
	engine->schedule = execlists_schedule;
1946
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1947 1948 1949

	engine->park = NULL;
	engine->unpark = NULL;
1950 1951

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1952 1953
}

1954
static void
1955
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1956 1957
{
	/* Default vfuncs which can be overriden by each engine. */
1958
	engine->init_hw = gen8_init_common_ring;
1959
	engine->reset_hw = reset_common_ring;
1960 1961 1962 1963

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1964 1965
	engine->request_alloc = execlists_request_alloc;

1966
	engine->emit_flush = gen8_emit_flush;
1967
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1968
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1969 1970

	engine->set_default_submission = execlists_set_default_submission;
1971

1972 1973
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1974
	engine->emit_bb_start = gen8_emit_bb_start;
1975 1976
}

1977
static inline void
1978
logical_ring_default_irqs(struct intel_engine_cs *engine)
1979
{
1980
	unsigned shift = engine->irq_shift;
1981 1982
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1983 1984
}

1985 1986 1987 1988 1989 1990
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1991 1992
	intel_engine_setup_common(engine);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2008
	engine->execlists.fw_domains = fw_domains;
2009

2010 2011
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2012 2013 2014 2015 2016

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2017
static int logical_ring_init(struct intel_engine_cs *engine)
2018 2019 2020
{
	int ret;

2021
	ret = intel_engine_init_common(engine);
2022 2023 2024
	if (ret)
		goto error;

2025 2026 2027
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

2028 2029 2030 2031 2032 2033 2034
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2035
int logical_render_ring_init(struct intel_engine_cs *engine)
2036 2037 2038 2039
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2040 2041
	logical_ring_setup(engine);

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2052 2053
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2054

2055
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2070
	return logical_ring_init(engine);
2071 2072
}

2073
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2074 2075 2076 2077
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2078 2079
}

2080
static u32
2081
make_rpcs(struct drm_i915_private *dev_priv)
2082 2083 2084 2085 2086 2087 2088
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2089
	if (INTEL_GEN(dev_priv) < 9)
2090 2091 2092 2093 2094 2095 2096 2097
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2098
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2099
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2100
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2101 2102 2103 2104
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2105
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2106
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2107
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2108 2109 2110 2111
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2112 2113
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2114
			GEN8_RPCS_EU_MIN_SHIFT;
2115
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2116 2117 2118 2119 2120 2121 2122
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2123
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2124 2125 2126
{
	u32 indirect_ctx_offset;

2127
	switch (INTEL_GEN(engine->i915)) {
2128
	default:
2129
		MISSING_CASE(INTEL_GEN(engine->i915));
2130
		/* fall through */
2131 2132 2133 2134
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2148
static void execlists_init_reg_state(u32 *regs,
2149 2150 2151
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2152
{
2153 2154
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2184 2185
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2186 2187 2188
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2189
		if (wa_ctx->indirect_ctx.size) {
2190
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2191

2192
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2193 2194
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2195

2196
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2197
				intel_lr_indirect_ctx_offset(engine) << 6;
2198 2199 2200 2201 2202
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2203

2204
			regs[CTX_BB_PER_CTX_PTR + 1] =
2205
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2206
		}
2207
	}
2208 2209 2210 2211

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2212
	/* PDP values well be assigned later if needed */
2213 2214 2215 2216 2217 2218 2219 2220
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2221

2222
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2223 2224 2225 2226
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2227
		ASSIGN_CTX_PML4(ppgtt, regs);
2228 2229
	}

2230 2231 2232 2233
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2234 2235

		i915_oa_init_reg_state(engine, ctx, regs);
2236
	}
2237 2238 2239 2240 2241 2242 2243 2244 2245
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2246
	u32 *regs;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2261
	ctx_obj->mm.dirty = true;
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2281 2282
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2283 2284 2285 2286 2287
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2288

2289
	i915_gem_object_unpin_map(ctx_obj);
2290 2291 2292 2293

	return 0;
}

2294
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2295
					    struct intel_engine_cs *engine)
2296
{
2297
	struct drm_i915_gem_object *ctx_obj;
2298
	struct intel_context *ce = &ctx->engine[engine->id];
2299
	struct i915_vma *vma;
2300
	uint32_t context_size;
2301
	struct intel_ring *ring;
2302 2303
	int ret;

2304
	WARN_ON(ce->state);
2305

2306
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2307

2308 2309 2310 2311 2312
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2313

2314
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2315
	if (IS_ERR(ctx_obj)) {
2316
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2317
		return PTR_ERR(ctx_obj);
2318 2319
	}

2320
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2321 2322 2323 2324 2325
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2326
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2327 2328
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2329
		goto error_deref_obj;
2330 2331
	}

2332
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2333 2334
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2335
		goto error_ring_free;
2336 2337
	}

2338
	ce->ring = ring;
2339
	ce->state = vma;
2340 2341

	return 0;
2342

2343
error_ring_free:
2344
	intel_ring_free(ring);
2345
error_deref_obj:
2346
	i915_gem_object_put(ctx_obj);
2347
	return ret;
2348
}
2349

2350
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2351
{
2352
	struct intel_engine_cs *engine;
2353
	struct i915_gem_context *ctx;
2354
	enum intel_engine_id id;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2366
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2367
		for_each_engine(engine, dev_priv, id) {
2368 2369
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2370

2371 2372
			if (!ce->state)
				continue;
2373

2374 2375 2376 2377
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2378

2379 2380 2381
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2382

C
Chris Wilson 已提交
2383
			ce->state->obj->mm.dirty = true;
2384
			i915_gem_object_unpin_map(ce->state->obj);
2385

2386
			intel_ring_reset(ce->ring, 0);
2387
		}
2388 2389
	}
}