ohci.c 102.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
45
#include <linux/workqueue.h>
A
Andrew Morton 已提交
46

S
Stefan Richter 已提交
47
#include <asm/byteorder.h>
S
Stefan Richter 已提交
48
#include <asm/page.h>
49
#include <asm/system.h>
50

51 52 53 54
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

55 56
#include "core.h"
#include "ohci.h"
57

58 59 60 61 62 63 64 65 66 67 68 69 70
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
71 72 73 74 75 76 77 78 79 80

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

81 82 83 84
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
85

86 87 88 89 90 91 92 93
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94

95 96
struct ar_context {
	struct fw_ohci *ohci;
97 98 99 100
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
101
	void *pointer;
102
	unsigned int last_buffer_index;
103
	u32 regs;
104 105 106
	struct tasklet_struct tasklet;
};

107 108 109 110 111
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
112 113 114 115 116 117 118 119 120 121 122 123 124

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

125
struct context {
S
Stefan Richter 已提交
126
	struct fw_ohci *ohci;
127
	u32 regs;
128
	int total_allocation;
129
	u32 current_bus;
130
	bool running;
131
	bool flushing;
S
Stefan Richter 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
157 158 159

	descriptor_callback_t callback;

S
Stefan Richter 已提交
160
	struct tasklet_struct tasklet;
161 162
};

163 164 165 166 167 168
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 170 171

struct iso_context {
	struct fw_iso_context base;
172
	struct context context;
173
	int excess_bytes;
174 175
	void *header;
	size_t header_length;
176 177 178

	u8 sync;
	u8 tags;
179 180 181 182 183 184 185 186
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
187
	int node_id;
188
	int generation;
189
	int request_generation;	/* for timestamping incoming requests */
190
	unsigned quirks;
191
	unsigned int pri_req_max;
192
	u32 bus_time;
193
	bool is_root;
194
	bool csr_state_setclear_abdicate;
195 196
	int n_ir;
	int n_it;
197 198 199 200
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
201 202
	spinlock_t lock;

203 204
	struct mutex phy_reg_mutex;

205 206 207
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

208 209
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
210 211
	struct context at_request_ctx;
	struct context at_response_ctx;
212

213
	u32 it_context_support;
214
	u32 it_context_mask;     /* unoccupied IT contexts */
215
	struct iso_context *it_context_list;
216
	u64 ir_context_channels; /* unoccupied channels */
217
	u32 ir_context_support;
218
	u32 ir_context_mask;     /* unoccupied IR contexts */
219
	struct iso_context *ir_context_list;
220 221
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
222 223 224 225 226 227 228 229 230

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
231
	struct work_struct bus_reset_work;
232 233

	u32 self_id_buffer[512];
234 235
};

A
Adrian Bunk 已提交
236
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
237 238 239 240
{
	return container_of(card, struct fw_ohci, card);
}

241 242 243 244 245 246
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
247 248 249 250 251 252

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

253
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
254 255 256 257 258 259
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
260
#define OHCI_TCODE_PHY_PACKET		0x0e
261
#define OHCI_VERSION_1_1		0x010010
262

263 264
static char ohci_driver_name[] = KBUILD_MODNAME;

265
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
266
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268 269
#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
271

272 273 274
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
275
#define QUIRK_NO_1394A			8
276
#define QUIRK_NO_MSI			16
277
#define QUIRK_TI_SLLZ059		32
278 279 280

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
281
	unsigned short vendor, device, revision, flags;
282
} ohci_quirks[] = {
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

298 299 300
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

301 302 303 304 305 306
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

307 308 309 310 311 312
	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},

313 314 315 316 317
	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
318 319
};

320 321 322 323 324 325 326
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
327
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
328
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
329
	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
330 331
	")");

332
#define OHCI_PARAM_DEBUG_AT_AR		1
333
#define OHCI_PARAM_DEBUG_SELFIDS	2
334 335
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
336

337 338
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

339 340 341 342
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
343 344 345
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
346 347
	", or a combination, or all = -1)");

348
static void log_irqs(struct fw_ohci *ohci, u32 evt)
349
{
350 351 352 353 354 355
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
356 357
		return;

358 359
	dev_notice(ohci->card.device,
	    "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
360 361 362 363 364 365 366 367 368
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
369
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
370
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
371
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
372
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
373 374 375 376 377
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
378 379
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
380
		    OHCI1394_regAccessFail | OHCI1394_busReset)
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

398
static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
399
{
400 401
	u32 *s;

402 403 404
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

405 406 407
	dev_notice(ohci->card.device,
		   "%d selfIDs, generation %d, local node ID %04x\n",
		   self_id_count, generation, ohci->node_id);
408

409
	for (s = ohci->self_id_buffer; self_id_count--; ++s)
410
		if ((*s & 1 << 23) == 0)
411 412
			dev_notice(ohci->card.device,
			    "selfID 0: %08x, phy %d [%c%c%c] "
413 414 415 416 417
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
418
		else
419 420
			dev_notice(ohci->card.device,
			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
421 422 423
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

456 457
static void log_ar_at_event(struct fw_ohci *ohci,
			    char dir, int speed, u32 *header, int evt)
458 459 460 461 462 463 464 465 466 467
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

468
	if (evt == OHCI1394_evt_bus_reset) {
469 470 471
		dev_notice(ohci->card.device,
			   "A%c evt_bus_reset, generation %d\n",
			   dir, (header[2] >> 16) & 0xff);
472 473 474
		return;
	}

475 476 477 478 479 480 481 482 483 484 485 486 487 488
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
489
	case 0xa:
490 491 492
		dev_notice(ohci->card.device,
			   "A%c %s, %s\n",
			   dir, evts[evt], tcodes[tcode]);
493
		break;
494
	case 0xe:
495 496 497
		dev_notice(ohci->card.device,
			   "A%c %s, PHY %08x %08x\n",
			   dir, evts[evt], header[1], header[2]);
498
		break;
499
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
500 501 502 503 504 505 506
		dev_notice(ohci->card.device,
			   "A%c spd %x tl %02x, "
			   "%04x -> %04x, %s, "
			   "%s, %04x%08x%s\n",
			   dir, speed, header[0] >> 10 & 0x3f,
			   header[1] >> 16, header[0] >> 16, evts[evt],
			   tcodes[tcode], header[1] & 0xffff, header[2], specific);
507 508
		break;
	default:
509 510 511 512 513 514 515
		dev_notice(ohci->card.device,
			   "A%c spd %x tl %02x, "
			   "%04x -> %04x, %s, "
			   "%s%s\n",
			   dir, speed, header[0] >> 10 & 0x3f,
			   header[1] >> 16, header[0] >> 16, evts[evt],
			   tcodes[tcode], specific);
516 517 518 519 520
	}
}

#else

521
#define param_debug 0
522 523 524
static inline void log_irqs(struct fw_ohci *ohci, u32 evt) {}
static inline void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) {}
static inline void log_ar_at_event(struct fw_ohci *ohci, char dir, int speed, u32 *header, int evt) {}
525 526 527

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
528
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
529 530 531 532
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
533
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
534 535 536 537
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
538
static inline void flush_writes(const struct fw_ohci *ohci)
539 540 541 542 543
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

544 545 546 547 548 549
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
550
static int read_phy_reg(struct fw_ohci *ohci, int addr)
551
{
552
	u32 val;
553
	int i;
554 555

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
556
	for (i = 0; i < 3 + 100; i++) {
557
		val = reg_read(ohci, OHCI1394_PhyControl);
558 559 560
		if (!~val)
			return -ENODEV; /* Card was ejected. */

561 562 563
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

564 565 566 567 568 569
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
570
	}
571
	dev_err(ohci->card.device, "failed to read phy reg\n");
572

573 574
	return -EBUSY;
}
575

576 577 578
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
579 580

	reg_write(ohci, OHCI1394_PhyControl,
581
		  OHCI1394_PhyControl_Write(addr, val));
582
	for (i = 0; i < 3 + 100; i++) {
583
		val = reg_read(ohci, OHCI1394_PhyControl);
584 585 586
		if (!~val)
			return -ENODEV; /* Card was ejected. */

587 588
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
589

590 591
		if (i >= 3)
			msleep(1);
592
	}
593
	dev_err(ohci->card.device, "failed to write phy reg\n");
594 595

	return -EBUSY;
596 597
}

598 599
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
600
{
601
	int ret = read_phy_reg(ohci, addr);
602 603
	if (ret < 0)
		return ret;
604

605 606 607 608 609 610 611
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

612
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
613 614
}

615
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
616
{
617
	int ret;
618

619
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
620 621
	if (ret < 0)
		return ret;
622

623
	return read_phy_reg(ohci, addr);
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
649 650
}

651 652 653 654 655 656
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
657
{
658
	struct descriptor *d;
659

660 661 662 663
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
664

665
	wmb(); /* finish init of new descriptors before branch_address update */
666 667 668 669
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
670

671
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
672 673
}

674
static void ar_context_release(struct ar_context *ctx)
675
{
676
	unsigned int i;
677

678 679
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
680

681 682 683 684 685 686 687
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
688 689
}

690
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
691
{
692
	struct fw_ohci *ohci = ctx->ohci;
693

694 695 696 697 698 699
	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ohci);

		dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
			error_msg);
700
	}
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
797 798
}

799 800
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
801
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
802 803 804 805
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

806
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
807 808
{
	struct fw_ohci *ohci = ctx->ohci;
809 810
	struct fw_packet p;
	u32 status, length, tcode;
811
	int evt;
812

813 814 815
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
816 817 818 819 820

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
821
		p.header[3] = (__force __u32) buffer[3];
822
		p.header_length = 16;
823
		p.payload_length = 0;
824 825 826
		break;

	case TCODE_READ_BLOCK_REQUEST :
827
		p.header[3] = cond_le32_to_cpu(buffer[3]);
828 829 830 831 832
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
833 834 835
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
836
		p.header[3] = cond_le32_to_cpu(buffer[3]);
837
		p.header_length = 16;
838
		p.payload_length = p.header[3] >> 16;
839 840 841 842
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
843 844 845 846
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
847
	case OHCI_TCODE_PHY_PACKET:
848
		p.header_length = 12;
849
		p.payload_length = 0;
850
		break;
851 852

	default:
853 854
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
855
	}
856

857 858 859 860
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
861
	status = cond_le32_to_cpu(buffer[length]);
862
	evt    = (status >> 16) & 0x1f;
863

864
	p.ack        = evt - 16;
865 866 867
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
868

869
	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
870

871
	/*
872 873 874 875 876 877 878 879 880
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
881 882 883 884 885
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
886
	 * request.
887 888 889
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
890
	 * at a slightly incorrect time (in bus_reset_work).
891
	 */
892
	if (evt == OHCI1394_evt_bus_reset) {
893
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
894 895
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
896
		fw_core_handle_request(&ohci->card, &p);
897
	} else {
898
		fw_core_handle_response(&ohci->card, &p);
899
	}
900

901 902
	return buffer + length + 1;
}
903

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

932 933 934
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
935 936
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
937

938 939 940
	p = ctx->pointer;
	if (!p)
		return;
941

942 943 944 945
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
946

947
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
948
		/*
949 950 951 952
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
953
		 */
954 955 956 957 958 959 960
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
961

962 963 964 965 966 967
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
968

969 970
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
971

972
	return;
973

974 975
error:
	ctx->pointer = NULL;
976 977
}

978 979
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
980
{
981 982 983 984
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
985

986 987
	ctx->regs        = regs;
	ctx->ohci        = ohci;
988 989
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1009
				 -1, PAGE_KERNEL);
1010 1011 1012
	if (!ctx->buffer)
		goto out_of_memory;

1013 1014
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
1026

1027
	return 0;
1028 1029 1030 1031 1032

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1033 1034 1035 1036
}

static void ar_context_run(struct ar_context *ctx)
{
1037 1038 1039 1040
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1041

1042
	ctx->pointer = ctx->buffer;
1043

1044
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1045
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1046
}
S
Stefan Richter 已提交
1047

1048
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1049
{
1050
	__le16 branch;
1051

1052
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1053 1054

	/* figure out which descriptor the branch address goes in */
1055
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1056 1057 1058 1059 1060
		return d;
	else
		return d + z - 1;
}

1061 1062 1063 1064 1065 1066
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1067
	struct descriptor_buffer *desc;
1068

1069 1070 1071
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1072
	while (last->branch_address != 0) {
1073
		struct descriptor_buffer *old_desc = desc;
1074 1075
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1076
		address &= ~0xf;
1077
		ctx->current_bus = address;
1078 1079 1080 1081 1082 1083 1084 1085

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1086
		last = find_branch_descriptor(d, z);
1087 1088 1089 1090

		if (!ctx->callback(ctx, d, last))
			break;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1101 1102 1103
	}
}

1104 1105 1106 1107
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1108
static int context_add_buffer(struct context *ctx)
1109 1110
{
	struct descriptor_buffer *desc;
1111
	dma_addr_t uninitialized_var(bus_addr);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1137 1138
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1139 1140 1141
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1142 1143 1144 1145
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1146 1147
		return -ENOMEM;

1148 1149 1150
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1151 1152 1153
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1154 1155
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1156
	 * branch address and looks like it's been sent.  That way we
1157
	 * have a descriptor to append DMA programs to.
1158
	 */
1159 1160 1161 1162 1163 1164
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1165 1166 1167 1168

	return 0;
}

1169
static void context_release(struct context *ctx)
1170 1171
{
	struct fw_card *card = &ctx->ohci->card;
1172
	struct descriptor_buffer *desc, *tmp;
1173

1174 1175 1176 1177
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1178 1179
}

1180
/* Must be called with ohci->lock held */
1181 1182
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1183
{
1184 1185 1186 1187 1188 1189 1190 1191 1192
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1204

1205
	d = desc->buffer + desc->used / sizeof(*d);
1206
	memset(d, 0, z * sizeof(*d));
1207
	*d_bus = desc->buffer_bus + desc->used;
1208 1209 1210 1211

	return d;
}

1212
static void context_run(struct context *ctx, u32 extra)
1213 1214 1215
{
	struct fw_ohci *ohci = ctx->ohci;

1216
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1217
		  le32_to_cpu(ctx->last->branch_address));
1218 1219
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1220
	ctx->running = true;
1221 1222 1223 1224 1225 1226 1227
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1228
	struct descriptor_buffer *desc = ctx->buffer_tail;
1229

1230
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1231

1232
	desc->used += (z + extra) * sizeof(*d);
1233 1234

	wmb(); /* finish init of new descriptors before branch_address update */
1235 1236
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1237 1238 1239 1240
}

static void context_stop(struct context *ctx)
{
1241
	struct fw_ohci *ohci = ctx->ohci;
1242
	u32 reg;
1243
	int i;
1244

1245
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1246
	ctx->running = false;
1247

1248
	for (i = 0; i < 1000; i++) {
1249
		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1250
		if ((reg & CONTEXT_ACTIVE) == 0)
1251
			return;
1252

1253 1254
		if (i)
			udelay(10);
1255
	}
1256
	dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1257
}
1258

1259
struct driver_data {
1260
	u8 inline_data[8];
1261 1262
	struct fw_packet *packet;
};
1263

1264 1265
/*
 * This function apppends a packet to the DMA queue for transmission.
1266
 * Must always be called with the ochi->lock held to ensure proper
1267 1268
 * generation handling and locking around packet queue manipulation.
 */
1269 1270
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1271 1272
{
	struct fw_ohci *ohci = ctx->ohci;
1273
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1274 1275 1276
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1277 1278
	int z, tcode;

1279 1280 1281 1282
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1283 1284
	}

1285
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1286 1287
	d[0].res_count = cpu_to_le16(packet->timestamp);

1288 1289
	/*
	 * The DMA format for asyncronous link packets is different
1290
	 * from the IEEE1394 layout, so shift the fields around
1291
	 * accordingly.
1292
	 */
1293

1294
	tcode = (packet->header[0] >> 4) & 0x0f;
1295
	header = (__le32 *) &d[1];
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1306 1307 1308 1309 1310
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1311 1312

		if (TCODE_IS_BLOCK_PACKET(tcode))
1313
			header[3] = cpu_to_le32(packet->header[3]);
1314
		else
1315 1316 1317
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1318 1319
		break;

1320
	case TCODE_LINK_INTERNAL:
1321 1322
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1323 1324
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1325
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1326

1327
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1328
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1329 1330
		break;

1331
	case TCODE_STREAM_DATA:
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1342 1343
	}

1344
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1345 1346
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1347
	packet->driver_data = driver_data;
1348

1349
	if (packet->payload_length > 0) {
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1365 1366 1367 1368 1369 1370
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1371
	} else {
1372 1373
		last = &d[0];
		z = 2;
1374 1375
	}

1376 1377 1378
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1379

1380 1381
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1382
		if (packet->payload_mapped)
1383 1384
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1385 1386 1387 1388 1389
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1390

1391
	if (ctx->running)
1392
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1393
	else
1394 1395 1396
		context_run(ctx, 0);

	return 0;
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1410 1411 1412
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1413
{
1414
	struct driver_data *driver_data;
1415
	struct fw_packet *packet;
1416
	struct fw_ohci *ohci = context->ohci;
1417 1418
	int evt;

1419
	if (last->transfer_status == 0 && !context->flushing)
1420 1421
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1422

1423 1424 1425 1426 1427
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1428

1429
	if (packet->payload_mapped)
1430
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1431 1432
				 packet->payload_length, DMA_TO_DEVICE);

1433 1434
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1435

1436
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1437

1438 1439 1440 1441 1442
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1443

1444
	case OHCI1394_evt_flushed:
1445 1446 1447 1448
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1449 1450
		packet->ack = RCODE_GENERATION;
		break;
1451

1452
	case OHCI1394_evt_missing_ack:
1453 1454 1455 1456 1457 1458 1459 1460 1461
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1462
		break;
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1473

1474 1475 1476 1477 1478 1479 1480
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1481 1482 1483 1484
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1485

1486
	packet->callback(packet, &ohci->card, packet->ack);
1487

1488
	return 1;
1489 1490
}

1491 1492 1493 1494 1495
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1496

1497 1498
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1499 1500 1501 1502
{
	struct fw_packet response;
	int tcode, length, i;

1503
	tcode = HEADER_GET_TCODE(packet->header[0]);
1504
	if (TCODE_IS_BLOCK_PACKET(tcode))
1505
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1524 1525
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1526 1527
{
	struct fw_packet response;
1528
	int tcode, length, ext_tcode, sel, try;
1529 1530 1531
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1532 1533
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534
	payload = packet->payload;
1535
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

1565
	dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1566
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1567 1568 1569 1570 1571

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1572
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1573
{
1574
	u64 offset, csr;
1575

1576 1577 1578 1579
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1580 1581 1582

	offset =
		((unsigned long long)
1583
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1604 1605 1606 1607 1608

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1609
}
1610

1611
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1612 1613
{
	unsigned long flags;
1614
	int ret;
1615 1616 1617

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1618
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1619
	    ctx->ohci->generation == packet->generation) {
1620 1621 1622
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1623
	}
1624

1625
	ret = at_context_queue_packet(ctx, packet);
1626 1627
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1628
	if (ret < 0)
1629
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1630

1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1641 1642 1643
		dev_err(ohci->card.device,
			"DMA context %s has stopped, error code: %s\n",
			name, evts[ctl & 0x1f]);
1644
#else
1645 1646 1647
		dev_err(ohci->card.device,
			"DMA context %s has stopped, error code: %#x\n",
			name, ctl & 0x1f);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1748 1749 1750 1751 1752 1753
static int get_status_for_port(struct fw_ohci *ohci, int port_index)
{
	int reg;

	mutex_lock(&ohci->phy_reg_mutex);
	reg = write_phy_reg(ohci, 7, port_index);
1754 1755
	if (reg >= 0)
		reg = read_phy_reg(ohci, 8);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	mutex_unlock(&ohci->phy_reg_mutex);
	if (reg < 0)
		return reg;

	switch (reg & 0x0f) {
	case 0x06:
		return 2;	/* is child node (connected to parent node) */
	case 0x0e:
		return 3;	/* is parent node (connected to child node) */
	}
	return 1;		/* not connected */
}

static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
	int self_id_count)
{
	int i;
	u32 entry;
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	for (i = 0; i < self_id_count; i++) {
		entry = ohci->self_id_buffer[i];
		if ((self_id & 0xff000000) == (entry & 0xff000000))
			return -1;
		if ((self_id & 0xff000000) < (entry & 0xff000000))
			return i;
	}
	return i;
}

/*
1786 1787 1788 1789
 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
 * Construct the selfID from phy register contents.
 * FIXME:  How to determine the selfID.i flag?
1790 1791 1792
 */
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
{
1793 1794 1795
	int reg, i, pos, status;
	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
	u32 self_id = 0x8040c800;
1796 1797 1798

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1799 1800
		dev_notice(ohci->card.device,
			   "node ID not valid, new bus reset in progress\n");
1801 1802 1803 1804
		return -EBUSY;
	}
	self_id |= ((reg & 0x3f) << 24); /* phy ID */

1805
	reg = ohci_read_phy_reg(&ohci->card, 4);
1806 1807 1808 1809
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x07) << 8); /* power class */

1810
	reg = ohci_read_phy_reg(&ohci->card, 1);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	if (reg < 0)
		return reg;
	self_id |= ((reg & 0x3f) << 16); /* gap count */

	for (i = 0; i < 3; i++) {
		status = get_status_for_port(ohci, i);
		if (status < 0)
			return status;
		self_id |= ((status & 0x3) << (6 - (i * 2)));
	}

	pos = get_self_id_pos(ohci, self_id, self_id_count);
	if (pos >= 0) {
		memmove(&(ohci->self_id_buffer[pos+1]),
			&(ohci->self_id_buffer[pos]),
			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
		ohci->self_id_buffer[pos] = self_id;
		self_id_count++;
	}
	return self_id_count;
}

1833
static void bus_reset_work(struct work_struct *work)
1834
{
1835 1836
	struct fw_ohci *ohci =
		container_of(work, struct fw_ohci, bus_reset_work);
1837
	int self_id_count, i, j, reg;
1838 1839
	int generation, new_generation;
	unsigned long flags;
1840 1841
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1842
	bool is_new_root;
1843 1844 1845

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1846 1847
		dev_notice(ohci->card.device,
			   "node ID not valid, new bus reset in progress\n");
1848 1849
		return;
	}
1850
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1851
		dev_notice(ohci->card.device, "malconfigured bus\n");
1852 1853 1854 1855
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1856

1857 1858 1859 1860 1861 1862
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1863 1864
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1865
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1866 1867
		return;
	}
1868 1869
	/*
	 * The count in the SelfIDCount register is the number of
1870 1871
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1872 1873
	 * bit extra to get the actual number of self IDs.
	 */
1874
	self_id_count = (reg >> 3) & 0xff;
1875 1876

	if (self_id_count > 252) {
1877
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1878 1879
		return;
	}
1880

1881
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1882
	rmb();
1883 1884

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1885
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1886 1887 1888 1889 1890 1891 1892 1893 1894
			/*
			 * If the invalid data looks like a cycle start packet,
			 * it's likely to be the result of the cycle master
			 * having a wrong gap count.  In this case, the self IDs
			 * so far are valid and should be processed so that the
			 * bus manager can then correct the gap count.
			 */
			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
							== 0xffff008f) {
1895 1896
				dev_notice(ohci->card.device,
					   "ignoring spurious self IDs\n");
1897 1898 1899
				self_id_count = j;
				break;
			} else {
1900 1901
				dev_notice(ohci->card.device,
					   "inconsistent self IDs\n");
1902 1903
				return;
			}
1904
		}
1905 1906
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1907
	}
1908 1909 1910 1911

	if (ohci->quirks & QUIRK_TI_SLLZ059) {
		self_id_count = find_and_insert_self_id(ohci, self_id_count);
		if (self_id_count < 0) {
1912 1913
			dev_notice(ohci->card.device,
				   "could not construct local self ID\n");
1914 1915 1916 1917 1918
			return;
		}
	}

	if (self_id_count == 0) {
1919
		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1920 1921
		return;
	}
1922
	rmb();
1923

1924 1925
	/*
	 * Check the consistency of the self IDs we just read.  The
1926 1927 1928 1929 1930 1931 1932 1933 1934
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1935 1936
	 * of self IDs.
	 */
1937 1938 1939

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
1940 1941
		dev_notice(ohci->card.device,
			   "new bus reset, discarding self ids\n");
1942 1943 1944 1945 1946 1947
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1948
	ohci->generation = -1; /* prevent AT packet queueing */
1949 1950
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1951 1952 1953

	spin_unlock_irqrestore(&ohci->lock, flags);

1954 1955 1956 1957 1958
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1959 1960 1961 1962 1963 1964
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1965 1966
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1967
	if (ohci->quirks & QUIRK_RESET_PACKET)
1968 1969
		ohci->request_generation = generation;

1970 1971
	/*
	 * This next bit is unrelated to the AT context stuff but we
1972 1973 1974 1975
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1976
	 * next_config_rom pointer so a new update can take place.
1977
	 */
1978 1979

	if (ohci->next_config_rom != NULL) {
1980 1981 1982 1983
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1984 1985 1986 1987
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1988 1989
		/*
		 * Restore config_rom image and manually update
1990 1991
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1992 1993
		 * do that last.
		 */
1994 1995
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1996 1997 1998
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1999 2000
	}

2001 2002 2003 2004 2005
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

2006 2007
	spin_unlock_irqrestore(&ohci->lock, flags);

2008 2009 2010 2011
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

2012
	log_selfids(ohci, generation, self_id_count);
2013

2014
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2015 2016 2017
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
2018 2019 2020 2021 2022
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
2023
	u32 event, iso_event;
2024 2025 2026 2027
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

2028
	if (!event || !~event)
2029 2030
		return IRQ_NONE;

2031 2032 2033 2034 2035 2036
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2037
	log_irqs(ohci, event);
2038 2039

	if (event & OHCI1394_selfIDComplete)
2040
		queue_work(fw_workqueue, &ohci->bus_reset_work);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2064 2065
	}

2066 2067 2068
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2069

2070 2071 2072 2073 2074 2075
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
2076 2077
	}

2078
	if (unlikely(event & OHCI1394_regAccessFail))
2079
		dev_err(ohci->card.device, "register access failure\n");
2080

2081 2082 2083 2084 2085
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
S
Stephan Gatzka 已提交
2086
		if (printk_ratelimit())
2087
			dev_err(ohci->card.device, "PCI posted write error\n");
2088
	}
2089

2090 2091
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
2092 2093
			dev_notice(ohci->card.device,
				   "isochronous cycle too long\n");
2094 2095 2096 2097
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

2098 2099 2100 2101 2102 2103 2104 2105
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
2106 2107
			dev_notice(ohci->card.device,
				   "isochronous cycle inconsistent\n");
2108 2109
	}

2110 2111 2112
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

2113 2114 2115 2116
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
2117 2118
	} else
		flush_writes(ohci);
2119

2120 2121 2122
	return IRQ_HANDLED;
}

2123 2124
static int software_reset(struct fw_ohci *ohci)
{
2125
	u32 val;
2126 2127 2128
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2129 2130 2131 2132
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
2133

2134
		if (!(val & OHCI1394_HCControl_softReset))
2135
			return 0;
2136

2137 2138 2139 2140 2141 2142
		msleep(1);
	}

	return -EBUSY;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2152 2153 2154
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2155
	int ret, clear, set, offset;
2156 2157 2158 2159 2160 2161 2162 2163

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2164 2165 2166 2167 2168 2169 2170 2171
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2186
	ret = update_phy_reg(ohci, 5, clear, set);
2187 2188
	if (ret < 0)
		return ret;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2203 2204
static int probe_tsb41ba3d(struct fw_ohci *ohci)
{
2205 2206 2207
	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
	int reg, i;
2208 2209 2210 2211

	reg = read_phy_reg(ohci, 2);
	if (reg < 0)
		return reg;
2212 2213
	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
		return 0;
2214

2215 2216 2217 2218 2219 2220
	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
		reg = read_paged_phy_reg(ohci, 1, i + 10);
		if (reg < 0)
			return reg;
		if (reg != id[i])
			return 0;
2221
	}
2222
	return 1;
2223 2224
}

2225 2226
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2227 2228 2229
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2230
	u32 lps, seconds, version, irqs;
2231
	int i, ret;
2232

2233
	if (software_reset(ohci)) {
2234
		dev_err(card->device, "failed to reset ohci card\n");
2235 2236 2237 2238 2239 2240 2241 2242
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2243 2244
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2245 2246 2247 2248 2249
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2250 2251 2252 2253 2254 2255 2256 2257

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
2258
		dev_err(card->device, "failed to set Link Power Status\n");
2259 2260
		return -EIO;
	}
2261

2262
	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2263 2264 2265 2266
		ret = probe_tsb41ba3d(ohci);
		if (ret < 0)
			return ret;
		if (ret)
2267
			dev_notice(card->device, "local TSB41BA3D phy\n");
2268
		else
2269 2270 2271
			ohci->quirks &= ~QUIRK_TI_SLLZ059;
	}

2272 2273 2274
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2275
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2276 2277 2278 2279 2280 2281 2282
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2283 2284
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2285

2286 2287 2288 2289
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2290 2291 2292 2293
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2294
		card->broadcast_channel_auto_allocated = true;
2295 2296
	}

2297 2298 2299 2300
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2301
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2302 2303 2304 2305 2306

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2307 2308 2309
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2310

2311
	/* Activate link_on bit and contender bit in our self ID packets.*/
2312 2313 2314
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2315

2316 2317
	/*
	 * When the link is not yet enabled, the atomic config rom
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2335 2336 2337 2338 2339 2340 2341
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2342

2343
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2344 2345 2346 2347 2348 2349 2350 2351
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2352

2353
	ohci->next_header = ohci->next_config_rom[0];
2354 2355
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2356 2357
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2358 2359 2360 2361
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2362 2363
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2364
	if (request_irq(dev->irq, irq_handler,
2365 2366
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
2367 2368
		dev_err(card->device, "failed to allocate interrupt %d\n",
			dev->irq);
2369
		pci_disable_msi(dev);
2370 2371 2372 2373 2374 2375 2376

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2377 2378 2379
		return -EIO;
	}

2380 2381 2382 2383 2384 2385
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2386
		OHCI1394_cycle64Seconds |
2387 2388 2389
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2390 2391 2392 2393 2394
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2395 2396 2397
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2398 2399 2400 2401 2402 2403

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2404 2405 2406
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2407

2408 2409
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2410 2411 2412 2413

	return 0;
}

2414
static int ohci_set_config_rom(struct fw_card *card,
2415
			       const __be32 *config_rom, size_t length)
2416 2417 2418 2419
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2420
	dma_addr_t uninitialized_var(next_config_rom_bus);
2421 2422 2423

	ohci = fw_ohci(card);

2424 2425
	/*
	 * When the OHCI controller is enabled, the config rom update
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
2448
	 * ohci->next_config_rom to NULL (see bus_reset_work).
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2470 2471 2472
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2473 2474
		next_config_rom = NULL;
	}
2475

2476
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2477

2478 2479
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2480

2481
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2482 2483 2484

	spin_unlock_irqrestore(&ohci->lock, flags);

2485 2486 2487 2488 2489
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2490 2491
	/*
	 * Now initiate a bus reset to have the changes take
2492 2493 2494
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2495 2496
	 * takes effect.
	 */
2497

2498 2499 2500
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2517 2518 2519
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2520 2521
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2522
	int ret = -ENOENT;
2523

2524
	tasklet_disable(&ctx->tasklet);
2525

2526 2527
	if (packet->ack != 0)
		goto out;
2528

2529
	if (packet->payload_mapped)
2530 2531 2532
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2533
	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2534 2535 2536
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2537
	ret = 0;
2538 2539
 out:
	tasklet_enable(&ctx->tasklet);
2540

2541
	return ret;
2542 2543
}

2544 2545
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2546
{
2547 2548 2549
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2550 2551
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2552
	int n, ret = 0;
2553

2554 2555 2556 2557
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2558 2559 2560 2561

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2562
		ret = -ESTALE;
2563 2564 2565
		goto out;
	}

2566 2567 2568 2569
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2570 2571 2572 2573 2574 2575 2576

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2577 2578
	flush_writes(ohci);
 out:
2579
	spin_unlock_irqrestore(&ohci->lock, flags);
2580 2581

	return ret;
2582
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2583
}
S
Stefan Richter 已提交
2584

2585
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2586
{
2587
	struct fw_ohci *ohci = fw_ohci(card);
2588 2589
	unsigned long flags;
	u32 value;
2590 2591

	switch (csr_offset) {
2592 2593 2594 2595 2596
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2597
			value = CSR_STATE_BIT_CMSTR;
2598
		else
2599 2600 2601
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2602

2603
		return value;
2604

2605 2606 2607
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2608 2609 2610
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2622 2623 2624 2625
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2626 2627 2628 2629
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2630 2631 2632 2633
	default:
		WARN_ON(1);
		return 0;
	}
2634 2635
}

2636
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2637 2638
{
	struct fw_ohci *ohci = fw_ohci(card);
2639
	unsigned long flags;
2640

2641
	switch (csr_offset) {
2642 2643 2644 2645 2646 2647
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2648 2649
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2650
		break;
2651

2652 2653 2654 2655 2656 2657
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2658 2659
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2660
		break;
2661

2662 2663 2664 2665 2666
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2667 2668 2669 2670 2671 2672 2673
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2674 2675 2676 2677 2678 2679
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2680 2681 2682 2683 2684 2685 2686
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2687 2688 2689 2690 2691
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2692 2693 2694 2695
	default:
		WARN_ON(1);
		break;
	}
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2720 2721 2722 2723 2724 2725
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2726
	struct descriptor *pd;
2727
	u32 buffer_dma;
2728
	__le32 *ir_header;
2729
	void *p;
2730

2731
	for (pd = d; pd <= last; pd++)
2732 2733 2734
		if (pd->transfer_status)
			break;
	if (pd > last)
2735 2736 2737
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
		d++;
		buffer_dma = le32_to_cpu(d->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(d->req_count),
					      DMA_FROM_DEVICE);
	}

2748 2749
	p = last + 1;
	copy_iso_headers(ctx, p);
2750

2751 2752
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2753 2754 2755 2756
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2757 2758 2759 2760 2761 2762
		ctx->header_length = 0;
	}

	return 1;
}

2763 2764 2765 2766 2767 2768 2769
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2770
	u32 buffer_dma;
2771 2772 2773 2774 2775

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2776 2777 2778 2779 2780 2781 2782
	buffer_dma = le32_to_cpu(last->data_address);
	dma_sync_single_range_for_cpu(context->ohci->card.device,
				      buffer_dma & PAGE_MASK,
				      buffer_dma & ~PAGE_MASK,
				      le16_to_cpu(last->req_count),
				      DMA_FROM_DEVICE);

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
static inline void sync_it_packet_for_cpu(struct context *context,
					  struct descriptor *pd)
{
	__le16 control;
	u32 buffer_dma;

	/* only packets beginning with OUTPUT_MORE* have data buffers */
	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
		return;

	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
	pd += 2;

	/*
	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
	 * data buffer is in the context program's coherent page and must not
	 * be synced.
	 */
	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
	    (context->current_bus          & PAGE_MASK)) {
		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
			return;
		pd++;
	}

	do {
		buffer_dma = le32_to_cpu(pd->data_address);
		dma_sync_single_range_for_cpu(context->ohci->card.device,
					      buffer_dma & PAGE_MASK,
					      buffer_dma & ~PAGE_MASK,
					      le16_to_cpu(pd->req_count),
					      DMA_TO_DEVICE);
		control = pd->control;
		pd++;
	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
}

2830 2831 2832
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2833
{
2834 2835
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2836 2837
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2838

2839 2840 2841 2842 2843
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2844 2845
		return 0;

2846 2847
	sync_it_packet_for_cpu(context, d);

2848 2849 2850 2851 2852 2853 2854 2855 2856
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2857 2858 2859
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2860 2861
		ctx->header_length = 0;
	}
2862
	return 1;
2863 2864
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2877
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2878
				int type, int channel, size_t header_size)
2879 2880
{
	struct fw_ohci *ohci = fw_ohci(card);
2881 2882 2883 2884
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2885
	unsigned long flags;
2886
	int index, ret = -EBUSY;
2887

2888
	spin_lock_irqsave(&ohci->lock, flags);
2889

2890 2891 2892
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2893
		callback = handle_it_packet;
2894 2895 2896 2897 2898 2899 2900 2901 2902
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2903
		channels = &ohci->ir_context_channels;
2904
		mask     = &ohci->ir_context_mask;
2905
		callback = handle_ir_packet_per_buffer;
2906 2907 2908 2909 2910 2911 2912 2913
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2930
	}
2931

2932 2933 2934
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2935
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2936

2937
	memset(ctx, 0, sizeof(*ctx));
2938 2939
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2940 2941
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2942
		goto out;
2943
	}
2944 2945
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2946
		goto out_with_header;
2947

2948 2949 2950
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2951
	return &ctx->base;
2952 2953 2954 2955 2956

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2967
	*mask |= 1 << index;
2968

2969 2970
	spin_unlock_irqrestore(&ohci->lock, flags);

2971
	return ERR_PTR(ret);
2972 2973
}

2974 2975
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2976
{
S
Stefan Richter 已提交
2977
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2978
	struct fw_ohci *ohci = ctx->context.ohci;
2979
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2980 2981
	int index;

2982 2983 2984 2985
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2986 2987
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2988
		index = ctx - ohci->it_context_list;
2989 2990 2991
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2992
				(cycle & 0x7fff) << 16;
2993

2994 2995
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2996
		context_run(&ctx->context, match);
2997 2998 2999 3000 3001 3002
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
3003
		index = ctx - ohci->ir_context_list;
3004 3005 3006 3007 3008
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
3009

3010 3011
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3012
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3013
		context_run(&ctx->context, control);
3014 3015 3016 3017

		ctx->sync = sync;
		ctx->tags = tags;

3018
		break;
3019
	}
3020 3021 3022 3023

	return 0;
}

3024 3025 3026
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3027
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3028 3029
	int index;

3030 3031
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3032 3033
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3034 3035 3036 3037
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3038 3039
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3040
		break;
3041 3042 3043
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
3044
	tasklet_kill(&ctx->context.tasklet);
3045 3046 3047 3048

	return 0;
}

3049 3050 3051
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
3052
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3053 3054 3055
	unsigned long flags;
	int index;

3056 3057
	ohci_stop_iso(base);
	context_release(&ctx->context);
3058
	free_page((unsigned long)ctx->header);
3059

3060 3061
	spin_lock_irqsave(&ohci->lock, flags);

3062 3063
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
3064 3065
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
3066 3067 3068
		break;

	case FW_ISO_CONTEXT_RECEIVE:
3069 3070
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
3071
		ohci->ir_context_channels |= 1ULL << base->channel;
3072 3073 3074 3075 3076 3077 3078 3079 3080
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
3081 3082 3083 3084 3085
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

3116 3117 3118 3119 3120 3121 3122 3123
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
3124
		if (ctx->context.running)
3125 3126 3127 3128 3129
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
3130
		if (ctx->context.running)
3131 3132 3133 3134 3135
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

3136 3137 3138 3139
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
3140
{
3141
	struct descriptor *d, *last, *pd;
3142 3143
	struct fw_iso_packet *p;
	__le32 *header;
3144
	dma_addr_t d_bus, page_bus;
3145 3146
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
3147
	int page, end_page, i, length, offset;
3148 3149

	p = packet;
3150
	payload_index = payload;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
3169
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3170

3171 3172 3173
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
3174 3175

	if (!p->skip) {
3176
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3177
		d[0].req_count = cpu_to_le16(8);
3178 3179 3180 3181 3182 3183 3184 3185
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
3186 3187

		header = (__le32 *) &d[1];
3188 3189 3190 3191 3192
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
3193
		header[1] =
3194
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3195 3196 3197 3198 3199
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
3200
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
3213 3214 3215

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
3216

3217 3218 3219 3220
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_TO_DEVICE);

3221 3222 3223 3224
		payload_index += length;
	}

	if (p->interrupt)
3225
		irq = DESCRIPTOR_IRQ_ALWAYS;
3226
	else
3227
		irq = DESCRIPTOR_NO_IRQ;
3228

3229
	last = z == 2 ? d : d + z - 1;
3230 3231 3232
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
3233
				     irq);
3234

3235
	context_append(&ctx->context, d, z, header_z);
3236 3237 3238

	return 0;
}
S
Stefan Richter 已提交
3239

3240 3241 3242 3243
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
3244
{
3245
	struct device *device = ctx->context.ohci->card.device;
3246
	struct descriptor *d, *pd;
3247 3248
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3249 3250
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3251 3252

	/*
3253 3254
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3255
	 */
3256
	packet_count = packet->header_length / ctx->base.header_size;
3257
	header_size  = max(ctx->base.header_size, (size_t)8);
3258 3259 3260 3261 3262

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3263
	payload_per_buffer = packet->payload_length / packet_count;
3264 3265 3266

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3267
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3268
		d = context_get_descriptors(&ctx->context,
3269
				z + header_z, &d_bus);
3270 3271 3272
		if (d == NULL)
			return -ENOMEM;

3273 3274
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3275
		if (packet->skip && i == 0)
3276
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3277 3278
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3279
		d->transfer_status = 0;
3280 3281
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3282
		rest = payload_per_buffer;
3283
		pd = d;
3284
		for (j = 1; j < z; j++) {
3285
			pd++;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

3300 3301 3302 3303
			dma_sync_single_range_for_device(device, page_bus,
							 offset, length,
							 DMA_FROM_DEVICE);

3304 3305 3306 3307 3308
			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3309 3310 3311
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3312
		if (packet->interrupt && i == packet_count - 1)
3313 3314 3315 3316 3317 3318 3319 3320
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

3363 3364 3365 3366
		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
						 page_bus, offset, length,
						 DMA_FROM_DEVICE);

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3377 3378 3379 3380
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3381
{
3382
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3383
	unsigned long flags;
3384
	int ret = -ENOSYS;
3385

3386
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3398 3399
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3400
	return ret;
3401 3402
}

3403 3404 3405 3406 3407 3408 3409 3410
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3411
static const struct fw_card_driver ohci_driver = {
3412
	.enable			= ohci_enable,
3413
	.read_phy_reg		= ohci_read_phy_reg,
3414 3415 3416 3417
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3418
	.cancel_packet		= ohci_cancel_packet,
3419
	.enable_phys_dma	= ohci_enable_phys_dma,
3420 3421
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3422 3423 3424

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3425
	.set_iso_channels	= ohci_set_iso_channels,
3426
	.queue_iso		= ohci_queue_iso,
3427
	.flush_queue_iso	= ohci_flush_queue_iso,
3428
	.start_iso		= ohci_start_iso,
3429
	.stop_iso		= ohci_stop_iso,
3430 3431
};

3432
#ifdef CONFIG_PPC_PMAC
3433
static void pmac_ohci_on(struct pci_dev *dev)
3434
{
3435 3436 3437 3438 3439 3440 3441 3442
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3443 3444
}

3445
static void pmac_ohci_off(struct pci_dev *dev)
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3457 3458
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3459 3460
#endif /* CONFIG_PPC_PMAC */

3461 3462
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3463 3464
{
	struct fw_ohci *ohci;
3465
	u32 bus_options, max_receive, link_speed, version;
3466
	u64 guid;
3467
	int i, err;
3468 3469
	size_t size;

3470 3471 3472 3473 3474
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3475
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3476
	if (ohci == NULL) {
3477 3478
		err = -ENOMEM;
		goto fail;
3479 3480 3481 3482
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3483
	pmac_ohci_on(dev);
3484

3485 3486
	err = pci_enable_device(dev);
	if (err) {
3487
		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3488
		goto fail_free;
3489 3490 3491 3492 3493 3494 3495
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3496
	mutex_init(&ohci->phy_reg_mutex);
3497

3498
	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3499

3500 3501
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3502
		dev_err(&dev->dev, "MMIO resource unavailable\n");
3503
		goto fail_disable;
3504 3505 3506 3507
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
3508
		dev_err(&dev->dev, "failed to remap registers\n");
3509 3510
		err = -ENXIO;
		goto fail_iomem;
3511 3512
	}

3513
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3514 3515 3516 3517 3518
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3519 3520 3521
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3522 3523
	if (param_quirks)
		ohci->quirks = param_quirks;
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3542 3543
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3544
		goto fail_misc_buf;
3545

3546
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3547 3548 3549
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3550

3551 3552 3553 3554
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3555

3556 3557 3558 3559
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3560 3561

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3562
	ohci->ir_context_channels = ~0ULL;
3563
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3564
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3565
	ohci->ir_context_mask = ohci->ir_context_support;
3566 3567
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3568
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3569 3570

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3571
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3572
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3573
	ohci->it_context_mask = ohci->it_context_support;
3574 3575
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3576
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3577 3578

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3579
		err = -ENOMEM;
3580
		goto fail_contexts;
3581 3582
	}

3583 3584
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3585 3586 3587 3588 3589 3590 3591

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3592
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3593
	if (err)
3594
		goto fail_contexts;
3595

3596
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3597 3598
	dev_notice(&dev->dev,
		  "added OHCI v%x.%x device as card %d, "
3599
		  "%d IR + %d IT contexts, quirks 0x%x\n",
3600
		  version >> 16, version & 0xff, ohci->card.index,
3601
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3602

3603
	return 0;
3604

3605
 fail_contexts:
3606
	kfree(ohci->ir_context_list);
3607 3608
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3609
 fail_atreq_ctx:
3610
	context_release(&ohci->at_request_ctx);
3611
 fail_arrsp_ctx:
3612
	ar_context_release(&ohci->ar_response_ctx);
3613
 fail_arreq_ctx:
3614
	ar_context_release(&ohci->ar_request_ctx);
3615 3616 3617
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3618
 fail_iounmap:
3619 3620 3621 3622 3623
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3624
 fail_free:
3625
	kfree(ohci);
3626
	pmac_ohci_off(dev);
3627 3628
 fail:
	if (err == -ENOMEM)
3629
		dev_err(&dev->dev, "out of memory\n");
3630 3631

	return err;
3632 3633 3634 3635 3636 3637 3638
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3639 3640
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3641
	cancel_work_sync(&ohci->bus_reset_work);
3642 3643
	fw_core_remove_card(&ohci->card);

3644 3645 3646 3647
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3648 3649 3650

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3651 3652 3653 3654 3655 3656 3657 3658 3659

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3660 3661
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3662 3663
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3664 3665
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3666
	pci_disable_msi(dev);
3667 3668 3669
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3670
	kfree(ohci);
3671
	pmac_ohci_off(dev);
3672

3673
	dev_notice(&dev->dev, "removed fw-ohci device\n");
3674 3675
}

3676
#ifdef CONFIG_PM
3677
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3678
{
3679
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3680 3681 3682
	int err;

	software_reset(ohci);
3683
	free_irq(dev->irq, ohci);
3684
	pci_disable_msi(dev);
3685
	err = pci_save_state(dev);
3686
	if (err) {
3687
		dev_err(&dev->dev, "pci_save_state failed\n");
3688 3689
		return err;
	}
3690
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3691
	if (err)
3692
		dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3693
	pmac_ohci_off(dev);
3694

3695 3696 3697
	return 0;
}

3698
static int pci_resume(struct pci_dev *dev)
3699
{
3700
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3701 3702
	int err;

3703
	pmac_ohci_on(dev);
3704 3705 3706
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3707
	if (err) {
3708
		dev_err(&dev->dev, "pci_enable_device failed\n");
3709 3710 3711
		return err;
	}

3712 3713 3714 3715 3716 3717 3718
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3719 3720 3721 3722 3723
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3724

3725
	return 0;
3726 3727 3728
}
#endif

3729
static const struct pci_device_id pci_table[] = {
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3741 3742 3743 3744
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3745 3746 3747 3748 3749 3750
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3751 3752 3753 3754 3755
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);