ohci.c 86.2 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
A
Andrew Morton 已提交
43

S
Stefan Richter 已提交
44
#include <asm/byteorder.h>
S
Stefan Richter 已提交
45
#include <asm/page.h>
46
#include <asm/system.h>
47

48 49 50 51
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

52 53
#include "core.h"
#include "ohci.h"
54

55 56 57 58 59 60 61 62 63 64 65 66 67
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
68 69 70 71 72 73 74 75 76 77

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

78 79 80 81
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
82

83
struct ar_buffer {
84
	struct descriptor descriptor;
85 86 87
	struct ar_buffer *next;
	__le32 data[0];
};
88

89 90 91 92 93
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
94
	u32 regs;
95 96 97
	struct tasklet_struct tasklet;
};

98 99 100 101 102
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
103 104 105 106 107 108 109 110 111 112 113 114 115

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

116
struct context {
S
Stefan Richter 已提交
117
	struct fw_ohci *ohci;
118
	u32 regs;
119
	int total_allocation;
S
Stefan Richter 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
145 146 147

	descriptor_callback_t callback;

S
Stefan Richter 已提交
148
	struct tasklet_struct tasklet;
149 150
};

151 152 153 154 155 156
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 158 159

struct iso_context {
	struct fw_iso_context base;
160
	struct context context;
161
	int excess_bytes;
162 163
	void *header;
	size_t header_length;
164 165 166 167 168 169 170 171
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
172
	int node_id;
173
	int generation;
174
	int request_generation;	/* for timestamping incoming requests */
175
	unsigned quirks;
176
	unsigned int pri_req_max;
177
	u32 bus_time;
178
	bool is_root;
179
	bool csr_state_setclear_abdicate;
180

181 182 183 184
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
185 186
	spinlock_t lock;

187 188
	struct mutex phy_reg_mutex;

189 190
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
191 192
	struct context at_request_ctx;
	struct context at_response_ctx;
193

194
	u32 it_context_mask;     /* unoccupied IT contexts */
195
	struct iso_context *it_context_list;
196 197
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
198
	struct iso_context *ir_context_list;
199 200
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
201 202 203 204 205 206 207 208 209 210 211 212

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
213 214
};

A
Adrian Bunk 已提交
215
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 217 218 219
{
	return container_of(card, struct fw_ohci, card);
}

220 221 222 223 224 225
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226 227 228 229 230 231

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

232
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233 234 235 236 237 238 239
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
240
#define OHCI_TCODE_PHY_PACKET		0x0e
241
#define OHCI_VERSION_1_1		0x010010
242

243 244
static char ohci_driver_name[] = KBUILD_MODNAME;

245
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
246
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
247 248
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

249 250 251
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
252
#define QUIRK_NO_1394A			8
253
#define QUIRK_NO_MSI			16
254 255 256

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
257
	unsigned short vendor, device, revision, flags;
258
} ohci_quirks[] = {
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
285 286
};

287 288 289 290 291 292 293
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
294
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
295
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
296 297
	")");

298
#define OHCI_PARAM_DEBUG_AT_AR		1
299
#define OHCI_PARAM_DEBUG_SELFIDS	2
300 301
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
302

303 304
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

305 306 307 308
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
309 310 311
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
312 313 314 315
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
316 317 318 319 320 321
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
322 323
		return;

324
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
325 326 327 328 329 330 331 332 333
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
334
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
335
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
336 337 338 339 340 341
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
342 343
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
344
		    OHCI1394_regAccessFail | OHCI1394_busReset)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

362
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
363 364 365 366
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

367 368
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
369 370 371

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
372 373 374 375 376 377
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
378
		else
379 380 381 382
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

430
	if (evt == OHCI1394_evt_bus_reset) {
431 432
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
433 434 435
		return;
	}

436
	if (header[0] == ~header[1]) {
437 438
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
457
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458 459
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
460 461 462 463 464 465
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
466 467
		break;
	default:
468 469 470 471 472 473
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
474 475 476 477 478
	}
}

#else

479 480 481 482
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
483 484 485

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
486
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
487 488 489 490
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
491
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
492 493 494 495
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
496
static inline void flush_writes(const struct fw_ohci *ohci)
497 498 499 500 501
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

502
static int read_phy_reg(struct fw_ohci *ohci, int addr)
503
{
504
	u32 val;
505
	int i;
506 507

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
508
	for (i = 0; i < 3 + 100; i++) {
509 510 511 512
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

513 514 515 516 517 518
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
519
	}
520
	fw_error("failed to read phy reg\n");
521

522 523
	return -EBUSY;
}
524

525 526 527
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
528 529

	reg_write(ohci, OHCI1394_PhyControl,
530
		  OHCI1394_PhyControl_Write(addr, val));
531
	for (i = 0; i < 3 + 100; i++) {
532 533 534
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
535

536 537
		if (i >= 3)
			msleep(1);
538 539 540 541
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
542 543
}

544 545
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
546
{
547
	int ret = read_phy_reg(ohci, addr);
548 549
	if (ret < 0)
		return ret;
550

551 552 553 554 555 556 557
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

558
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
559 560
}

561
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
562
{
563
	int ret;
564

565
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
566 567
	if (ret < 0)
		return ret;
568

569
	return read_phy_reg(ohci, addr);
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
595 596
}

597 598
static void ar_context_link_page(struct ar_context *ctx,
				 struct ar_buffer *ab, dma_addr_t ab_bus)
599
{
600 601
	size_t offset;

602
	ab->next = NULL;
603
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
604 605 606
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
607 608 609 610 611 612
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

613
	wmb(); /* finish init of new descriptors before branch_address update */
614
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
615 616 617
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

618
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
619
	flush_writes(ctx->ohci);
620 621 622 623 624 625 626 627 628 629 630 631 632
}

static int ar_context_add_page(struct ar_context *ctx)
{
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t uninitialized_var(ab_bus);

	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ar_context_link_page(ctx, ab, ab_bus);
633 634

	return 0;
635 636
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

652 653
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
654
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
655 656 657 658
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

659
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
660 661
{
	struct fw_ohci *ohci = ctx->ohci;
662 663
	struct fw_packet p;
	u32 status, length, tcode;
664
	int evt;
665

666 667 668
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
669 670 671 672 673

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
674
		p.header[3] = (__force __u32) buffer[3];
675
		p.header_length = 16;
676
		p.payload_length = 0;
677 678 679
		break;

	case TCODE_READ_BLOCK_REQUEST :
680
		p.header[3] = cond_le32_to_cpu(buffer[3]);
681 682 683 684 685
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
686 687 688
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
689
		p.header[3] = cond_le32_to_cpu(buffer[3]);
690
		p.header_length = 16;
691
		p.payload_length = p.header[3] >> 16;
692 693 694 695
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
696
	case OHCI_TCODE_PHY_PACKET:
697
		p.header_length = 12;
698
		p.payload_length = 0;
699
		break;
700 701 702 703 704

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
705
	}
706

707 708 709 710
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
711
	status = cond_le32_to_cpu(buffer[length]);
712
	evt    = (status >> 16) & 0x1f;
713

714
	p.ack        = evt - 16;
715 716 717
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
718

719
	log_ar_at_event('R', p.speed, p.header, evt);
720

721
	/*
722 723 724 725 726 727 728 729 730
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
731 732 733 734 735
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
736
	 * request.
737 738 739 740
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
741
	 */
742
	if (evt == OHCI1394_evt_bus_reset) {
743
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
744 745
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
746
		fw_core_handle_request(&ohci->card, &p);
747
	} else {
748
		fw_core_handle_response(&ohci->card, &p);
749
	}
750

751 752
	return buffer + length + 1;
}
753

754 755 756 757 758 759
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;
760
	__le16 res_count;
761 762 763 764

	ab = ctx->current_buffer;
	d = &ab->descriptor;

765 766
	res_count = ACCESS_ONCE(d->res_count);
	if (res_count == 0) {
767
		size_t size, size2, rest, pktsize, size3, offset;
768 769
		dma_addr_t start_bus;
		void *start;
770

771 772
		/*
		 * This descriptor is finished and we may have a
773
		 * packet split across this and the next buffer. We
774 775
		 * reuse the page for reassembling the split packet.
		 */
776 777

		offset = offsetof(struct ar_buffer, data);
778
		start = ab;
779
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
780
		buffer = ab->data;
781 782 783

		ab = ab->next;
		d = &ab->descriptor;
784
		size = start + PAGE_SIZE - ctx->pointer;
785
		/* valid buffer data in the next page */
786
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
787
		/* what actually fits in this page */
788
		size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
789
		memmove(buffer, ctx->pointer, size);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		memcpy(buffer + size, ab->data, size2);

		while (size > 0) {
			void *next = handle_ar_packet(ctx, buffer);
			pktsize = next - buffer;
			if (pktsize >= size) {
				/*
				 * We have handled all the data that was
				 * originally in this page, so we can now
				 * continue in the next page.
				 */
				buffer = next;
				break;
			}
			/* move the next packet to the start of the buffer */
			memmove(buffer, next, size + size2 - pktsize);
			size -= pktsize;
			/* fill up this page again */
			size3 = min(rest - size2,
809
				    (size_t)PAGE_SIZE - offset - size - size2);
810 811 812 813 814
			memcpy(buffer + size + size2,
			       (void *) ab->data + size2, size3);
			size2 += size3;
		}

815 816 817 818 819
		if (rest > 0) {
			/* handle the packets that are fully in the next page */
			buffer = (void *) ab->data +
					(buffer - (start + offset + size));
			end = (void *) ab->data + rest;
820

821 822
			while (buffer < end)
				buffer = handle_ar_packet(ctx, buffer);
823

824 825 826
			ctx->current_buffer = ab;
			ctx->pointer = end;

827
			ar_context_link_page(ctx, start, start_bus);
828 829 830
		} else {
			ctx->pointer = start + PAGE_SIZE;
		}
831 832 833
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
834
			(void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
835 836 837 838

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
839 840
}

841 842
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
843
{
844
	struct ar_buffer ab;
845

846 847 848
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
849 850
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

851 852 853 854 855
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

856 857 858 859 860 861 862 863 864 865
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
866
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
867 868

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
869
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
870
	flush_writes(ctx->ohci);
871
}
S
Stefan Richter 已提交
872

873
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
874 875 876 877 878 879 880 881 882 883 884 885 886
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

887 888 889 890 891 892
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
893
	struct descriptor_buffer *desc;
894

895 896 897
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
898
	while (last->branch_address != 0) {
899
		struct descriptor_buffer *old_desc = desc;
900 901
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
902 903 904 905 906 907 908 909 910
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
911
		last = find_branch_descriptor(d, z);
912 913 914 915

		if (!ctx->callback(ctx, d, last))
			break;

916 917 918 919 920 921 922 923 924 925
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
926 927 928
	}
}

929 930 931 932
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
933
static int context_add_buffer(struct context *ctx)
934 935
{
	struct descriptor_buffer *desc;
936
	dma_addr_t uninitialized_var(bus_addr);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

962 963
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
964 965 966
{
	ctx->ohci = ohci;
	ctx->regs = regs;
967 968 969 970
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
971 972
		return -ENOMEM;

973 974 975
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

976 977 978
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

979 980
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
981
	 * branch address and looks like it's been sent.  That way we
982
	 * have a descriptor to append DMA programs to.
983
	 */
984 985 986 987 988 989
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
990 991 992 993

	return 0;
}

994
static void context_release(struct context *ctx)
995 996
{
	struct fw_card *card = &ctx->ohci->card;
997
	struct descriptor_buffer *desc, *tmp;
998

999 1000 1001 1002
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1003 1004
}

1005
/* Must be called with ohci->lock held */
1006 1007
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1008
{
1009 1010 1011 1012 1013 1014 1015 1016 1017
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1029

1030
	d = desc->buffer + desc->used / sizeof(*d);
1031
	memset(d, 0, z * sizeof(*d));
1032
	*d_bus = desc->buffer_bus + desc->used;
1033 1034 1035 1036

	return d;
}

1037
static void context_run(struct context *ctx, u32 extra)
1038 1039 1040
{
	struct fw_ohci *ohci = ctx->ohci;

1041
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1042
		  le32_to_cpu(ctx->last->branch_address));
1043 1044
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1045 1046 1047 1048 1049 1050 1051
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1052
	struct descriptor_buffer *desc = ctx->buffer_tail;
1053

1054
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1055

1056
	desc->used += (z + extra) * sizeof(*d);
1057 1058

	wmb(); /* finish init of new descriptors before branch_address update */
1059 1060
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1061

1062
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1063 1064 1065 1066 1067 1068
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1069
	int i;
1070

1071
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1072
	flush_writes(ctx->ohci);
1073

1074
	for (i = 0; i < 10; i++) {
1075
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1076
		if ((reg & CONTEXT_ACTIVE) == 0)
1077
			return;
1078

1079
		mdelay(1);
1080
	}
1081
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1082
}
1083

1084 1085 1086
struct driver_data {
	struct fw_packet *packet;
};
1087

1088 1089
/*
 * This function apppends a packet to the DMA queue for transmission.
1090
 * Must always be called with the ochi->lock held to ensure proper
1091 1092
 * generation handling and locking around packet queue manipulation.
 */
1093 1094
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1095 1096
{
	struct fw_ohci *ohci = ctx->ohci;
1097
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1098 1099 1100
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1101
	int z, tcode;
1102
	u32 reg;
1103

1104 1105 1106 1107
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1108 1109
	}

1110
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1111 1112
	d[0].res_count = cpu_to_le16(packet->timestamp);

1113 1114
	/*
	 * The DMA format for asyncronous link packets is different
1115 1116
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1117 1118
	 * which we need to prepend an extra quadlet.
	 */
1119 1120

	header = (__le32 *) &d[1];
1121 1122 1123
	switch (packet->header_length) {
	case 16:
	case 12:
1124 1125 1126 1127 1128
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1129 1130 1131

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1132
			header[3] = cpu_to_le32(packet->header[3]);
1133
		else
1134 1135 1136
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1137 1138 1139
		break;

	case 8:
1140 1141 1142 1143 1144
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1145 1146 1147

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1161 1162
	}

1163 1164
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1165
	packet->driver_data = driver_data;
1166

1167 1168 1169 1170
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1171
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1172 1173 1174
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1175 1176
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1177 1178 1179 1180 1181

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1182
	} else {
1183 1184
		last = &d[0];
		z = 2;
1185 1186
	}

1187 1188 1189
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1204
		if (packet->payload_mapped)
1205 1206
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1207 1208 1209 1210 1211
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1212

1213
	/* If the context isn't already running, start it up. */
1214
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1215
	if ((reg & CONTEXT_RUN) == 0)
1216 1217 1218
		context_run(ctx, 0);

	return 0;
1219 1220
}

1221 1222 1223
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1224
{
1225
	struct driver_data *driver_data;
1226
	struct fw_packet *packet;
1227
	struct fw_ohci *ohci = context->ohci;
1228 1229
	int evt;

1230 1231 1232
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1233

1234 1235 1236 1237 1238
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1239

1240
	if (packet->payload_mapped)
1241
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1242 1243
				 packet->payload_length, DMA_TO_DEVICE);

1244 1245
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1246

1247 1248
	log_ar_at_event('T', packet->speed, packet->header, evt);

1249 1250 1251 1252 1253
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1254

1255
	case OHCI1394_evt_flushed:
1256 1257 1258 1259
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1260 1261
		packet->ack = RCODE_GENERATION;
		break;
1262

1263
	case OHCI1394_evt_missing_ack:
1264 1265 1266 1267
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1268 1269
		packet->ack = RCODE_NO_ACK;
		break;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1280

1281 1282 1283 1284
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1285

1286
	packet->callback(packet, &ohci->card, packet->ack);
1287

1288
	return 1;
1289 1290
}

1291 1292 1293 1294 1295
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1296

1297 1298
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1299 1300 1301 1302
{
	struct fw_packet response;
	int tcode, length, i;

1303
	tcode = HEADER_GET_TCODE(packet->header[0]);
1304
	if (TCODE_IS_BLOCK_PACKET(tcode))
1305
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1324 1325
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1326 1327
{
	struct fw_packet response;
1328
	int tcode, length, ext_tcode, sel, try;
1329 1330 1331
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1332 1333
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1334
	payload = packet->payload;
1335
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1367 1368 1369 1370 1371

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1372
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1373
{
1374
	u64 offset, csr;
1375

1376 1377 1378 1379
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1380 1381 1382

	offset =
		((unsigned long long)
1383
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1404 1405 1406 1407 1408

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1409
}
1410

1411
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1412 1413
{
	unsigned long flags;
1414
	int ret;
1415 1416 1417

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1418
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1419
	    ctx->ohci->generation == packet->generation) {
1420 1421 1422
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1423
	}
1424

1425
	ret = at_context_queue_packet(ctx, packet);
1426 1427
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1428
	if (ret < 0)
1429
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1430

1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1505 1506 1507
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1508
	int self_id_count, i, j, reg;
1509 1510
	int generation, new_generation;
	unsigned long flags;
1511 1512
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1513
	bool is_new_root;
1514 1515 1516

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1517
		fw_notify("node ID not valid, new bus reset in progress\n");
1518 1519
		return;
	}
1520 1521 1522 1523 1524 1525
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1526

1527 1528 1529 1530 1531 1532
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1533 1534 1535 1536 1537
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1538 1539
	/*
	 * The count in the SelfIDCount register is the number of
1540 1541
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1542 1543
	 * bit extra to get the actual number of self IDs.
	 */
1544 1545
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1546 1547 1548
		fw_notify("inconsistent self IDs\n");
		return;
	}
1549
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1550
	rmb();
1551 1552

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1553 1554 1555 1556
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1557 1558
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1559
	}
1560
	rmb();
1561

1562 1563
	/*
	 * Check the consistency of the self IDs we just read.  The
1564 1565 1566 1567 1568 1569 1570 1571 1572
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1573 1574
	 * of self IDs.
	 */
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1587 1588
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1589 1590
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1591
	if (ohci->quirks & QUIRK_RESET_PACKET)
1592 1593
		ohci->request_generation = generation;

1594 1595
	/*
	 * This next bit is unrelated to the AT context stuff but we
1596 1597 1598 1599
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1600
	 * next_config_rom pointer so a new update can take place.
1601
	 */
1602 1603

	if (ohci->next_config_rom != NULL) {
1604 1605 1606 1607
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1608 1609 1610 1611
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1612 1613
		/*
		 * Restore config_rom image and manually update
1614 1615
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1616 1617
		 * do that last.
		 */
1618 1619
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1620 1621 1622
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1623 1624
	}

1625 1626 1627 1628 1629
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1630 1631
	spin_unlock_irqrestore(&ohci->lock, flags);

1632 1633 1634 1635
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1636 1637
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1638

1639
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1640 1641 1642
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1643 1644 1645 1646 1647
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1648
	u32 event, iso_event;
1649 1650 1651 1652
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1653
	if (!event || !~event)
1654 1655
		return IRQ_NONE;

1656 1657
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1658
	log_irqs(event);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1675
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1676 1677 1678 1679
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1680
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1681 1682 1683
		iso_event &= ~(1 << i);
	}

1684
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1685 1686 1687 1688
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1689
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1690 1691 1692
		iso_event &= ~(1 << i);
	}

1693 1694 1695 1696
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1697 1698 1699
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1700 1701 1702 1703 1704 1705 1706
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1718 1719 1720 1721 1722 1723
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1724 1725 1726
	return IRQ_HANDLED;
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1743 1744 1745 1746 1747 1748 1749 1750 1751
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1752 1753 1754
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1755
	int ret, clear, set, offset;
1756 1757 1758 1759 1760 1761 1762 1763

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1764 1765 1766 1767 1768 1769 1770 1771
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1786
	ret = update_phy_reg(ohci, 5, clear, set);
1787 1788
	if (ret < 0)
		return ret;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1803 1804
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1805 1806 1807
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1808
	u32 lps, seconds, version, irqs;
1809
	int i, ret;
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1821 1822
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1823 1824 1825 1826 1827
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1839 1840 1841 1842

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1843
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1844 1845
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1846
		  OHCI1394_LinkControl_rcvPhyPkt |
1847 1848 1849 1850 1851 1852
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1853 1854
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1855

1856 1857 1858 1859
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1860 1861 1862 1863
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1864
		card->broadcast_channel_auto_allocated = true;
1865 1866
	}

1867 1868 1869 1870
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1871
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1872 1873 1874 1875 1876 1877 1878 1879

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1880 1881 1882
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1883

1884
	/* Activate link_on bit and contender bit in our self ID packets.*/
1885 1886 1887
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1888

1889 1890
	/*
	 * When the link is not yet enabled, the atomic config rom
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1908 1909 1910 1911 1912 1913 1914
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1915

1916
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1917 1918 1919 1920 1921 1922 1923 1924
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1925

1926
	ohci->next_header = ohci->next_config_rom[0];
1927 1928
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1929 1930
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1931 1932 1933 1934
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1935 1936
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1937
	if (request_irq(dev->irq, irq_handler,
1938 1939 1940 1941
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1942 1943 1944 1945 1946
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1947 1948 1949 1950 1951 1952
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1953
		OHCI1394_cycle64Seconds |
1954 1955 1956 1957 1958 1959
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1960 1961 1962 1963 1964
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1965 1966
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1967 1968 1969 1970

	return 0;
}

1971
static int ohci_set_config_rom(struct fw_card *card,
1972
			       const __be32 *config_rom, size_t length)
1973 1974 1975
{
	struct fw_ohci *ohci;
	unsigned long flags;
1976
	int ret = -EBUSY;
1977
	__be32 *next_config_rom;
1978
	dma_addr_t uninitialized_var(next_config_rom_bus);
1979 1980 1981

	ohci = fw_ohci(card);

1982 1983
	/*
	 * When the OHCI controller is enabled, the config rom update
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2021
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2022 2023 2024 2025 2026 2027

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2028
		ret = 0;
2029 2030 2031 2032
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2033 2034
	/*
	 * Now initiate a bus reset to have the changes take
2035 2036 2037
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2038 2039
	 * takes effect.
	 */
2040
	if (ret == 0)
2041
		fw_schedule_bus_reset(&ohci->card, true, true);
2042 2043 2044
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2045

2046
	return ret;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2063 2064 2065
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2066 2067
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2068
	int ret = -ENOENT;
2069

2070
	tasklet_disable(&ctx->tasklet);
2071

2072 2073
	if (packet->ack != 0)
		goto out;
2074

2075
	if (packet->payload_mapped)
2076 2077 2078
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2079
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2080 2081 2082
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2083
	ret = 0;
2084 2085
 out:
	tasklet_enable(&ctx->tasklet);
2086

2087
	return ret;
2088 2089
}

2090 2091
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2092
{
2093 2094 2095
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2096 2097
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2098
	int n, ret = 0;
2099

2100 2101 2102 2103
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2104 2105 2106 2107

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2108
		ret = -ESTALE;
2109 2110 2111
		goto out;
	}

2112 2113 2114 2115
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2116 2117 2118 2119 2120 2121 2122

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2123 2124
	flush_writes(ohci);
 out:
2125
	spin_unlock_irqrestore(&ohci->lock, flags);
2126 2127

	return ret;
2128
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2129
}
S
Stefan Richter 已提交
2130

2131
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2132
{
2133
	struct fw_ohci *ohci = fw_ohci(card);
2134 2135
	unsigned long flags;
	u32 value;
2136 2137

	switch (csr_offset) {
2138 2139 2140 2141 2142
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2143
			value = CSR_STATE_BIT_CMSTR;
2144
		else
2145 2146 2147
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2148

2149
		return value;
2150

2151 2152 2153
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2154 2155 2156
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2168 2169 2170 2171
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2172 2173 2174 2175
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2176 2177 2178 2179
	default:
		WARN_ON(1);
		return 0;
	}
2180 2181
}

2182
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2183 2184
{
	struct fw_ohci *ohci = fw_ohci(card);
2185
	unsigned long flags;
2186

2187
	switch (csr_offset) {
2188 2189 2190 2191 2192 2193
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2194 2195
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2196
		break;
2197

2198 2199 2200 2201 2202 2203
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2204 2205
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2206
		break;
2207

2208 2209 2210 2211 2212
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2213 2214 2215 2216 2217 2218 2219
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2220 2221 2222 2223 2224 2225
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2226 2227 2228 2229 2230 2231 2232
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2233 2234 2235 2236 2237
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2238 2239 2240 2241
	default:
		WARN_ON(1);
		break;
	}
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2266 2267 2268 2269 2270 2271
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2272
	struct descriptor *pd;
2273
	__le32 *ir_header;
2274
	void *p;
2275

2276
	for (pd = d; pd <= last; pd++)
2277 2278 2279
		if (pd->transfer_status)
			break;
	if (pd > last)
2280 2281 2282
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2283 2284
	p = last + 1;
	copy_iso_headers(ctx, p);
2285

2286 2287
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2288 2289 2290 2291
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2292 2293 2294 2295 2296 2297
		ctx->header_length = 0;
	}

	return 1;
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2320 2321 2322
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2323
{
2324 2325
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2326 2327
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2328

2329 2330 2331 2332 2333
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2334 2335
		return 0;

2336 2337 2338 2339 2340 2341 2342 2343 2344
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2345 2346 2347
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2348 2349
		ctx->header_length = 0;
	}
2350
	return 1;
2351 2352
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2365
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2366
				int type, int channel, size_t header_size)
2367 2368
{
	struct fw_ohci *ohci = fw_ohci(card);
2369 2370 2371 2372
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2373
	unsigned long flags;
2374
	int index, ret = -EBUSY;
2375

2376
	spin_lock_irqsave(&ohci->lock, flags);
2377

2378 2379 2380
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2381
		callback = handle_it_packet;
2382 2383 2384 2385 2386 2387 2388 2389 2390
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2391
		channels = &ohci->ir_context_channels;
2392
		mask     = &ohci->ir_context_mask;
2393
		callback = handle_ir_packet_per_buffer;
2394 2395 2396 2397 2398 2399 2400 2401
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2418
	}
2419

2420 2421 2422
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2423
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2424

2425
	memset(ctx, 0, sizeof(*ctx));
2426 2427
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2428 2429
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2430
		goto out;
2431
	}
2432 2433
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2434
		goto out_with_header;
2435

2436 2437 2438
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2439
	return &ctx->base;
2440 2441 2442 2443 2444

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2455
	*mask |= 1 << index;
2456

2457 2458
	spin_unlock_irqrestore(&ohci->lock, flags);

2459
	return ERR_PTR(ret);
2460 2461
}

2462 2463
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2464
{
S
Stefan Richter 已提交
2465
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2466
	struct fw_ohci *ohci = ctx->context.ohci;
2467
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2468 2469
	int index;

2470 2471
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2472
		index = ctx - ohci->it_context_list;
2473 2474 2475
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2476
				(cycle & 0x7fff) << 16;
2477

2478 2479
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2480
		context_run(&ctx->context, match);
2481 2482 2483 2484 2485 2486
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2487
		index = ctx - ohci->ir_context_list;
2488 2489 2490 2491 2492
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2493

2494 2495
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2496
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2497
		context_run(&ctx->context, control);
2498
		break;
2499
	}
2500 2501 2502 2503

	return 0;
}

2504 2505 2506
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2507
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2508 2509
	int index;

2510 2511
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2512 2513
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2514 2515 2516 2517
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2518 2519
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2520
		break;
2521 2522 2523 2524 2525 2526 2527
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2528 2529 2530
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2531
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2532 2533 2534
	unsigned long flags;
	int index;

2535 2536
	ohci_stop_iso(base);
	context_release(&ctx->context);
2537
	free_page((unsigned long)ctx->header);
2538

2539 2540
	spin_lock_irqsave(&ohci->lock, flags);

2541 2542
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2543 2544
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2545 2546 2547
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2548 2549
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2550
		ohci->ir_context_channels |= 1ULL << base->channel;
2551 2552 2553 2554 2555 2556 2557 2558 2559
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2560 2561 2562 2563 2564
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2599
{
2600
	struct descriptor *d, *last, *pd;
2601 2602
	struct fw_iso_packet *p;
	__le32 *header;
2603
	dma_addr_t d_bus, page_bus;
2604 2605
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2606
	int page, end_page, i, length, offset;
2607 2608

	p = packet;
2609
	payload_index = payload;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2628
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2629

2630 2631 2632
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2633 2634

	if (!p->skip) {
2635
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2636
		d[0].req_count = cpu_to_le16(8);
2637 2638 2639 2640 2641 2642 2643 2644
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2645 2646

		header = (__le32 *) &d[1];
2647 2648 2649 2650 2651
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2652
		header[1] =
2653
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2654 2655 2656 2657 2658
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2659
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2672 2673 2674

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2675 2676 2677 2678 2679

		payload_index += length;
	}

	if (p->interrupt)
2680
		irq = DESCRIPTOR_IRQ_ALWAYS;
2681
	else
2682
		irq = DESCRIPTOR_NO_IRQ;
2683

2684
	last = z == 2 ? d : d + z - 1;
2685 2686 2687
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2688
				     irq);
2689

2690
	context_append(&ctx->context, d, z, header_z);
2691 2692 2693

	return 0;
}
S
Stefan Richter 已提交
2694

2695 2696 2697 2698
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2699
{
2700
	struct descriptor *d, *pd;
2701 2702
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2703 2704
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2705 2706

	/*
2707 2708
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2709
	 */
2710
	packet_count = packet->header_length / ctx->base.header_size;
2711
	header_size  = max(ctx->base.header_size, (size_t)8);
2712 2713 2714 2715 2716

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2717
	payload_per_buffer = packet->payload_length / packet_count;
2718 2719 2720

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2721
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2722
		d = context_get_descriptors(&ctx->context,
2723
				z + header_z, &d_bus);
2724 2725 2726
		if (d == NULL)
			return -ENOMEM;

2727 2728
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2729
		if (packet->skip && i == 0)
2730
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2731 2732
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2733
		d->transfer_status = 0;
2734 2735
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2736
		rest = payload_per_buffer;
2737
		pd = d;
2738
		for (j = 1; j < z; j++) {
2739
			pd++;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2759 2760 2761
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2762
		if (packet->interrupt && i == packet_count - 1)
2763 2764 2765 2766 2767 2768 2769 2770
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2823 2824 2825 2826
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2827
{
2828
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2829
	unsigned long flags;
2830
	int ret = -ENOSYS;
2831

2832
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2844 2845
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2846
	return ret;
2847 2848
}

2849
static const struct fw_card_driver ohci_driver = {
2850
	.enable			= ohci_enable,
2851
	.read_phy_reg		= ohci_read_phy_reg,
2852 2853 2854 2855
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2856
	.cancel_packet		= ohci_cancel_packet,
2857
	.enable_phys_dma	= ohci_enable_phys_dma,
2858 2859
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2860 2861 2862

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
2863
	.set_iso_channels	= ohci_set_iso_channels,
2864
	.queue_iso		= ohci_queue_iso,
2865
	.start_iso		= ohci_start_iso,
2866
	.stop_iso		= ohci_stop_iso,
2867 2868
};

2869
#ifdef CONFIG_PPC_PMAC
2870
static void pmac_ohci_on(struct pci_dev *dev)
2871
{
2872 2873 2874 2875 2876 2877 2878 2879
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2880 2881
}

2882
static void pmac_ohci_off(struct pci_dev *dev)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2894 2895
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2896 2897
#endif /* CONFIG_PPC_PMAC */

2898 2899
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2900 2901
{
	struct fw_ohci *ohci;
2902
	u32 bus_options, max_receive, link_speed, version;
2903
	u64 guid;
2904
	int i, err, n_ir, n_it;
2905 2906
	size_t size;

2907
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2908
	if (ohci == NULL) {
2909 2910
		err = -ENOMEM;
		goto fail;
2911 2912 2913 2914
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2915
	pmac_ohci_on(dev);
2916

2917 2918
	err = pci_enable_device(dev);
	if (err) {
2919
		fw_error("Failed to enable OHCI hardware\n");
2920
		goto fail_free;
2921 2922 2923 2924 2925 2926 2927
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2928
	mutex_init(&ohci->phy_reg_mutex);
2929 2930 2931 2932

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2933 2934
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2935
		fw_error("MMIO resource unavailable\n");
2936
		goto fail_disable;
2937 2938 2939 2940 2941
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2942 2943
		err = -ENXIO;
		goto fail_iomem;
2944 2945
	}

2946
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2947 2948 2949 2950 2951
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
2952 2953 2954
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2955 2956
	if (param_quirks)
		ohci->quirks = param_quirks;
2957

2958 2959 2960 2961 2962 2963
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2964
	context_init(&ohci->at_request_ctx, ohci,
2965
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2966

2967
	context_init(&ohci->at_response_ctx, ohci,
2968
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2969 2970

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2971 2972
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2973
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2974 2975
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2976
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2977 2978

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2979
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2980
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2981 2982
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2983
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2984 2985

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2986
		err = -ENOMEM;
2987
		goto fail_contexts;
2988 2989 2990 2991 2992 2993 2994 2995
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2996
		err = -ENOMEM;
2997
		goto fail_contexts;
2998 2999 3000 3001 3002 3003 3004 3005
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3006
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3007
	if (err)
3008
		goto fail_self_id;
3009

3010 3011 3012 3013 3014
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
3015

3016
	return 0;
3017 3018 3019 3020

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3021
 fail_contexts:
3022
	kfree(ohci->ir_context_list);
3023 3024 3025 3026 3027
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
3028 3029 3030 3031 3032
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3033 3034
 fail_free:
	kfree(&ohci->card);
3035
	pmac_ohci_off(dev);
3036 3037 3038
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3039 3040

	return err;
3041 3042 3043 3044 3045 3046 3047
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3048 3049
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3050 3051
	fw_core_remove_card(&ohci->card);

3052 3053 3054 3055
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3056 3057 3058

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3059 3060 3061 3062 3063 3064 3065

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
3066 3067
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3068 3069 3070 3071
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3072 3073
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3074
	pci_disable_msi(dev);
3075 3076 3077
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3078
	kfree(&ohci->card);
3079
	pmac_ohci_off(dev);
3080

3081 3082 3083
	fw_notify("Removed fw-ohci device.\n");
}

3084
#ifdef CONFIG_PM
3085
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3086
{
3087
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3088 3089 3090
	int err;

	software_reset(ohci);
3091
	free_irq(dev->irq, ohci);
3092
	pci_disable_msi(dev);
3093
	err = pci_save_state(dev);
3094
	if (err) {
3095
		fw_error("pci_save_state failed\n");
3096 3097
		return err;
	}
3098
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3099 3100
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3101
	pmac_ohci_off(dev);
3102

3103 3104 3105
	return 0;
}

3106
static int pci_resume(struct pci_dev *dev)
3107
{
3108
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3109 3110
	int err;

3111
	pmac_ohci_on(dev);
3112 3113 3114
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3115
	if (err) {
3116
		fw_error("pci_enable_device failed\n");
3117 3118 3119
		return err;
	}

3120
	return ohci_enable(&ohci->card, NULL, 0);
3121 3122 3123
}
#endif

3124
static const struct pci_device_id pci_table[] = {
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3136 3137 3138 3139
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3140 3141 3142 3143 3144 3145
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3146 3147 3148 3149 3150
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);