huge_memory.c 82.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167
	const char *output;

168
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 170 171 172
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
173
	else
174 175 176
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
177
}
178

179 180 181 182
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
183
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
184

185
	if (sysfs_streq(buf, "always")) {
186 187
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188
	} else if (sysfs_streq(buf, "madvise")) {
189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191
	} else if (sysfs_streq(buf, "never")) {
192 193 194 195
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
196 197

	if (ret > 0) {
198
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
199 200 201 202
		if (err)
			ret = err;
	}
	return ret;
203 204 205 206
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

207
ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 209
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
210
{
211 212
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
213
}
214

215
ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 217 218 219
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
220 221 222 223 224 225 226 227 228 229
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
230
		set_bit(flag, &transparent_hugepage_flags);
231
	else
232 233 234 235 236 237 238 239
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
258
}
259

260 261 262 263
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
264
	if (sysfs_streq(buf, "always")) {
265 266 267 268
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269
	} else if (sysfs_streq(buf, "defer+madvise")) {
270 271 272 273
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274
	} else if (sysfs_streq(buf, "defer")) {
275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279
	} else if (sysfs_streq(buf, "madvise")) {
280 281 282 283
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284
	} else if (sysfs_streq(buf, "never")) {
285 286 287 288 289 290 291 292
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
293 294 295 296
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

297
static ssize_t use_zero_page_show(struct kobject *kobj,
298
				  struct kobj_attribute *attr, char *buf)
299
{
300
	return single_hugepage_flag_show(kobj, attr, buf,
301
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 303 304 305
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
306
	return single_hugepage_flag_store(kobj, attr, buf, count,
307 308 309 310
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 312

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313
				   struct kobj_attribute *attr, char *buf)
314
{
315
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 317 318 319
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

320 321 322
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
323
	&use_zero_page_attr.attr,
324
	&hpage_pmd_size_attr.attr,
325
#ifdef CONFIG_SHMEM
326
	&shmem_enabled_attr.attr,
327 328 329 330
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
486
{
487
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
488 489 490 491 492 493
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
494
}
495 496 497 498 499 500 501 502
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
503 504 505 506 507 508 509 510 511 512 513 514

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

515 516 517
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
518
		return false;
519 520 521 522 523 524 525

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

526 527
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
528 529 530 531
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
532
	unsigned long len_pad, ret;
533 534 535 536 537 538 539 540

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

541
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
542
					      off >> PAGE_SHIFT, flags);
543 544 545 546 547 548

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
549 550
		return 0;

551 552 553 554 555 556 557 558 559
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
560 561 562 563 564
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
565
	unsigned long ret;
566 567 568 569 570
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

571 572 573 574
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
575 576 577 578
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

579 580
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
581
{
J
Jan Kara 已提交
582
	struct vm_area_struct *vma = vmf->vma;
583
	pgtable_t pgtable;
J
Jan Kara 已提交
584
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585
	vm_fault_t ret = 0;
586

587
	VM_BUG_ON_PAGE(!PageCompound(page), page);
588

589
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
590 591
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
592
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
593 594
		return VM_FAULT_FALLBACK;
	}
595
	cgroup_throttle_swaprate(page, gfp);
596

597
	pgtable = pte_alloc_one(vma->vm_mm);
598
	if (unlikely(!pgtable)) {
599 600
		ret = VM_FAULT_OOM;
		goto release;
601
	}
602

603
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
604 605 606 607 608
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
609 610
	__SetPageUptodate(page);

J
Jan Kara 已提交
611 612
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
613
		goto unlock_release;
614 615
	} else {
		pmd_t entry;
616

617 618 619 620
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

621 622
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
623
			vm_fault_t ret2;
624

J
Jan Kara 已提交
625
			spin_unlock(vmf->ptl);
626
			put_page(page);
K
Kirill A. Shutemov 已提交
627
			pte_free(vma->vm_mm, pgtable);
628 629 630
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
631 632
		}

633
		entry = mk_huge_pmd(page, vma->vm_page_prot);
634
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635
		page_add_new_anon_rmap(page, vma, haddr, true);
636
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
637 638
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
639
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
640
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
641
		spin_unlock(vmf->ptl);
642
		count_vm_event(THP_FAULT_ALLOC);
643
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
644 645
	}

646
	return 0;
647 648 649 650 651 652 653 654
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

655 656
}

657
/*
658 659 660 661 662 663 664
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
665
 */
666
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
667
{
668
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
669

670
	/* Always do synchronous compaction */
671 672
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
673 674

	/* Kick kcompactd and fail quickly */
675
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
676
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
677 678

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
679
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
680 681 682
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
683 684

	/* Only do synchronous compaction if madvised */
685
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
686 687
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
688

689
	return GFP_TRANSHUGE_LIGHT;
690 691
}

692
/* Caller must hold page table lock. */
693
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
694
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
695
		struct page *zero_page)
696 697
{
	pmd_t entry;
A
Andrew Morton 已提交
698 699
	if (!pmd_none(*pmd))
		return false;
700
	entry = mk_pmd(zero_page, vma->vm_page_prot);
701
	entry = pmd_mkhuge(entry);
702 703
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
704
	set_pmd_at(mm, haddr, pmd, entry);
705
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
706
	return true;
707 708
}

709
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
710
{
J
Jan Kara 已提交
711
	struct vm_area_struct *vma = vmf->vma;
712
	gfp_t gfp;
713
	struct page *page;
J
Jan Kara 已提交
714
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
715

716
	if (!transhuge_vma_suitable(vma, haddr))
717
		return VM_FAULT_FALLBACK;
718 719
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
720
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
721
		return VM_FAULT_OOM;
J
Jan Kara 已提交
722
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
723
			!mm_forbids_zeropage(vma->vm_mm) &&
724 725 726
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
727
		vm_fault_t ret;
728
		pgtable = pte_alloc_one(vma->vm_mm);
729
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
730
			return VM_FAULT_OOM;
731
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
732
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
733
			pte_free(vma->vm_mm, pgtable);
734
			count_vm_event(THP_FAULT_FALLBACK);
735
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
736
		}
J
Jan Kara 已提交
737
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
738
		ret = 0;
J
Jan Kara 已提交
739
		if (pmd_none(*vmf->pmd)) {
740 741 742
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
743
				pte_free(vma->vm_mm, pgtable);
744
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
745
				spin_unlock(vmf->ptl);
746
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
747
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
748 749
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
750
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
751 752
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
753
			}
754
		} else {
J
Jan Kara 已提交
755
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
756
			pte_free(vma->vm_mm, pgtable);
757
		}
758
		return ret;
759
	}
760 761
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
762 763
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
764
		return VM_FAULT_FALLBACK;
765
	}
766
	prep_transhuge_page(page);
J
Jan Kara 已提交
767
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
768 769
}

770
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
771 772
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
773 774 775 776 777 778
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

794 795 796
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
797
	if (write) {
798 799
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
800
	}
801 802 803

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
804
		mm_inc_nr_ptes(mm);
805
		pgtable = NULL;
806 807
	}

808 809
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
810 811

out_unlock:
M
Matthew Wilcox 已提交
812
	spin_unlock(ptl);
813 814
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
832
{
833 834
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
835
	pgtable_t pgtable = NULL;
836

M
Matthew Wilcox 已提交
837 838 839 840 841
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
842 843
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
844 845 846 847 848 849
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
850

851
	if (arch_needs_pgtable_deposit()) {
852
		pgtable = pte_alloc_one(vma->vm_mm);
853 854 855 856
		if (!pgtable)
			return VM_FAULT_OOM;
	}

857 858
	track_pfn_insert(vma, &pgprot, pfn);

859
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
860
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
861
}
862
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
863

864
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
865
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
866
{
867
	if (likely(vma->vm_flags & VM_WRITE))
868 869 870 871 872 873 874 875 876 877 878 879
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
880 881 882 883 884 885 886 887 888 889 890 891 892 893
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

894 895 896 897
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
898 899
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
900 901 902
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
903 904

out_unlock:
905 906 907
	spin_unlock(ptl);
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
923
{
924 925 926
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

927 928 929 930 931
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
932 933
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
934 935 936 937 938 939 940 941 942
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

943
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
944 945
	return VM_FAULT_NOPAGE;
}
946
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
947 948
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

949
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
950
		pmd_t *pmd, int flags)
951 952 953
{
	pmd_t _pmd;

954 955 956
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
957
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
958
				pmd, _pmd, flags & FOLL_WRITE))
959 960 961 962
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
963
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
964 965 966 967 968 969 970
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

971 972 973 974 975 976
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
977 978 979 980 981
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

982
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
983 984 985 986 987 988 989 990
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
991
		touch_pmd(vma, addr, pmd, flags);
992 993 994 995 996

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
997
	if (!(flags & (FOLL_GET | FOLL_PIN)))
998 999 1000
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1001 1002
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1003 1004
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1005 1006
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1007 1008 1009 1010

	return page;
}

1011 1012 1013 1014
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1015
	spinlock_t *dst_ptl, *src_ptl;
1016 1017
	struct page *src_page;
	pmd_t pmd;
1018
	pgtable_t pgtable = NULL;
1019
	int ret = -ENOMEM;
1020

1021 1022 1023 1024
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1025
	pgtable = pte_alloc_one(dst_mm);
1026 1027
	if (unlikely(!pgtable))
		goto out;
1028

1029 1030 1031
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032 1033 1034

	ret = -EAGAIN;
	pmd = *src_pmd;
1035

1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1044 1045 1046 1047 1048 1049 1050 1051
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1052 1053
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1054 1055
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1056
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1057
		mm_inc_nr_ptes(dst_mm);
1058
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1059 1060 1061 1062 1063 1064
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1065
	if (unlikely(!pmd_trans_huge(pmd))) {
1066 1067 1068
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1069
	/*
1070
	 * When page table lock is held, the huge zero pmd should not be
1071 1072 1073 1074
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1075
		struct page *zero_page;
1076 1077 1078 1079 1080
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1081
		zero_page = mm_get_huge_zero_page(dst_mm);
1082
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1083
				zero_page);
1084 1085 1086
		ret = 0;
		goto out_unlock;
	}
1087

1088 1089
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(src_page))) {
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1108 1109 1110
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1111
	mm_inc_nr_ptes(dst_mm);
1112
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1113 1114 1115 1116 1117 1118 1119

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1120 1121
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1122 1123 1124 1125
out:
	return ret;
}

1126 1127
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1128
		pud_t *pud, int flags)
1129 1130 1131
{
	pud_t _pud;

1132 1133 1134
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1135
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1136
				pud, _pud, flags & FOLL_WRITE))
1137 1138 1139 1140
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1141
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1142 1143 1144 1145 1146 1147 1148
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1149
	if (flags & FOLL_WRITE && !pud_write(*pud))
1150 1151
		return NULL;

J
John Hubbard 已提交
1152 1153 1154 1155 1156
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1157 1158 1159 1160 1161 1162
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1163
		touch_pud(vma, addr, pud, flags);
1164 1165 1166 1167

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1168 1169
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1170
	 */
J
John Hubbard 已提交
1171
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1172 1173 1174
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1175 1176
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1177 1178
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1179 1180
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/* Please refer to comments in copy_huge_pmd() */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(pud_page(pud)))) {
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1254
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1255 1256 1257
{
	pmd_t entry;
	unsigned long haddr;
1258
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1259

J
Jan Kara 已提交
1260 1261
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 1263 1264
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1265 1266
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1267
	haddr = vmf->address & HPAGE_PMD_MASK;
1268
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1269
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1270 1271

unlock:
J
Jan Kara 已提交
1272
	spin_unlock(vmf->ptl);
1273 1274
}

1275
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1276
{
J
Jan Kara 已提交
1277
	struct vm_area_struct *vma = vmf->vma;
1278
	struct page *page;
J
Jan Kara 已提交
1279
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1280

J
Jan Kara 已提交
1281
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1282
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1283

1284
	if (is_huge_zero_pmd(orig_pmd))
1285 1286
		goto fallback;

J
Jan Kara 已提交
1287
	spin_lock(vmf->ptl);
1288 1289 1290 1291 1292

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1293 1294

	page = pmd_page(orig_pmd);
1295
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1296 1297

	/* Lock page for reuse_swap_page() */
1298 1299 1300 1301 1302 1303
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1304
			spin_unlock(vmf->ptl);
1305 1306
			unlock_page(page);
			put_page(page);
1307
			return 0;
1308 1309 1310
		}
		put_page(page);
	}
1311 1312 1313 1314 1315

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1316
	if (reuse_swap_page(page, NULL)) {
1317 1318
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1319
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1320
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1321
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1322
		unlock_page(page);
J
Jan Kara 已提交
1323
		spin_unlock(vmf->ptl);
1324
		return VM_FAULT_WRITE;
1325
	}
1326 1327

	unlock_page(page);
J
Jan Kara 已提交
1328
	spin_unlock(vmf->ptl);
1329 1330 1331
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1332 1333
}

1334
/*
1335 1336
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1337 1338 1339
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1340 1341
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1342 1343
}

1344
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1345 1346 1347 1348
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1349
	struct mm_struct *mm = vma->vm_mm;
1350 1351
	struct page *page = NULL;

1352
	assert_spin_locked(pmd_lockptr(mm, pmd));
1353

1354
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1355 1356
		goto out;

1357 1358 1359 1360
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1361
	/* Full NUMA hinting faults to serialise migration in fault paths */
1362
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1363 1364
		goto out;

1365
	page = pmd_page(*pmd);
1366
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1367 1368 1369 1370

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1371
	if (flags & FOLL_TOUCH)
1372
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1373

E
Eric B Munson 已提交
1374
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1375 1376 1377 1378
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1379 1380
		 * For anon THP:
		 *
1381 1382 1383 1384 1385 1386 1387
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1388 1389 1390 1391 1392 1393
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1394
		 */
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1405
	}
1406
skip_mlock:
1407
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1408
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1409 1410 1411 1412 1413

out:
	return page;
}

1414
/* NUMA hinting page fault entry point for trans huge pmds */
1415
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1416
{
J
Jan Kara 已提交
1417
	struct vm_area_struct *vma = vmf->vma;
1418
	struct anon_vma *anon_vma = NULL;
1419
	struct page *page;
J
Jan Kara 已提交
1420
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1421
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1422
	int target_nid, last_cpupid = -1;
1423 1424
	bool page_locked;
	bool migrated = false;
1425
	bool was_writable;
1426
	int flags = 0;
1427

J
Jan Kara 已提交
1428 1429
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1430 1431
		goto out_unlock;

1432 1433 1434 1435 1436
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1437 1438
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1439 1440
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1441
		spin_unlock(vmf->ptl);
1442
		put_and_wait_on_page_locked(page);
1443 1444 1445
		goto out;
	}

1446
	page = pmd_page(pmd);
1447
	BUG_ON(is_huge_zero_page(page));
1448
	page_nid = page_to_nid(page);
1449
	last_cpupid = page_cpupid_last(page);
1450
	count_vm_numa_event(NUMA_HINT_FAULTS);
1451
	if (page_nid == this_nid) {
1452
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1453 1454
		flags |= TNF_FAULT_LOCAL;
	}
1455

1456
	/* See similar comment in do_numa_page for explanation */
1457
	if (!pmd_savedwrite(pmd))
1458 1459
		flags |= TNF_NO_GROUP;

1460 1461 1462 1463
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1464 1465
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1466
	if (target_nid == NUMA_NO_NODE) {
1467
		/* If the page was locked, there are no parallel migrations */
1468
		if (page_locked)
1469
			goto clear_pmdnuma;
1470
	}
1471

1472
	/* Migration could have started since the pmd_trans_migrating check */
1473
	if (!page_locked) {
1474
		page_nid = NUMA_NO_NODE;
1475 1476
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1477
		spin_unlock(vmf->ptl);
1478
		put_and_wait_on_page_locked(page);
1479 1480 1481
		goto out;
	}

1482 1483 1484 1485
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1486
	get_page(page);
J
Jan Kara 已提交
1487
	spin_unlock(vmf->ptl);
1488
	anon_vma = page_lock_anon_vma_read(page);
1489

P
Peter Zijlstra 已提交
1490
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1491 1492
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1493 1494
		unlock_page(page);
		put_page(page);
1495
		page_nid = NUMA_NO_NODE;
1496
		goto out_unlock;
1497
	}
1498

1499 1500 1501
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1502
		page_nid = NUMA_NO_NODE;
1503 1504 1505
		goto clear_pmdnuma;
	}

1506 1507 1508 1509 1510 1511
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1512 1513 1514 1515
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1516
	 */
1517
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1518
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1531

1532 1533
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1534
	 * and access rights restored.
1535
	 */
J
Jan Kara 已提交
1536
	spin_unlock(vmf->ptl);
1537

K
Kirill A. Shutemov 已提交
1538
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1539
				vmf->pmd, pmd, vmf->address, page, target_nid);
1540 1541
	if (migrated) {
		flags |= TNF_MIGRATED;
1542
		page_nid = target_nid;
1543 1544
	} else
		flags |= TNF_MIGRATE_FAIL;
1545

1546
	goto out;
1547
clear_pmdnuma:
1548
	BUG_ON(!PageLocked(page));
1549
	was_writable = pmd_savedwrite(pmd);
1550
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1551
	pmd = pmd_mkyoung(pmd);
1552 1553
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1554 1555
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1556
	unlock_page(page);
1557
out_unlock:
J
Jan Kara 已提交
1558
	spin_unlock(vmf->ptl);
1559 1560 1561 1562 1563

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1564
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1565
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1566
				flags);
1567

1568 1569 1570
	return 0;
}

1571 1572 1573 1574 1575
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1576 1577 1578 1579 1580 1581
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1582
	bool ret = false;
1583

1584
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1585

1586 1587
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1588
		goto out_unlocked;
1589 1590

	orig_pmd = *pmd;
1591
	if (is_huge_zero_pmd(orig_pmd))
1592 1593
		goto out;

1594 1595 1596 1597 1598 1599
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1618
		split_huge_page(page);
1619
		unlock_page(page);
1620
		put_page(page);
1621 1622 1623 1624 1625 1626 1627 1628
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1629
		pmdp_invalidate(vma, addr, pmd);
1630 1631 1632 1633 1634 1635
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1636 1637

	mark_page_lazyfree(page);
1638
	ret = true;
1639 1640 1641 1642 1643 1644
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1645 1646 1647 1648 1649 1650
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1651
	mm_dec_nr_ptes(mm);
1652 1653
}

1654
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1655
		 pmd_t *pmd, unsigned long addr)
1656
{
1657
	pmd_t orig_pmd;
1658
	spinlock_t *ptl;
1659

1660
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1661

1662 1663
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1664 1665 1666 1667 1668 1669 1670
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1671 1672
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1673
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674
	if (vma_is_special_huge(vma)) {
1675 1676
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1677 1678
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1679
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1680
	} else if (is_huge_zero_pmd(orig_pmd)) {
1681
		zap_deposited_table(tlb->mm, pmd);
1682
		spin_unlock(ptl);
1683
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1684
	} else {
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1703
		if (PageAnon(page)) {
1704
			zap_deposited_table(tlb->mm, pmd);
1705 1706
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1707 1708
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1709
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1710
		}
1711

1712
		spin_unlock(ptl);
1713 1714
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1715
	}
1716
	return 1;
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1745
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1746
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1747
{
1748
	spinlock_t *old_ptl, *new_ptl;
1749 1750
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1751
	bool force_flush = false;
1752 1753 1754 1755 1756 1757 1758

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1759
		return false;
1760 1761
	}

1762 1763
	/*
	 * We don't have to worry about the ordering of src and dst
1764
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1765
	 */
1766 1767
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1768 1769 1770
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1771
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1772
		if (pmd_present(pmd))
1773
			force_flush = true;
1774
		VM_BUG_ON(!pmd_none(*new_pmd));
1775

1776
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1777
			pgtable_t pgtable;
1778 1779 1780
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1781 1782
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1783 1784
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1785 1786
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1787
		spin_unlock(old_ptl);
1788
		return true;
1789
	}
1790
	return false;
1791 1792
}

1793 1794 1795 1796 1797 1798
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1799
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1800
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1801 1802
{
	struct mm_struct *mm = vma->vm_mm;
1803
	spinlock_t *ptl;
1804 1805 1806
	pmd_t entry;
	bool preserve_write;
	int ret;
1807
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1808 1809
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1810

1811
	ptl = __pmd_trans_huge_lock(pmd, vma);
1812 1813
	if (!ptl)
		return 0;
1814

1815 1816
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1831 1832
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1833 1834 1835 1836 1837 1838
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1839 1840 1841 1842 1843 1844 1845
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1846

1847 1848 1849
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1850
	/*
1851
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1852
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1853
	 * which is also under mmap_read_lock(mm):
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1871
	entry = pmdp_invalidate(vma, addr, pmd);
1872

1873 1874 1875
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1887 1888 1889 1890 1891
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1892 1893 1894 1895
	return ret;
}

/*
1896
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1897
 *
1898 1899
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1900
 */
1901
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1902
{
1903 1904
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1905 1906
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1907 1908 1909
		return ptl;
	spin_unlock(ptl);
	return NULL;
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1944
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1945
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1946
	if (vma_is_special_huge(vma)) {
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1964
	count_vm_event(THP_SPLIT_PUD);
1965 1966 1967 1968 1969 1970 1971 1972

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1973
	struct mmu_notifier_range range;
1974

1975
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1976
				address & HPAGE_PUD_MASK,
1977 1978 1979
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1980 1981
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1982
	__split_huge_pud_locked(vma, pud, range.start);
1983 1984 1985

out:
	spin_unlock(ptl);
1986 1987 1988 1989
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1990
	mmu_notifier_invalidate_range_only_end(&range);
1991 1992 1993
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1994 1995 1996 1997 1998 1999 2000 2001
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2002 2003 2004 2005 2006 2007
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2008
	 * See Documentation/vm/mmu_notifier.rst
2009 2010
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2029
		unsigned long haddr, bool freeze)
2030 2031 2032 2033
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2034
	pmd_t old_pmd, _pmd;
2035
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2036
	unsigned long addr;
2037 2038 2039 2040 2041
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2042 2043
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2044 2045 2046

	count_vm_event(THP_SPLIT_PMD);

2047 2048
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2049 2050 2051 2052 2053 2054
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2055
		if (vma_is_special_huge(vma))
2056 2057
			return;
		page = pmd_page(_pmd);
2058 2059
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2060 2061 2062 2063
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2064
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2065
		return;
2066
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2067 2068 2069 2070 2071 2072 2073 2074 2075
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2076 2077 2078
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2087 2088
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2102
	if (unlikely(pmd_migration)) {
2103 2104
		swp_entry_t entry;

2105
		entry = pmd_to_swp_entry(old_pmd);
2106
		page = pfn_to_page(swp_offset(entry));
2107 2108 2109
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2110
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2111
	} else {
2112
		page = pmd_page(old_pmd);
2113 2114 2115 2116 2117
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2118
		uffd_wp = pmd_uffd_wp(old_pmd);
2119
	}
2120
	VM_BUG_ON_PAGE(!page_count(page), page);
2121
	page_ref_add(page, HPAGE_PMD_NR - 1);
2122

2123 2124 2125 2126
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2127 2128 2129
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2130
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2131 2132 2133 2134 2135 2136
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2137
		if (freeze || pmd_migration) {
2138 2139 2140
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2141 2142
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2143 2144
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2145
		} else {
2146
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2147
			entry = maybe_mkwrite(entry, vma);
2148 2149 2150 2151
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2152 2153
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2154 2155
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2156
		}
2157
		pte = pte_offset_map(&_pmd, addr);
2158
		BUG_ON(!pte_none(*pte));
2159
		set_pte_at(mm, addr, pte, entry);
2160
		if (!pmd_migration)
2161
			atomic_inc(&page[i]._mapcount);
2162
		pte_unmap(pte);
2163 2164
	}

2165 2166 2167 2168 2169 2170 2171
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2172
			for (i = 0; i < HPAGE_PMD_NR; i++)
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
			__dec_lruvec_page_state(page, NR_ANON_THPS);
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2185
		}
2186
		unlock_page_memcg(page);
2187 2188 2189 2190
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2191 2192

	if (freeze) {
2193
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2194 2195 2196 2197
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2198 2199 2200
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2201
		unsigned long address, bool freeze, struct page *page)
2202 2203
{
	spinlock_t *ptl;
2204
	struct mmu_notifier_range range;
2205
	bool do_unlock_page = false;
2206
	pmd_t _pmd;
2207

2208
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2209
				address & HPAGE_PMD_MASK,
2210 2211 2212
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2213 2214 2215 2216 2217 2218

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2219 2220 2221 2222 2223
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2224

2225
repeat:
2226
	if (pmd_trans_huge(*pmd)) {
2227 2228
		if (!page) {
			page = pmd_page(*pmd);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2249 2250
					put_page(page);
				}
2251
				do_unlock_page = true;
2252 2253
			}
		}
2254
		if (PageMlocked(page))
2255
			clear_page_mlock(page);
2256
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2257
		goto out;
2258
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2259
out:
2260
	spin_unlock(ptl);
2261
	if (do_unlock_page)
2262
		unlock_page(page);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2276
	mmu_notifier_invalidate_range_only_end(&range);
2277 2278
}

2279 2280
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2281
{
2282
	pgd_t *pgd;
2283
	p4d_t *p4d;
2284
	pud_t *pud;
2285 2286
	pmd_t *pmd;

2287
	pgd = pgd_offset(vma->vm_mm, address);
2288 2289 2290
	if (!pgd_present(*pgd))
		return;

2291 2292 2293 2294 2295
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2296 2297 2298 2299
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2300

2301
	__split_huge_pmd(vma, pmd, address, freeze, page);
2302 2303
}

2304
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2317
		split_huge_pmd_address(vma, start, false, NULL);
2318 2319 2320 2321 2322 2323 2324 2325 2326

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2327
		split_huge_pmd_address(vma, end, false, NULL);
2328 2329 2330

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2331
	 * vm_next->vm_start isn't hpage aligned and it could previously
2332 2333 2334 2335 2336
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2337
		nstart += adjust_next;
2338 2339 2340
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2341
			split_huge_pmd_address(next, nstart, false, NULL);
2342 2343
	}
}
2344

2345
static void unmap_page(struct page *page)
2346
{
2347
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2348
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2349
	bool unmap_success;
2350 2351 2352

	VM_BUG_ON_PAGE(!PageHead(page), page);

2353
	if (PageAnon(page))
2354
		ttu_flags |= TTU_SPLIT_FREEZE;
2355

M
Minchan Kim 已提交
2356 2357
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2358 2359
}

2360
static void remap_page(struct page *page, unsigned int nr)
2361
{
2362
	int i;
2363 2364 2365
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2366
		for (i = 0; i < nr; i++)
2367 2368
			remove_migration_ptes(page + i, page + i, true);
	}
2369 2370
}

2371
static void lru_add_page_tail(struct page *head, struct page *tail,
2372 2373
		struct lruvec *lruvec, struct list_head *list)
{
2374 2375 2376
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2377
	lockdep_assert_held(&lruvec->lru_lock);
2378

A
Alex Shi 已提交
2379
	if (list) {
2380
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2381
		VM_WARN_ON(PageLRU(head));
2382 2383
		get_page(tail);
		list_add_tail(&tail->lru, list);
2384
	} else {
A
Alex Shi 已提交
2385 2386 2387 2388
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2389 2390 2391
	}
}

2392
static void __split_huge_page_tail(struct page *head, int tail,
2393 2394 2395 2396
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2397
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2398 2399

	/*
2400 2401 2402
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2403
	 * for example lock_page() which set PG_waiters.
2404 2405 2406 2407 2408
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2409
			 (1L << PG_swapcache) |
2410 2411 2412
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2413
			 (1L << PG_workingset) |
2414
			 (1L << PG_locked) |
2415
			 (1L << PG_unevictable) |
2416 2417 2418
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2419
			 (1L << PG_dirty)));
2420

2421 2422 2423 2424 2425 2426
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2427
	/* Page flags must be visible before we make the page non-compound. */
2428 2429
	smp_wmb();

2430 2431 2432 2433 2434 2435
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2436 2437
	clear_compound_head(page_tail);

2438 2439 2440 2441
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2442 2443 2444 2445 2446 2447
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2448 2449 2450 2451 2452 2453

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2454 2455 2456
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2457
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2458
		pgoff_t end)
2459 2460 2461
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2462 2463
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2464
	unsigned int nr = thp_nr_pages(head);
2465
	int i;
2466 2467 2468 2469

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2470 2471 2472 2473 2474 2475 2476 2477
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2478 2479
	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2480

2481
	for (i = nr - 1; i >= 1; i--) {
2482
		__split_huge_page_tail(head, i, lruvec, list);
2483 2484
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2485
			ClearPageDirty(head + i);
2486
			__delete_from_page_cache(head + i, NULL);
2487 2488
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2489
			put_page(head + i);
2490 2491 2492 2493 2494 2495
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2496 2497
		}
	}
2498 2499

	ClearPageCompound(head);
2500
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2501
	/* Caller disabled irqs, so they are still disabled here */
2502

2503
	split_page_owner(head, nr);
2504

2505 2506
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2507
		/* Additional pin to swap cache */
2508
		if (PageSwapCache(head)) {
2509
			page_ref_add(head, 2);
2510 2511
			xa_unlock(&swap_cache->i_pages);
		} else {
2512
			page_ref_inc(head);
2513
		}
2514
	} else {
M
Matthew Wilcox 已提交
2515
		/* Additional pin to page cache */
2516
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2517
		xa_unlock(&head->mapping->i_pages);
2518
	}
A
Alex Shi 已提交
2519
	local_irq_enable();
2520

2521
	remap_page(head, nr);
2522

H
Huang Ying 已提交
2523 2524 2525 2526 2527 2528
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2529
	for (i = 0; i < nr; i++) {
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2546 2547
int total_mapcount(struct page *page)
{
2548
	int i, compound, nr, ret;
2549 2550 2551 2552 2553 2554

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2555
	compound = compound_mapcount(page);
2556
	nr = compound_nr(page);
2557
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2558 2559
		return compound;
	ret = compound;
2560
	for (i = 0; i < nr; i++)
2561
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2562 2563
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2564
		return ret - compound * nr;
2565
	if (PageDoubleMap(page))
2566
		ret -= nr;
2567 2568 2569
	return ret;
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2611
	for (i = 0; i < thp_nr_pages(page); i++) {
2612 2613 2614 2615 2616 2617
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2618
		_total_mapcount -= thp_nr_pages(page);
2619 2620 2621 2622 2623 2624 2625 2626 2627
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2628 2629 2630 2631 2632
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2633
	/* Additional pins from page cache */
2634
	if (PageAnon(page))
2635
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2636
	else
2637
		extra_pins = thp_nr_pages(page);
2638 2639 2640 2641 2642
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2665
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2666 2667 2668
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2669
	pgoff_t end;
2670

2671
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2672 2673
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2674

2675
	if (PageWriteback(head))
2676 2677
		return -EBUSY;

2678 2679
	if (PageAnon(head)) {
		/*
2680
		 * The caller does not necessarily hold an mmap_lock that would
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2692
		end = -1;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2706 2707 2708 2709 2710 2711 2712 2713 2714

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2715 2716 2717
	}

	/*
2718
	 * Racy check if we can split the page, before unmap_page() will
2719 2720
	 * split PMDs
	 */
2721
	if (!can_split_huge_page(head, &extra_pins)) {
2722 2723 2724 2725
		ret = -EBUSY;
		goto out_unlock;
	}

2726
	unmap_page(head);
2727 2728
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

A
Alex Shi 已提交
2729 2730
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2731
	if (mapping) {
M
Matthew Wilcox 已提交
2732
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2733 2734

		/*
M
Matthew Wilcox 已提交
2735
		 * Check if the head page is present in page cache.
2736 2737
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2738 2739
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2740 2741 2742
			goto fail;
	}

2743
	/* Prevent deferred_split_scan() touching ->_refcount */
2744
	spin_lock(&ds_queue->split_queue_lock);
2745 2746
	count = page_count(head);
	mapcount = total_mapcount(head);
2747
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2748
		if (!list_empty(page_deferred_list(head))) {
2749
			ds_queue->split_queue_len--;
2750 2751
			list_del(page_deferred_list(head));
		}
2752
		spin_unlock(&ds_queue->split_queue_lock);
2753
		if (mapping) {
2754
			if (PageSwapBacked(head))
2755
				__dec_lruvec_page_state(head, NR_SHMEM_THPS);
2756
			else
2757
				__dec_lruvec_page_state(head, NR_FILE_THPS);
2758 2759
		}

A
Alex Shi 已提交
2760
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2761
		ret = 0;
2762
	} else {
2763 2764 2765 2766 2767 2768 2769 2770
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2771
		spin_unlock(&ds_queue->split_queue_lock);
2772
fail:		if (mapping)
M
Matthew Wilcox 已提交
2773
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2774
		local_irq_enable();
2775
		remap_page(head, thp_nr_pages(head));
2776 2777 2778 2779
		ret = -EBUSY;
	}

out_unlock:
2780 2781 2782 2783 2784 2785
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2786 2787 2788 2789
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2790 2791 2792

void free_transhuge_page(struct page *page)
{
2793
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2794 2795
	unsigned long flags;

2796
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797
	if (!list_empty(page_deferred_list(page))) {
2798
		ds_queue->split_queue_len--;
2799 2800
		list_del(page_deferred_list(page));
	}
2801
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 2803 2804 2805 2806
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2807 2808
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2809
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2810
#endif
2811 2812 2813 2814
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2828
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829
	if (list_empty(page_deferred_list(page))) {
2830
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 2832
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2833 2834 2835 2836 2837
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2838
	}
2839
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 2841 2842 2843 2844
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2845
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 2848 2849 2850 2851

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2852
	return READ_ONCE(ds_queue->split_queue_len);
2853 2854 2855 2856 2857
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2858
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 2861 2862 2863 2864
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2865 2866 2867 2868 2869
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2870
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871
	/* Take pin on all head pages to avoid freeing them under us */
2872
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2873 2874
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2875 2876 2877 2878
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2879
			list_del_init(page_deferred_list(page));
2880
			ds_queue->split_queue_len--;
2881
		}
2882 2883
		if (!--sc->nr_to_scan)
			break;
2884
	}
2885
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2886 2887 2888

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2889 2890
		if (!trylock_page(page))
			goto next;
2891 2892 2893 2894
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2895
next:
2896 2897 2898
		put_page(page);
	}

2899 2900 2901
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902

2903 2904 2905 2906
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2907
	if (!split && list_empty(&ds_queue->split_queue))
2908 2909
		return SHRINK_STOP;
	return split;
2910 2911 2912 2913 2914 2915
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2916 2917
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2918
};
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2944
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2957
	pr_info("%lu of %lu THP split\n", split, total);
2958 2959 2960

	return 0;
}
2961
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2962 2963 2964 2965
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2966 2967
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2968 2969 2970 2971
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2982
	pmd_t pmdswp;
2983 2984 2985 2986 2987

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2988
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2989 2990 2991
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2992 2993 2994 2995
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3015 3016
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3017
	if (is_write_migration_entry(entry))
3018
		pmde = maybe_pmd_mkwrite(pmde, vma);
3019 3020

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3021 3022 3023 3024
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3025
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3026
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3027 3028 3029 3030
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif