smu_v11_0.c 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/module.h>
25
#include <linux/pci.h>
26 27

#include "pp_debug.h"
28 29
#include "amdgpu.h"
#include "amdgpu_smu.h"
30
#include "smu_internal.h"
31
#include "atomfirmware.h"
32
#include "amdgpu_atomfirmware.h"
33
#include "smu_v11_0.h"
34
#include "soc15_common.h"
35
#include "atom.h"
36
#include "amd_pcie.h"
37 38 39

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
40 41
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
42
#include "asic_reg/nbio/nbio_7_4_offset.h"
43
#include "asic_reg/nbio/nbio_7_4_sh_mask.h"
44 45
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
46

47
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
48
MODULE_FIRMWARE("amdgpu/arcturus_smc.bin");
49
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
50
MODULE_FIRMWARE("amdgpu/navi14_smc.bin");
51
MODULE_FIRMWARE("amdgpu/navi12_smc.bin");
52

53
#define SMU11_VOLTAGE_SCALE 4
54

55 56 57 58 59 60 61 62
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

63
int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
64 65 66 67 68 69 70
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

71 72 73
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
74
	uint32_t cur_value, i, timeout = adev->usec_timeout * 10;
75

76
	for (i = 0; i < timeout; i++) {
77 78 79 80 81 82 83
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
84
	if (i == timeout)
85 86
		return -ETIME;

87
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
88 89
}

90
int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
91 92
{
	struct amdgpu_device *adev = smu->adev;
93 94 95 96 97
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
98 99 100 101 102

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

103
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
104 105 106 107

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
108 109
		pr_err("failed send message: %10s (%d) response %#x\n",
		       smu_get_message_name(smu, msg), index, ret);
110 111 112 113 114

	return ret;

}

115
int
116 117 118 119 120
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
121 122 123 124 125
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
126 127 128

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
129 130
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
131 132 133 134 135

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

136
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
137 138 139

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
140 141
		pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n",
		       smu_get_message_name(smu, msg), index, param, ret);
142 143 144 145

	return ret;
}

146
int smu_v11_0_init_microcode(struct smu_context *smu)
147 148
{
	struct amdgpu_device *adev = smu->adev;
149 150 151 152 153 154
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
155

156 157 158 159
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
160 161 162
	case CHIP_ARCTURUS:
		chip_name = "arcturus";
		break;
163 164 165
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
166 167 168
	case CHIP_NAVI14:
		chip_name = "navi14";
		break;
169 170 171
	case CHIP_NAVI12:
		chip_name = "navi12";
		break;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
206 207
}

208
int smu_v11_0_load_microcode(struct smu_context *smu)
209
{
210 211 212 213 214 215 216
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

217
	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

243 244 245
	return 0;
}

246
int smu_v11_0_check_fw_status(struct smu_context *smu)
247
{
248 249 250
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

251 252
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
253 254 255 256

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
257

258
	return -EIO;
259 260
}

261
int smu_v11_0_check_fw_version(struct smu_context *smu)
262
{
263 264 265
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
266 267
	int ret = 0;

268
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
269
	if (ret)
270
		return ret;
271

272 273 274 275
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

276 277 278 279
	switch (smu->adev->asic_type) {
	case CHIP_VEGA20:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_VG20;
		break;
280 281 282
	case CHIP_ARCTURUS:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_ARCT;
		break;
283 284 285 286 287 288 289
	case CHIP_NAVI10:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV10;
		break;
	case CHIP_NAVI14:
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_NV14;
		break;
	default:
290
		pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type);
291 292 293 294
		smu->smc_if_version = SMU11_DRIVER_IF_VERSION_INV;
		break;
	}

295 296 297 298 299 300 301 302
	/*
	 * 1. if_version mismatch is not critical as our fw is designed
	 * to be backward compatible.
	 * 2. New fw usually brings some optimizations. But that's visible
	 * only on the paired driver.
	 * Considering above, we just leave user a warning message instead
	 * of halt driver loading.
	 */
303
	if (if_version != smu->smc_if_version) {
304 305 306 307
		pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
			"smu fw version = 0x%08x (%d.%d.%d)\n",
			smu->smc_if_version, if_version,
			smu_version, smu_major, smu_minor, smu_debug);
308
		pr_warn("SMU driver if version not matched\n");
309 310
	}

311 312 313
	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

329 330
static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table,
				      uint32_t *size, uint32_t pptable_id)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

356
int smu_v11_0_setup_pptable(struct smu_context *smu)
357
{
358 359
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
360
	int ret, index;
361
	uint32_t size = 0;
362
	uint16_t atom_table_size;
363
	uint8_t frev, crev;
364
	void *table;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
385

386 387 388
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
389

390
		ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev,
391 392 393
					      (uint8_t **)&table);
		if (ret)
			return ret;
394
		size = atom_table_size;
395
	}
396

397 398 399 400
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
401 402 403 404

	return 0;
}

405 406 407 408 409 410 411
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

412
	return smu_alloc_dpm_context(smu);
413 414 415 416 417 418 419 420 421 422
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
423
	kfree(smu_dpm->golden_dpm_context);
424 425
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
426
	smu_dpm->dpm_context = NULL;
427
	smu_dpm->golden_dpm_context = NULL;
428
	smu_dpm->dpm_context_size = 0;
429 430
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
431 432 433 434

	return 0;
}

435
int smu_v11_0_init_smc_tables(struct smu_context *smu)
436 437 438
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
439
	int ret = 0;
440

441
	if (smu_table->tables)
442 443
		return -EINVAL;

444 445
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
446 447 448 449 450
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

451 452 453
	ret = smu_tables_init(smu, tables);
	if (ret)
		return ret;
454

455 456 457 458
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

459 460 461
	return 0;
}

462
int smu_v11_0_fini_smc_tables(struct smu_context *smu)
463 464
{
	struct smu_table_context *smu_table = &smu->smu_table;
465
	int ret = 0;
466

467
	if (!smu_table->tables)
468 469 470
		return -EINVAL;

	kfree(smu_table->tables);
471
	kfree(smu_table->metrics_table);
472
	smu_table->tables = NULL;
473 474
	smu_table->metrics_table = NULL;
	smu_table->metrics_time = 0;
475

476 477 478
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
479 480
	return 0;
}
481

482
int smu_v11_0_init_power(struct smu_context *smu)
483 484 485
{
	struct smu_power_context *smu_power = &smu->smu_power;

486 487
	if (!smu->pm_enabled)
		return 0;
488 489 490 491 492 493 494 495 496 497 498 499
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

	return 0;
}

500
int smu_v11_0_fini_power(struct smu_context *smu)
501 502 503
{
	struct smu_power_context *smu_power = &smu->smu_power;

504 505
	if (!smu->pm_enabled)
		return 0;
506 507 508 509 510 511 512 513 514 515
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

	kfree(smu_power->power_context);
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

571 572 573
	smu->smu_table.boot_values.format_revision = header->format_revision;
	smu->smu_table.boot_values.content_revision = header->content_revision;

574 575 576
	return 0;
}

577
int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if ((smu->smu_table.boot_values.format_revision == 3) &&
	    (smu->smu_table.boot_values.content_revision >= 2)) {
		memset(&input, 0, sizeof(input));
		input.clk_id = SMU11_SYSPLL1_0_FCLK_ID;
		input.syspll_id = SMU11_SYSPLL1_2_ID;
		input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
		index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
						    getsmuclockinfo);

		ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
						(uint32_t *)&input);
		if (ret)
			return -EINVAL;

		output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
		smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
	}

671 672 673
	return 0;
}

674
int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
675 676 677 678 679 680 681 682 683 684
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

685
	address = (uintptr_t)memory_pool->cpu_addr;
686 687 688 689
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
690
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
691 692 693 694
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
695
					  SMU_MSG_SetSystemVirtualDramAddrLow,
696 697 698 699 700 701 702 703
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

704
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
705 706 707
					  address_high);
	if (ret)
		return ret;
708
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
709 710 711
					  address_low);
	if (ret)
		return ret;
712
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
713 714 715 716 717 718 719
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

720
int smu_v11_0_check_pptable(struct smu_context *smu)
721 722 723 724 725 726 727
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

728
int smu_v11_0_parse_pptable(struct smu_context *smu)
729 730 731 732
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
733
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
734 735 736 737

	if (table_context->driver_pptable)
		return -EINVAL;

738
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
739 740 741 742 743

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
744 745 746 747
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
748 749 750 751

	return ret;
}

752
int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
753
{
754
	int ret;
755

756
	ret = smu_set_default_dpm_table(smu);
757

758
	return ret;
759 760
}

761
int smu_v11_0_write_pptable(struct smu_context *smu)
762
{
763
	struct smu_table_context *table_context = &smu->smu_table;
764 765
	int ret = 0;

766
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0,
767
			       table_context->driver_pptable, true);
768 769 770 771

	return ret;
}

772
int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
773 774 775 776 777 778 779 780 781 782 783
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

784
int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
785 786 787
{
	struct smu_table_context *table_context = &smu->smu_table;

788 789
	if (!smu->pm_enabled)
		return 0;
790 791 792
	if (!table_context)
		return -EINVAL;

793
	return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100);
794 795
}

796
int smu_v11_0_set_tool_table_location(struct smu_context *smu)
797 798
{
	int ret = 0;
799
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
800 801 802

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
803
				SMU_MSG_SetToolsDramAddrHigh,
804 805 806
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
807
				SMU_MSG_SetToolsDramAddrLow,
808 809 810 811 812 813
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

814
int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count)
815 816
{
	int ret = 0;
817 818 819

	if (!smu->pm_enabled)
		return ret;
820

821
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count);
822 823 824
	return ret;
}

825

826
int smu_v11_0_set_allowed_mask(struct smu_context *smu)
827 828 829 830 831
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

832
	mutex_lock(&feature->mutex);
833
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
834
		goto failed;
835 836 837 838 839 840

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
841
		goto failed;
842 843 844 845

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
846
		goto failed;
847

848 849
failed:
	mutex_unlock(&feature->mutex);
850 851 852
	return ret;
}

853
int smu_v11_0_get_enabled_mask(struct smu_context *smu,
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

882
int smu_v11_0_system_features_control(struct smu_context *smu,
883
					     bool en)
884 885 886 887 888
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

889 890 891 892 893 894 895
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

896 897 898 899 900 901 902 903 904 905 906 907
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

908
int smu_v11_0_notify_display_change(struct smu_context *smu)
909 910 911
{
	int ret = 0;

912 913
	if (!smu->pm_enabled)
		return ret;
914 915 916
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
917 918 919 920

	return ret;
}

921 922
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
923
				    enum smu_clk_type clock_select)
924 925
{
	int ret = 0;
926
	int clk_id;
927

928 929
	if (!smu->pm_enabled)
		return ret;
930

931 932 933 934
	if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
	    (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0))
		return 0;

935 936 937 938
	clk_id = smu_clk_get_index(smu, clock_select);
	if (clk_id < 0)
		return -EINVAL;

939
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
940
					  clk_id << 16);
941 942 943 944 945 946 947 948 949 950 951 952 953 954
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
955
					  clk_id << 16);
956 957 958 959 960 961 962 963 964 965
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

966
int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

982
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
983 984
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
985
							  SMU_UCLK);
986 987 988 989 990 991 992
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

993
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
994 995
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
996
							  SMU_SOCCLK);
997 998 999 1000 1001 1002 1003
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

1004
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1005 1006
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
1007
							  SMU_DCEFCLK);
1008 1009 1010 1011 1012 1013 1014 1015
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1016
							  SMU_DISPCLK);
1017 1018 1019 1020 1021 1022 1023
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1024
							  SMU_PHYCLK);
1025 1026 1027 1028 1029 1030 1031
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1032
							  SMU_PIXCLK);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1046
int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
1047
{
1048
	int ret = 0;
1049

1050 1051 1052
	if (n > smu->default_power_limit) {
		pr_err("New power limit is over the max allowed %d\n",
				smu->default_power_limit);
1053
		return -EINVAL;
1054 1055
	}

1056 1057 1058
	if (n == 0)
		n = smu->default_power_limit;

1059 1060 1061
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		pr_err("Setting new power limit is not supported!\n");
		return -EOPNOTSUPP;
1062 1063
	}

1064
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1065
	if (ret) {
1066
		pr_err("[%s] Set power limit Failed!\n", __func__);
1067 1068
		return ret;
	}
1069
	smu->power_limit = n;
1070

1071
	return 0;
1072 1073
}

1074
int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
1075 1076
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1077 1078
{
	int ret = 0;
1079
	uint32_t freq = 0;
1080
	int asic_clk_id;
1081

1082
	if (clk_id >= SMU_CLK_COUNT || !value)
1083 1084
		return -EINVAL;

1085 1086 1087 1088
	asic_clk_id = smu_clk_get_index(smu, clk_id);
	if (asic_clk_id < 0)
		return -EINVAL;

1089
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
1090
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0)
1091 1092 1093
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
1094
						  (asic_clk_id << 16));
1095 1096
		if (ret)
			return ret;
1097

1098 1099 1100 1101
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1102 1103 1104 1105 1106 1107 1108

	freq *= 100;
	*value = freq;

	return ret;
}

1109
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
1110
				       struct smu_temperature_range range)
1111 1112
{
	struct amdgpu_device *adev = smu->adev;
1113 1114
	int low = SMU_THERMAL_MINIMUM_ALERT_TEMP;
	int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP;
1115 1116
	uint32_t val;

1117 1118 1119 1120
	low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
			range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
	high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
			range.max / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1121

1122 1123 1124 1125 1126 1127
	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1128 1129
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1130 1131
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1132 1133 1134 1135 1136 1137 1138
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1153
int smu_v11_0_start_thermal_control(struct smu_context *smu)
1154 1155
{
	int ret = 0;
1156
	struct smu_temperature_range range;
1157 1158
	struct amdgpu_device *adev = smu->adev;

1159 1160
	if (!smu->pm_enabled)
		return ret;
1161

1162 1163
	memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));

1164
	ret = smu_get_thermal_temperature_range(smu, &range);
1165 1166
	if (ret)
		return ret;
1167 1168

	if (smu->smu_table.thermal_controller_type) {
1169
		ret = smu_v11_0_set_thermal_range(smu, range);
1170 1171 1172 1173 1174 1175
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1176

1177
		ret = smu_set_thermal_fan_table(smu);
1178 1179 1180 1181
		if (ret)
			return ret;
	}

1182 1183 1184 1185 1186 1187 1188 1189 1190
	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1191 1192 1193 1194

	return ret;
}

1195
int smu_v11_0_stop_thermal_control(struct smu_context *smu)
1196 1197 1198 1199 1200 1201 1202 1203
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0);

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1228
int smu_v11_0_read_sensor(struct smu_context *smu,
1229 1230 1231 1232
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
1233 1234 1235 1236

	if(!data || !size)
		return -EINVAL;

1237
	switch (sensor) {
1238
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1239
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1240 1241 1242
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1243
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1244
		*size = 4;
1245
		break;
1246 1247 1248
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1249
		break;
1250 1251 1252 1253
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1254
	default:
1255
		ret = smu_common_read_sensor(smu, sensor, data, size);
1256 1257 1258 1259 1260 1261 1262 1263 1264
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1265
int
1266 1267 1268 1269 1270 1271
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1272
	enum smu_clk_type clk_select = 0;
1273 1274
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1275 1276
	if (!smu->pm_enabled)
		return -EINVAL;
1277

1278
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1279
		smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1280 1281
		switch (clk_type) {
		case amd_pp_dcef_clock:
1282
			clk_select = SMU_DCEFCLK;
1283 1284
			break;
		case amd_pp_disp_clock:
1285
			clk_select = SMU_DISPCLK;
1286 1287
			break;
		case amd_pp_pixel_clock:
1288
			clk_select = SMU_PIXCLK;
1289 1290
			break;
		case amd_pp_phy_clock:
1291
			clk_select = SMU_PHYCLK;
1292
			break;
1293 1294 1295
		case amd_pp_mem_clock:
			clk_select = SMU_UCLK;
			break;
1296 1297 1298 1299 1300 1301 1302 1303 1304
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

1305 1306 1307
		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
			return 0;

1308
		ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0);
1309 1310 1311

		if(clk_select == SMU_UCLK)
			smu->hard_min_uclk_req_from_dal = clk_freq;
1312 1313 1314 1315 1316 1317
	}

failed:
	return ret;
}

1318
int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
1319 1320
{
	int ret = 0;
1321
	struct amdgpu_device *adev = smu->adev;
1322

1323 1324 1325 1326
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
1327
	case CHIP_NAVI14:
1328
	case CHIP_NAVI12:
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		break;
	default:
		break;
	}
1339 1340 1341 1342

	return ret;
}

1343
uint32_t
1344 1345
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1346
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1347 1348 1349 1350 1351 1352
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
1353
smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1354 1355 1356
{
	int ret = 0;

1357
	if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1358 1359
		return 0;

1360
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1361 1362
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
1363
		       __func__, (auto_fan_control ? "Start" : "Stop"));
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

1383
int
1384 1385 1386
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
1387
	uint32_t duty100, duty;
1388 1389 1390 1391 1392
	uint64_t tmp64;

	if (speed > 100)
		speed = 100;

1393
	if (smu_v11_0_auto_fan_control(smu, 0))
1394
		return -EINVAL;
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1412
int
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
1423
		ret = smu_v11_0_auto_fan_control(smu, 0);
1424 1425
		break;
	case AMD_FAN_CTRL_AUTO:
1426
		ret = smu_v11_0_auto_fan_control(smu, 1);
1427 1428 1429 1430 1431 1432
		break;
	default:
		break;
	}

	if (ret) {
1433
		pr_err("[%s]Set fan control mode failed!", __func__);
1434 1435 1436 1437 1438 1439
		return -EINVAL;
	}

	return ret;
}

1440
int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
1441 1442 1443 1444 1445 1446 1447 1448 1449
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;

	if (!speed)
		return -EINVAL;

1450
	ret = smu_v11_0_auto_fan_control(smu, 0);
1451
	if (ret)
1452
		return ret;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

	return ret;
}

1466 1467 1468
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1469
int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
1470 1471
				     uint32_t pstate)
{
1472 1473 1474 1475 1476
	int ret = 0;
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	return ret;
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
#define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
#define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */

static int smu_v11_0_irq_process(struct amdgpu_device *adev,
				 struct amdgpu_irq_src *source,
				 struct amdgpu_iv_entry *entry)
{
	uint32_t client_id = entry->client_id;
	uint32_t src_id = entry->src_id;

	if (client_id == SOC15_IH_CLIENTID_THM) {
		switch (src_id) {
		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;
		default:
			pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n",
				src_id,
				PCI_BUS_NUM(adev->pdev->devfn),
				PCI_SLOT(adev->pdev->devfn),
				PCI_FUNC(adev->pdev->devfn));
		break;

		}
	}

	return 0;
}

static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs =
{
	.process = smu_v11_0_irq_process,
};

1522
int smu_v11_0_register_irq_handler(struct smu_context *smu)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_irq_src *irq_src = smu->irq_source;
	int ret = 0;

	/* already register */
	if (irq_src)
		return 0;

	irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
	if (!irq_src)
		return -ENOMEM;
	smu->irq_source = irq_src;

	irq_src->funcs = &smu_v11_0_irq_funcs;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_L2H,
				irq_src);
	if (ret)
		return ret;

	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
				THM_11_0__SRCID__THM_DIG_THERM_H2L,
				irq_src);
	if (ret)
		return ret;

	return ret;
}

1554
int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		struct pp_smu_nv_clock_table *max_clocks)
{
	struct smu_table_context *table_context = &smu->smu_table;
	struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL;

	if (!max_clocks || !table_context->max_sustainable_clocks)
		return -EINVAL;

	sustainable_clocks = table_context->max_sustainable_clocks;

	max_clocks->dcfClockInKhz =
			(unsigned int) sustainable_clocks->dcef_clock * 1000;
	max_clocks->displayClockInKhz =
			(unsigned int) sustainable_clocks->display_clock * 1000;
	max_clocks->phyClockInKhz =
			(unsigned int) sustainable_clocks->phy_clock * 1000;
	max_clocks->pixelClockInKhz =
			(unsigned int) sustainable_clocks->pixel_clock * 1000;
	max_clocks->uClockInKhz =
			(unsigned int) sustainable_clocks->uclock * 1000;
	max_clocks->socClockInKhz =
			(unsigned int) sustainable_clocks->soc_clock * 1000;
	max_clocks->dscClockInKhz = 0;
	max_clocks->dppClockInKhz = 0;
	max_clocks->fabricClockInKhz = 0;

	return 0;
}

1584
int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu)
1585 1586 1587 1588 1589 1590 1591 1592
{
	int ret = 0;

	ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME);

	return ret;
}

1593 1594 1595 1596 1597
static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq)
{
	return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq);
}

1598
bool smu_v11_0_baco_is_support(struct smu_context *smu)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
{
	struct amdgpu_device *adev = smu->adev;
	struct smu_baco_context *smu_baco = &smu->smu_baco;
	uint32_t val;
	bool baco_support;

	mutex_lock(&smu_baco->mutex);
	baco_support = smu_baco->platform_support;
	mutex_unlock(&smu_baco->mutex);

	if (!baco_support)
		return false;

	if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT))
		return false;

	val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
	if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK)
		return true;

	return false;
}

1622
enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu)
1623 1624
{
	struct smu_baco_context *smu_baco = &smu->smu_baco;
1625
	enum smu_baco_state baco_state;
1626 1627 1628 1629 1630 1631 1632 1633

	mutex_lock(&smu_baco->mutex);
	baco_state = smu_baco->state;
	mutex_unlock(&smu_baco->mutex);

	return baco_state;
}

1634
int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
{

	struct smu_baco_context *smu_baco = &smu->smu_baco;
	int ret = 0;

	if (smu_v11_0_baco_get_state(smu) == state)
		return 0;

	mutex_lock(&smu_baco->mutex);

	if (state == SMU_BACO_STATE_ENTER)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO);
	else
		ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco);
	if (ret)
		goto out;

	smu_baco->state = state;
out:
	mutex_unlock(&smu_baco->mutex);
	return ret;
}

1658
int smu_v11_0_baco_reset(struct smu_context *smu)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	int ret = 0;

	ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO);
	if (ret)
		return ret;

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER);
	if (ret)
		return ret;

	msleep(10);

	ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT);
	if (ret)
		return ret;

	return ret;
}

1679
int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
						 uint32_t *min, uint32_t *max)
{
	int ret = 0, clk_id = 0;
	uint32_t param = 0;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0) {
		ret = -EINVAL;
		goto failed;
	}
	param = (clk_id & 0xffff) << 16;

	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, max);
		if (ret)
			goto failed;
	}

	if (min) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
		if (ret)
			goto failed;
		ret = smu_read_smc_arg(smu, min);
		if (ret)
			goto failed;
	}

failed:
	return ret;
}

1714
int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type,
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
						  param);
		if (ret)
			return ret;
	}

	return ret;
}

1743
int smu_v11_0_override_pcie_parameters(struct smu_context *smu)
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t pcie_gen = 0, pcie_width = 0;
	int ret;

	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
		pcie_gen = 3;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
		pcie_gen = 2;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
		pcie_gen = 1;
	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
		pcie_gen = 0;

	/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
	 * Bit 15:8:  PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
	 * Bit 7:0:   PCIE lane width, 1 to 7 corresponds is x1 to x32
	 */
	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
		pcie_width = 6;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
		pcie_width = 5;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
		pcie_width = 4;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
		pcie_width = 3;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
		pcie_width = 2;
	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
		pcie_width = 1;

	ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width);

	if (ret)
		pr_err("[%s] Attempt to override pcie params failed!\n", __func__);

	return ret;

}