ohci.c 74.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

236 237 238
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
239
#define QUIRK_NO_1394A			8
240 241 242 243 244

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
245
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246 247
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
248 249 250 251 252 253 254
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

255 256 257 258 259 260 261
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
262
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
263 264
	")");

265
#define OHCI_PARAM_DEBUG_AT_AR		1
266
#define OHCI_PARAM_DEBUG_SELFIDS	2
267 268
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
269

270 271
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

272 273 274 275
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
276 277 278
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279 280 281 282
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
283 284 285 286 287 288
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
289 290
		return;

291
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292 293 294 295 296 297 298 299 300
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
301
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
302 303 304 305 306 307
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
308
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309
		    OHCI1394_regAccessFail | OHCI1394_busReset)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

327
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 329 330 331
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

332 333
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
334 335 336

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
337 338 339 340 341 342
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343
		else
344 345 346 347
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

395
	if (evt == OHCI1394_evt_bus_reset) {
396 397
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
398 399 400
		return;
	}

401
	if (header[0] == ~header[1]) {
402 403
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
422
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423 424
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425 426 427 428 429 430
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
431 432
		break;
	default:
433 434 435 436 437 438
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
439 440 441 442 443
	}
}

#else

444 445 446 447
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
448 449 450

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
451
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
452 453 454 455
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
456
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
457 458 459 460
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
461
static inline void flush_writes(const struct fw_ohci *ohci)
462 463 464 465 466
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

467
static int read_phy_reg(struct fw_ohci *ohci, int addr)
468
{
469
	u32 val;
470
	int i;
471 472

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
473 474 475 476 477 478
	for (i = 0; i < 10; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

		msleep(1);
479
	}
480
	fw_error("failed to read phy reg\n");
481

482 483
	return -EBUSY;
}
484

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
	for (i = 0; i < 100; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

		msleep(1);
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
501 502 503 504 505 506
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
507
	int ret;
508

509 510 511
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
512

513 514 515 516 517 518 519
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

520
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
521 522
}

523
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
524
{
525
	int ret;
526

527 528 529
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
530

531
	return read_phy_reg(ohci, addr);
532 533
}

534
static int ar_context_add_page(struct ar_context *ctx)
535
{
536 537
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
538
	dma_addr_t uninitialized_var(ab_bus);
539 540
	size_t offset;

541
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
542 543 544
	if (ab == NULL)
		return -ENOMEM;

545
	ab->next = NULL;
546
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
547 548 549
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
550 551 552 553 554 555
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

556
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
557 558 559
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

560
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
561
	flush_writes(ctx->ohci);
562 563

	return 0;
564 565
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

581 582
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
583
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
584 585 586 587
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

588
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
589 590
{
	struct fw_ohci *ohci = ctx->ohci;
591 592
	struct fw_packet p;
	u32 status, length, tcode;
593
	int evt;
594

595 596 597
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
598 599 600 601 602

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
603
		p.header[3] = (__force __u32) buffer[3];
604
		p.header_length = 16;
605
		p.payload_length = 0;
606 607 608
		break;

	case TCODE_READ_BLOCK_REQUEST :
609
		p.header[3] = cond_le32_to_cpu(buffer[3]);
610 611 612 613 614
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
615 616 617
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
618
		p.header[3] = cond_le32_to_cpu(buffer[3]);
619
		p.header_length = 16;
620
		p.payload_length = p.header[3] >> 16;
621 622 623 624
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
625
	case OHCI_TCODE_PHY_PACKET:
626
		p.header_length = 12;
627
		p.payload_length = 0;
628
		break;
629 630 631 632 633

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
634
	}
635

636 637 638 639
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
640
	status = cond_le32_to_cpu(buffer[length]);
641
	evt    = (status >> 16) & 0x1f;
642

643
	p.ack        = evt - 16;
644 645 646
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
647

648
	log_ar_at_event('R', p.speed, p.header, evt);
649

650 651
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
652 653 654 655 656
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
657
	 * request.
658 659 660 661
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
662
	 */
663
	if (evt == OHCI1394_evt_bus_reset) {
664
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
665 666
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
667
		fw_core_handle_request(&ohci->card, &p);
668
	} else {
669
		fw_core_handle_response(&ohci->card, &p);
670
	}
671

672 673
	return buffer + length + 1;
}
674

675 676 677 678 679 680 681 682 683 684 685 686 687
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
688 689
		dma_addr_t start_bus;
		void *start;
690

691 692
		/*
		 * This descriptor is finished and we may have a
693
		 * packet split across this and the next buffer. We
694 695
		 * reuse the page for reassembling the split packet.
		 */
696 697

		offset = offsetof(struct ar_buffer, data);
698 699
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
700 701 702 703 704 705 706 707 708 709 710 711 712 713

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

714
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
715
				  start, start_bus);
716 717 718 719 720 721 722 723 724
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
725 726
}

727 728
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
729
{
730
	struct ar_buffer ab;
731

732 733 734
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
735 736
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

737 738 739 740 741
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

742 743 744 745 746 747 748 749 750 751
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
752
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
753 754

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
755
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
756
	flush_writes(ctx->ohci);
757
}
S
Stefan Richter 已提交
758

759
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
760 761 762 763 764 765 766 767 768 769 770 771 772
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

773 774 775 776 777 778
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
779
	struct descriptor_buffer *desc;
780

781 782 783
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
784
	while (last->branch_address != 0) {
785
		struct descriptor_buffer *old_desc = desc;
786 787
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
788 789 790 791 792 793 794 795 796
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
797
		last = find_branch_descriptor(d, z);
798 799 800 801

		if (!ctx->callback(ctx, d, last))
			break;

802 803 804 805 806 807 808 809 810 811
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
812 813 814
	}
}

815 816 817 818
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
819
static int context_add_buffer(struct context *ctx)
820 821
{
	struct descriptor_buffer *desc;
822
	dma_addr_t uninitialized_var(bus_addr);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

848 849
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
850 851 852
{
	ctx->ohci = ohci;
	ctx->regs = regs;
853 854 855 856
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
857 858
		return -ENOMEM;

859 860 861
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

862 863 864
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

865 866
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
867
	 * branch address and looks like it's been sent.  That way we
868
	 * have a descriptor to append DMA programs to.
869
	 */
870 871 872 873 874 875
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
876 877 878 879

	return 0;
}

880
static void context_release(struct context *ctx)
881 882
{
	struct fw_card *card = &ctx->ohci->card;
883
	struct descriptor_buffer *desc, *tmp;
884

885 886 887 888
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
889 890
}

891
/* Must be called with ohci->lock held */
892 893
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
894
{
895 896 897 898 899 900 901 902 903
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
904

905 906 907 908 909 910 911 912 913 914
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
915

916
	d = desc->buffer + desc->used / sizeof(*d);
917
	memset(d, 0, z * sizeof(*d));
918
	*d_bus = desc->buffer_bus + desc->used;
919 920 921 922

	return d;
}

923
static void context_run(struct context *ctx, u32 extra)
924 925 926
{
	struct fw_ohci *ohci = ctx->ohci;

927
	reg_write(ohci, COMMAND_PTR(ctx->regs),
928
		  le32_to_cpu(ctx->last->branch_address));
929 930
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
931 932 933 934 935 936 937
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
938
	struct descriptor_buffer *desc = ctx->buffer_tail;
939

940
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
941

942 943 944
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
945

946
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
947 948 949 950 951 952
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
953
	int i;
954

955
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
956
	flush_writes(ctx->ohci);
957

958
	for (i = 0; i < 10; i++) {
959
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
960
		if ((reg & CONTEXT_ACTIVE) == 0)
961
			return;
962

963
		mdelay(1);
964
	}
965
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
966
}
967

968 969 970
struct driver_data {
	struct fw_packet *packet;
};
971

972 973
/*
 * This function apppends a packet to the DMA queue for transmission.
974
 * Must always be called with the ochi->lock held to ensure proper
975 976
 * generation handling and locking around packet queue manipulation.
 */
977 978
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
979 980
{
	struct fw_ohci *ohci = ctx->ohci;
981
	dma_addr_t d_bus, uninitialized_var(payload_bus);
982 983 984
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
985
	int z, tcode;
986
	u32 reg;
987

988 989 990 991
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
992 993
	}

994
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
995 996
	d[0].res_count = cpu_to_le16(packet->timestamp);

997 998
	/*
	 * The DMA format for asyncronous link packets is different
999 1000
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1001 1002
	 * which we need to prepend an extra quadlet.
	 */
1003 1004

	header = (__le32 *) &d[1];
1005 1006 1007
	switch (packet->header_length) {
	case 16:
	case 12:
1008 1009 1010 1011 1012
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1013 1014 1015

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1016
			header[3] = cpu_to_le32(packet->header[3]);
1017
		else
1018 1019 1020
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1021 1022 1023
		break;

	case 8:
1024 1025 1026 1027 1028
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1042 1043
	}

1044 1045
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1046
	packet->driver_data = driver_data;
1047

1048 1049 1050 1051
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1052
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1053 1054 1055
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1056 1057
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1058 1059 1060 1061 1062

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1063
	} else {
1064 1065
		last = &d[0];
		z = 2;
1066 1067
	}

1068 1069 1070
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1085
		if (packet->payload_mapped)
1086 1087
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1088 1089 1090 1091 1092
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1093

1094
	/* If the context isn't already running, start it up. */
1095
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1096
	if ((reg & CONTEXT_RUN) == 0)
1097 1098 1099
		context_run(ctx, 0);

	return 0;
1100 1101
}

1102 1103 1104
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1105
{
1106
	struct driver_data *driver_data;
1107
	struct fw_packet *packet;
1108
	struct fw_ohci *ohci = context->ohci;
1109 1110
	int evt;

1111 1112 1113
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1114

1115 1116 1117 1118 1119
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1120

1121
	if (packet->payload_mapped)
1122
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1123 1124
				 packet->payload_length, DMA_TO_DEVICE);

1125 1126
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1127

1128 1129
	log_ar_at_event('T', packet->speed, packet->header, evt);

1130 1131 1132 1133 1134
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1135

1136
	case OHCI1394_evt_flushed:
1137 1138 1139 1140
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1141 1142
		packet->ack = RCODE_GENERATION;
		break;
1143

1144
	case OHCI1394_evt_missing_ack:
1145 1146 1147 1148
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1149 1150
		packet->ack = RCODE_NO_ACK;
		break;
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1161

1162 1163 1164 1165
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1166

1167
	packet->callback(packet, &ohci->card, packet->ack);
1168

1169
	return 1;
1170 1171
}

1172 1173 1174 1175 1176
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1177

1178 1179
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1180 1181 1182 1183
{
	struct fw_packet response;
	int tcode, length, i;

1184
	tcode = HEADER_GET_TCODE(packet->header[0]);
1185
	if (TCODE_IS_BLOCK_PACKET(tcode))
1186
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1205 1206
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1207 1208 1209 1210 1211 1212
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1213 1214
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1215
	payload = packet->payload;
1216
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1242
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1243 1244 1245 1246
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1247
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1248 1249 1250 1251
{
	u64 offset;
	u32 csr;

1252 1253 1254 1255
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1256 1257 1258

	offset =
		((unsigned long long)
1259
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1280 1281 1282 1283 1284

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1285
}
1286

1287
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1288 1289
{
	unsigned long flags;
1290
	int ret;
1291 1292 1293

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1294
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1295
	    ctx->ohci->generation == packet->generation) {
1296 1297 1298
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1299
	}
1300

1301
	ret = at_context_queue_packet(ctx, packet);
1302 1303
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1304
	if (ret < 0)
1305
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1306

1307 1308 1309 1310 1311
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1312
	int self_id_count, i, j, reg;
1313 1314
	int generation, new_generation;
	unsigned long flags;
1315 1316
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1317 1318 1319

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1320
		fw_notify("node ID not valid, new bus reset in progress\n");
1321 1322
		return;
	}
1323 1324 1325 1326 1327 1328
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1329

1330 1331 1332 1333 1334
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1335 1336
	/*
	 * The count in the SelfIDCount register is the number of
1337 1338
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1339 1340
	 * bit extra to get the actual number of self IDs.
	 */
1341 1342
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1343 1344 1345
		fw_notify("inconsistent self IDs\n");
		return;
	}
1346
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1347
	rmb();
1348 1349

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1350 1351 1352 1353
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1354 1355
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1356
	}
1357
	rmb();
1358

1359 1360
	/*
	 * Check the consistency of the self IDs we just read.  The
1361 1362 1363 1364 1365 1366 1367 1368 1369
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1370 1371
	 * of self IDs.
	 */
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1384 1385
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1386 1387
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1388
	if (ohci->quirks & QUIRK_RESET_PACKET)
1389 1390
		ohci->request_generation = generation;

1391 1392
	/*
	 * This next bit is unrelated to the AT context stuff but we
1393 1394 1395 1396
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1397 1398
	 * next_config_rom pointer so a new udpate can take place.
	 */
1399 1400

	if (ohci->next_config_rom != NULL) {
1401 1402 1403 1404
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1405 1406 1407 1408
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1409 1410
		/*
		 * Restore config_rom image and manually update
1411 1412
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1413 1414
		 * do that last.
		 */
1415 1416
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1417 1418 1419
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1420 1421
	}

1422 1423 1424 1425 1426
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1427 1428
	spin_unlock_irqrestore(&ohci->lock, flags);

1429 1430 1431 1432
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1433 1434
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1435

1436
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1437 1438 1439 1440 1441 1442
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1443
	u32 event, iso_event;
1444 1445 1446 1447
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1448
	if (!event || !~event)
1449 1450
		return IRQ_NONE;

1451 1452
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1453
	log_irqs(event);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1470
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1471 1472 1473 1474
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1475
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1476 1477 1478
		iso_event &= ~(1 << i);
	}

1479
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1480 1481 1482 1483
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1484
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1485 1486 1487
		iso_event &= ~(1 << i);
	}

1488 1489 1490 1491
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1492 1493 1494
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1495 1496 1497 1498 1499 1500 1501
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1513 1514 1515
	return IRQ_HANDLED;
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1532 1533 1534 1535 1536 1537 1538 1539 1540
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1541 1542 1543
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1544
	int ret, clear, set, offset;
1545 1546 1547 1548 1549 1550 1551 1552

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1553 1554 1555 1556 1557 1558 1559 1560
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1575 1576 1577
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1592 1593
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1594 1595 1596
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1597
	u32 lps, irqs;
1598
	int i, ret;
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1610 1611
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1612 1613 1614 1615 1616
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1628 1629 1630 1631

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1632
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1633 1634
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1652 1653 1654
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1655

1656
	/* Activate link_on bit and contender bit in our self ID packets.*/
1657 1658 1659
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1660

1661 1662
	/*
	 * When the link is not yet enabled, the atomic config rom
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1680 1681 1682 1683 1684 1685 1686
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1687

1688
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1689 1690 1691 1692 1693 1694 1695 1696
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1697

1698
	ohci->next_header = ohci->next_config_rom[0];
1699 1700
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1701 1702
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1703 1704 1705 1706 1707
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1708
			IRQF_SHARED, ohci_driver_name, ohci)) {
1709 1710 1711 1712 1713 1714 1715
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1728 1729 1730 1731 1732
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1733 1734 1735 1736
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1737 1738 1739 1740 1741 1742

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1743
static int ohci_set_config_rom(struct fw_card *card,
1744
			       const __be32 *config_rom, size_t length)
1745 1746 1747
{
	struct fw_ohci *ohci;
	unsigned long flags;
1748
	int ret = -EBUSY;
1749
	__be32 *next_config_rom;
1750
	dma_addr_t uninitialized_var(next_config_rom_bus);
1751 1752 1753

	ohci = fw_ohci(card);

1754 1755
	/*
	 * When the OHCI controller is enabled, the config rom update
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1793
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1794 1795 1796 1797 1798 1799

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1800
		ret = 0;
1801 1802 1803 1804
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1805 1806
	/*
	 * Now initiate a bus reset to have the changes take
1807 1808 1809
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1810 1811
	 * takes effect.
	 */
1812
	if (ret == 0)
1813
		fw_core_initiate_bus_reset(&ohci->card, 1);
1814 1815 1816
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1817

1818
	return ret;
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1835 1836 1837
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1838 1839
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1840
	int ret = -ENOENT;
1841

1842
	tasklet_disable(&ctx->tasklet);
1843

1844 1845
	if (packet->ack != 0)
		goto out;
1846

1847
	if (packet->payload_mapped)
1848 1849 1850
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1851
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1852 1853 1854
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1855
	ret = 0;
1856 1857
 out:
	tasklet_enable(&ctx->tasklet);
1858

1859
	return ret;
1860 1861
}

1862 1863
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1864
{
1865 1866 1867
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1868 1869
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1870
	int n, ret = 0;
1871

1872 1873 1874 1875
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1876 1877 1878 1879

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1880
		ret = -ESTALE;
1881 1882 1883
		goto out;
	}

1884 1885 1886 1887
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1888 1889 1890 1891 1892 1893 1894

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1895 1896
	flush_writes(ohci);
 out:
1897
	spin_unlock_irqrestore(&ohci->lock, flags);
1898 1899

	return ret;
1900
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1901
}
S
Stefan Richter 已提交
1902

1903
static u32 cycle_timer_ticks(u32 cycle_timer)
1904 1905 1906 1907 1908 1909
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1910

1911 1912 1913
	return ticks;
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1929
static u32 ohci_get_cycle_time(struct fw_card *card)
1930 1931
{
	struct fw_ohci *ohci = fw_ohci(card);
1932 1933 1934
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1935
	int i;
1936

1937 1938
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1939
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1940 1941
		i = 0;
		c1 = c2;
1942 1943
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1944 1945
			c0 = c1;
			c1 = c2;
1946 1947 1948 1949 1950 1951
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1952 1953 1954
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1955
	}
1956

1957
	return c2;
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1982 1983 1984 1985 1986 1987
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1988
	struct descriptor *pd;
1989
	__le32 *ir_header;
1990
	void *p;
1991

1992 1993 1994 1995 1996
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1997 1998 1999
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2000 2001
	p = last + 1;
	copy_iso_headers(ctx, p);
2002

2003 2004
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2015 2016 2017
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2018
{
2019 2020
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2021 2022
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2023

2024 2025 2026 2027 2028
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2029 2030
		return 0;

2031 2032 2033 2034 2035 2036 2037 2038 2039
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2040
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2041 2042 2043 2044
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2045
	return 1;
2046 2047
}

2048
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2049
				int type, int channel, size_t header_size)
2050 2051 2052
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2053
	descriptor_callback_t callback;
2054
	u64 *channels, dont_care = ~0ULL;
2055
	u32 *mask, regs;
2056
	unsigned long flags;
2057
	int index, ret = -ENOMEM;
2058 2059

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2060
		channels = &dont_care;
2061 2062
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2063
		callback = handle_it_packet;
2064
	} else {
2065
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2066 2067
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2068
		callback = handle_ir_packet_per_buffer;
2069 2070 2071
	}

	spin_lock_irqsave(&ohci->lock, flags);
2072 2073 2074
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2075
		*mask &= ~(1 << index);
2076
	}
2077 2078 2079 2080 2081
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2082 2083 2084 2085 2086
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2087
	ctx = &list[index];
2088
	memset(ctx, 0, sizeof(*ctx));
2089 2090 2091 2092 2093
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2094 2095
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2096
		goto out_with_header;
2097 2098

	return &ctx->base;
2099 2100 2101 2102 2103 2104 2105 2106

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2107
	return ERR_PTR(ret);
2108 2109
}

2110 2111
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2112
{
S
Stefan Richter 已提交
2113
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2114
	struct fw_ohci *ohci = ctx->context.ohci;
2115
	u32 control, match;
2116 2117
	int index;

2118 2119
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2120 2121 2122
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2123
				(cycle & 0x7fff) << 16;
2124

2125 2126
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2127
		context_run(&ctx->context, match);
2128 2129
	} else {
		index = ctx - ohci->ir_context_list;
2130
		control = IR_CONTEXT_ISOCH_HEADER;
2131 2132 2133 2134 2135
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2136

2137 2138
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2139
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2140
		context_run(&ctx->context, control);
2141
	}
2142 2143 2144 2145

	return 0;
}

2146 2147 2148
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2149
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2165 2166 2167
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2168
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2169 2170 2171
	unsigned long flags;
	int index;

2172 2173
	ohci_stop_iso(base);
	context_release(&ctx->context);
2174
	free_page((unsigned long)ctx->header);
2175

2176 2177 2178 2179 2180 2181 2182 2183
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2184
		ohci->ir_context_channels |= 1ULL << base->channel;
2185 2186 2187 2188 2189
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2190 2191 2192 2193
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2194
{
S
Stefan Richter 已提交
2195
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2196
	struct descriptor *d, *last, *pd;
2197 2198
	struct fw_iso_packet *p;
	__le32 *header;
2199
	dma_addr_t d_bus, page_bus;
2200 2201
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2202
	int page, end_page, i, length, offset;
2203 2204

	p = packet;
2205
	payload_index = payload;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2224
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2225

2226 2227 2228
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2229 2230

	if (!p->skip) {
2231
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2232
		d[0].req_count = cpu_to_le16(8);
2233 2234 2235 2236 2237 2238 2239 2240
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2241 2242

		header = (__le32 *) &d[1];
2243 2244 2245 2246 2247
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2248
		header[1] =
2249
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2250 2251 2252 2253 2254
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2255
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2268 2269 2270

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2271 2272 2273 2274 2275

		payload_index += length;
	}

	if (p->interrupt)
2276
		irq = DESCRIPTOR_IRQ_ALWAYS;
2277
	else
2278
		irq = DESCRIPTOR_NO_IRQ;
2279

2280
	last = z == 2 ? d : d + z - 1;
2281 2282 2283
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2284
				     irq);
2285

2286
	context_append(&ctx->context, d, z, header_z);
2287 2288 2289

	return 0;
}
S
Stefan Richter 已提交
2290

2291 2292 2293 2294
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2295 2296
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2297
	struct descriptor *d, *pd;
2298
	struct fw_iso_packet *p = packet;
2299 2300
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2301 2302
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2303 2304

	/*
2305 2306
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2307 2308
	 */
	packet_count = p->header_length / ctx->base.header_size;
2309
	header_size  = max(ctx->base.header_size, (size_t)8);
2310 2311 2312 2313 2314

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2315
	payload_per_buffer = p->payload_length / packet_count;
2316 2317 2318

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2319
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2320
		d = context_get_descriptors(&ctx->context,
2321
				z + header_z, &d_bus);
2322 2323 2324
		if (d == NULL)
			return -ENOMEM;

2325 2326 2327 2328
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2329 2330
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2331
		d->transfer_status = 0;
2332 2333
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2334
		rest = payload_per_buffer;
2335
		pd = d;
2336
		for (j = 1; j < z; j++) {
2337
			pd++;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2357 2358 2359
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2360
		if (p->interrupt && i == packet_count - 1)
2361 2362 2363 2364 2365 2366 2367 2368
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2369 2370 2371 2372
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2373
{
2374
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2375
	unsigned long flags;
2376
	int ret;
2377

2378
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2379
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2380
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2381
	else
2382 2383
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2384 2385
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2386
	return ret;
2387 2388
}

2389
static const struct fw_card_driver ohci_driver = {
2390 2391 2392 2393 2394
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2395
	.cancel_packet		= ohci_cancel_packet,
2396
	.enable_phys_dma	= ohci_enable_phys_dma,
2397
	.get_cycle_time		= ohci_get_cycle_time,
2398 2399 2400 2401

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2402
	.start_iso		= ohci_start_iso,
2403
	.stop_iso		= ohci_stop_iso,
2404 2405
};

2406
#ifdef CONFIG_PPC_PMAC
2407
static void pmac_ohci_on(struct pci_dev *dev)
2408
{
2409 2410 2411 2412 2413 2414 2415 2416
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2417 2418
}

2419
static void pmac_ohci_off(struct pci_dev *dev)
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2431 2432
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2433 2434
#endif /* CONFIG_PPC_PMAC */

2435 2436
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2437 2438
{
	struct fw_ohci *ohci;
2439
	u32 bus_options, max_receive, link_speed, version, link_enh;
2440
	u64 guid;
2441
	int i, err, n_ir, n_it;
2442 2443
	size_t size;

2444
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2445
	if (ohci == NULL) {
2446 2447
		err = -ENOMEM;
		goto fail;
2448 2449 2450 2451
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2452
	pmac_ohci_on(dev);
2453

2454 2455
	err = pci_enable_device(dev);
	if (err) {
2456
		fw_error("Failed to enable OHCI hardware\n");
2457
		goto fail_free;
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2469 2470
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2471
		fw_error("MMIO resource unavailable\n");
2472
		goto fail_disable;
2473 2474 2475 2476 2477
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2478 2479
		err = -ENXIO;
		goto fail_iomem;
2480 2481
	}

2482 2483 2484 2485 2486 2487 2488
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2489 2490
	if (param_quirks)
		ohci->quirks = param_quirks;
2491

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2509 2510 2511 2512 2513 2514
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2515
	context_init(&ohci->at_request_ctx, ohci,
2516
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2517

2518
	context_init(&ohci->at_response_ctx, ohci,
2519
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2520 2521

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2522 2523
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2524
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2525 2526
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2527
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2528 2529

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2530
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2531
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2532 2533
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2534
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2535 2536

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2537
		err = -ENOMEM;
2538
		goto fail_contexts;
2539 2540 2541 2542 2543 2544 2545 2546
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2547
		err = -ENOMEM;
2548
		goto fail_contexts;
2549 2550 2551 2552 2553 2554 2555 2556
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2557
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2558
	if (err)
2559
		goto fail_self_id;
2560

2561 2562 2563 2564 2565
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2566

2567
	return 0;
2568 2569 2570 2571

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2572
 fail_contexts:
2573
	kfree(ohci->ir_context_list);
2574 2575 2576 2577 2578
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2579 2580 2581 2582 2583
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2584 2585
 fail_free:
	kfree(&ohci->card);
2586
	pmac_ohci_off(dev);
2587 2588 2589
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2590 2591

	return err;
2592 2593 2594 2595 2596 2597 2598
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2599 2600
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2601 2602
	fw_core_remove_card(&ohci->card);

2603 2604 2605 2606
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2607 2608 2609

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2610 2611 2612 2613 2614 2615 2616

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2617 2618
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2619 2620 2621 2622
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2623 2624 2625 2626 2627
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2628
	kfree(&ohci->card);
2629
	pmac_ohci_off(dev);
2630

2631 2632 2633
	fw_notify("Removed fw-ohci device.\n");
}

2634
#ifdef CONFIG_PM
2635
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2636
{
2637
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2638 2639 2640
	int err;

	software_reset(ohci);
2641 2642
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2643
	if (err) {
2644
		fw_error("pci_save_state failed\n");
2645 2646
		return err;
	}
2647
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2648 2649
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2650
	pmac_ohci_off(dev);
2651

2652 2653 2654
	return 0;
}

2655
static int pci_resume(struct pci_dev *dev)
2656
{
2657
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2658 2659
	int err;

2660
	pmac_ohci_on(dev);
2661 2662 2663
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2664
	if (err) {
2665
		fw_error("pci_enable_device failed\n");
2666 2667 2668
		return err;
	}

2669
	return ohci_enable(&ohci->card, NULL, 0);
2670 2671 2672
}
#endif

2673
static const struct pci_device_id pci_table[] = {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2685 2686 2687 2688
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2689 2690 2691 2692 2693 2694
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2695 2696 2697 2698 2699
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);