ohci.c 72.1 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

236 237 238 239 240 241 242 243
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
244 245
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
							    QUIRK_RESET_PACKET},
246 247 248 249 250 251 252
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

253 254 255 256 257 258 259 260 261
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
	")");

262 263
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

264
#define OHCI_PARAM_DEBUG_AT_AR		1
265
#define OHCI_PARAM_DEBUG_SELFIDS	2
266 267
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
268 269 270 271 272

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
273 274 275
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276 277 278 279
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
280 281 282 283 284 285
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
286 287
		return;

288
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289 290 291 292 293 294 295 296 297
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
298
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
299 300 301 302 303 304
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
305
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306
		    OHCI1394_regAccessFail | OHCI1394_busReset)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

324
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 326 327 328
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

329 330
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
331 332 333

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
334 335 336 337 338 339
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340
		else
341 342 343 344
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

392
	if (evt == OHCI1394_evt_bus_reset) {
393 394
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
395 396 397
		return;
	}

398
	if (header[0] == ~header[1]) {
399 400
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
419
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420 421
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422 423 424 425 426 427
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
428 429
		break;
	default:
430 431 432 433 434 435
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
436 437 438 439 440 441
	}
}

#else

#define log_irqs(evt)
442
#define log_selfids(node_id, generation, self_id_count, sid)
443 444 445 446
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
447
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 449 450 451
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
452
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 454 455 456
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
457
static inline void flush_writes(const struct fw_ohci *ohci)
458 459 460 461 462
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

463
static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
464 465
{
	struct fw_ohci *ohci = fw_ohci(card);
466
	u32 val;
467 468

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
469
	flush_writes(ohci);
470 471 472
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
473
		fw_error("failed to read phy reg bits\n");
474 475 476
		return -EBUSY;
	}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	*value = OHCI1394_PhyControl_ReadData(val);

	return 0;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 old;
	int err;

	err = read_phy_reg(card, addr, &old);
	if (err < 0)
		return err;

493 494 495 496 497 498 499
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

500 501 502 503 504 505 506
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

507
static int ar_context_add_page(struct ar_context *ctx)
508
{
509 510
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
511
	dma_addr_t uninitialized_var(ab_bus);
512 513
	size_t offset;

514
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
515 516 517
	if (ab == NULL)
		return -ENOMEM;

518
	ab->next = NULL;
519
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
520 521 522
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
523 524 525 526 527 528
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

529
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
530 531 532
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

533
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
534
	flush_writes(ctx->ohci);
535 536

	return 0;
537 538
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

554 555
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
556
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
557 558 559 560
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

561
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
562 563
{
	struct fw_ohci *ohci = ctx->ohci;
564 565
	struct fw_packet p;
	u32 status, length, tcode;
566
	int evt;
567

568 569 570
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
571 572 573 574 575

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
576
		p.header[3] = (__force __u32) buffer[3];
577
		p.header_length = 16;
578
		p.payload_length = 0;
579 580 581
		break;

	case TCODE_READ_BLOCK_REQUEST :
582
		p.header[3] = cond_le32_to_cpu(buffer[3]);
583 584 585 586 587
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
588 589 590
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
591
		p.header[3] = cond_le32_to_cpu(buffer[3]);
592
		p.header_length = 16;
593
		p.payload_length = p.header[3] >> 16;
594 595 596 597
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
598
	case OHCI_TCODE_PHY_PACKET:
599
		p.header_length = 12;
600
		p.payload_length = 0;
601
		break;
602 603 604 605 606

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
607
	}
608

609 610 611 612
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
613
	status = cond_le32_to_cpu(buffer[length]);
614
	evt    = (status >> 16) & 0x1f;
615

616
	p.ack        = evt - 16;
617 618 619
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
620

621
	log_ar_at_event('R', p.speed, p.header, evt);
622

623 624
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
625 626 627 628 629
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
630
	 * request.
631 632 633 634
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
635
	 */
636
	if (evt == OHCI1394_evt_bus_reset) {
637
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
638 639
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
640
		fw_core_handle_request(&ohci->card, &p);
641
	} else {
642
		fw_core_handle_response(&ohci->card, &p);
643
	}
644

645 646
	return buffer + length + 1;
}
647

648 649 650 651 652 653 654 655 656 657 658 659 660
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
661 662
		dma_addr_t start_bus;
		void *start;
663

664 665
		/*
		 * This descriptor is finished and we may have a
666
		 * packet split across this and the next buffer. We
667 668
		 * reuse the page for reassembling the split packet.
		 */
669 670

		offset = offsetof(struct ar_buffer, data);
671 672
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
673 674 675 676 677 678 679 680 681 682 683 684 685 686

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

687
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
688
				  start, start_bus);
689 690 691 692 693 694 695 696 697
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
698 699
}

700 701
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
702
{
703
	struct ar_buffer ab;
704

705 706 707
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
708 709
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

710 711 712 713 714
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

715 716 717 718 719 720 721 722 723 724
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
725
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
726 727

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
728
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
729
	flush_writes(ctx->ohci);
730
}
S
Stefan Richter 已提交
731

732
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
733 734 735 736 737 738 739 740 741 742 743 744 745
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

746 747 748 749 750 751
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
752
	struct descriptor_buffer *desc;
753

754 755 756
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
757
	while (last->branch_address != 0) {
758
		struct descriptor_buffer *old_desc = desc;
759 760
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
761 762 763 764 765 766 767 768 769
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
770
		last = find_branch_descriptor(d, z);
771 772 773 774

		if (!ctx->callback(ctx, d, last))
			break;

775 776 777 778 779 780 781 782 783 784
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
785 786 787
	}
}

788 789 790 791
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
792
static int context_add_buffer(struct context *ctx)
793 794
{
	struct descriptor_buffer *desc;
795
	dma_addr_t uninitialized_var(bus_addr);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

821 822
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
823 824 825
{
	ctx->ohci = ohci;
	ctx->regs = regs;
826 827 828 829
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
830 831
		return -ENOMEM;

832 833 834
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

835 836 837
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

838 839
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
840
	 * branch address and looks like it's been sent.  That way we
841
	 * have a descriptor to append DMA programs to.
842
	 */
843 844 845 846 847 848
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
849 850 851 852

	return 0;
}

853
static void context_release(struct context *ctx)
854 855
{
	struct fw_card *card = &ctx->ohci->card;
856
	struct descriptor_buffer *desc, *tmp;
857

858 859 860 861
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
862 863
}

864
/* Must be called with ohci->lock held */
865 866
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
867
{
868 869 870 871 872 873 874 875 876
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
877

878 879 880 881 882 883 884 885 886 887
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
888

889
	d = desc->buffer + desc->used / sizeof(*d);
890
	memset(d, 0, z * sizeof(*d));
891
	*d_bus = desc->buffer_bus + desc->used;
892 893 894 895

	return d;
}

896
static void context_run(struct context *ctx, u32 extra)
897 898 899
{
	struct fw_ohci *ohci = ctx->ohci;

900
	reg_write(ohci, COMMAND_PTR(ctx->regs),
901
		  le32_to_cpu(ctx->last->branch_address));
902 903
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
904 905 906 907 908 909 910
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
911
	struct descriptor_buffer *desc = ctx->buffer_tail;
912

913
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
914

915 916 917
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
918

919
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
920 921 922 923 924 925
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
926
	int i;
927

928
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
929
	flush_writes(ctx->ohci);
930

931
	for (i = 0; i < 10; i++) {
932
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
933
		if ((reg & CONTEXT_ACTIVE) == 0)
934
			return;
935

936
		mdelay(1);
937
	}
938
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
939
}
940

941 942 943
struct driver_data {
	struct fw_packet *packet;
};
944

945 946
/*
 * This function apppends a packet to the DMA queue for transmission.
947
 * Must always be called with the ochi->lock held to ensure proper
948 949
 * generation handling and locking around packet queue manipulation.
 */
950 951
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
952 953
{
	struct fw_ohci *ohci = ctx->ohci;
954
	dma_addr_t d_bus, uninitialized_var(payload_bus);
955 956 957
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
958
	int z, tcode;
959
	u32 reg;
960

961 962 963 964
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
965 966
	}

967
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
968 969
	d[0].res_count = cpu_to_le16(packet->timestamp);

970 971
	/*
	 * The DMA format for asyncronous link packets is different
972 973
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
974 975
	 * which we need to prepend an extra quadlet.
	 */
976 977

	header = (__le32 *) &d[1];
978 979 980
	switch (packet->header_length) {
	case 16:
	case 12:
981 982 983 984 985
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
986 987 988

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
989
			header[3] = cpu_to_le32(packet->header[3]);
990
		else
991 992 993
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
994 995 996
		break;

	case 8:
997 998 999 1000 1001
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1015 1016
	}

1017 1018
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1019
	packet->driver_data = driver_data;
1020

1021 1022 1023 1024
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1025
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1026 1027 1028
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1029 1030
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1031 1032 1033 1034 1035

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1036
	} else {
1037 1038
		last = &d[0];
		z = 2;
1039 1040
	}

1041 1042 1043
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1058
		if (packet->payload_mapped)
1059 1060
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1061 1062 1063 1064 1065
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1066

1067
	/* If the context isn't already running, start it up. */
1068
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1069
	if ((reg & CONTEXT_RUN) == 0)
1070 1071 1072
		context_run(ctx, 0);

	return 0;
1073 1074
}

1075 1076 1077
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1078
{
1079
	struct driver_data *driver_data;
1080
	struct fw_packet *packet;
1081
	struct fw_ohci *ohci = context->ohci;
1082 1083
	int evt;

1084 1085 1086
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1087

1088 1089 1090 1091 1092
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1093

1094
	if (packet->payload_mapped)
1095
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1096 1097
				 packet->payload_length, DMA_TO_DEVICE);

1098 1099
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1100

1101 1102
	log_ar_at_event('T', packet->speed, packet->header, evt);

1103 1104 1105 1106 1107
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1108

1109
	case OHCI1394_evt_flushed:
1110 1111 1112 1113
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1114 1115
		packet->ack = RCODE_GENERATION;
		break;
1116

1117
	case OHCI1394_evt_missing_ack:
1118 1119 1120 1121
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1122 1123
		packet->ack = RCODE_NO_ACK;
		break;
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1134

1135 1136 1137 1138
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1139

1140
	packet->callback(packet, &ohci->card, packet->ack);
1141

1142
	return 1;
1143 1144
}

1145 1146 1147 1148 1149
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1150

1151 1152
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1153 1154 1155 1156
{
	struct fw_packet response;
	int tcode, length, i;

1157
	tcode = HEADER_GET_TCODE(packet->header[0]);
1158
	if (TCODE_IS_BLOCK_PACKET(tcode))
1159
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1178 1179
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1180 1181 1182 1183 1184 1185
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1186 1187
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1188
	payload = packet->payload;
1189
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1215
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1216 1217 1218 1219
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1220
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1221 1222 1223 1224
{
	u64 offset;
	u32 csr;

1225 1226 1227 1228
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1229 1230 1231

	offset =
		((unsigned long long)
1232
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1253 1254 1255 1256 1257

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1258
}
1259

1260
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1261 1262
{
	unsigned long flags;
1263
	int ret;
1264 1265 1266

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1267
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1268
	    ctx->ohci->generation == packet->generation) {
1269 1270 1271
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1272
	}
1273

1274
	ret = at_context_queue_packet(ctx, packet);
1275 1276
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1277
	if (ret < 0)
1278
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1279

1280 1281 1282 1283 1284
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1285
	int self_id_count, i, j, reg;
1286 1287
	int generation, new_generation;
	unsigned long flags;
1288 1289
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1290 1291 1292

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1293
		fw_notify("node ID not valid, new bus reset in progress\n");
1294 1295
		return;
	}
1296 1297 1298 1299 1300 1301
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1302

1303 1304 1305 1306 1307
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1308 1309
	/*
	 * The count in the SelfIDCount register is the number of
1310 1311
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1312 1313
	 * bit extra to get the actual number of self IDs.
	 */
1314 1315
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1316 1317 1318
		fw_notify("inconsistent self IDs\n");
		return;
	}
1319
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1320
	rmb();
1321 1322

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1323 1324 1325 1326
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1327 1328
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1329
	}
1330
	rmb();
1331

1332 1333
	/*
	 * Check the consistency of the self IDs we just read.  The
1334 1335 1336 1337 1338 1339 1340 1341 1342
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1343 1344
	 * of self IDs.
	 */
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1357 1358
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1359 1360
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1361
	if (ohci->quirks & QUIRK_RESET_PACKET)
1362 1363
		ohci->request_generation = generation;

1364 1365
	/*
	 * This next bit is unrelated to the AT context stuff but we
1366 1367 1368 1369
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1370 1371
	 * next_config_rom pointer so a new udpate can take place.
	 */
1372 1373

	if (ohci->next_config_rom != NULL) {
1374 1375 1376 1377
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1378 1379 1380 1381
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1382 1383
		/*
		 * Restore config_rom image and manually update
1384 1385
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1386 1387
		 * do that last.
		 */
1388 1389
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1390 1391 1392
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1393 1394
	}

1395 1396 1397 1398 1399
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1400 1401
	spin_unlock_irqrestore(&ohci->lock, flags);

1402 1403 1404 1405
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1406 1407
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1408

1409
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1410 1411 1412 1413 1414 1415
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1416
	u32 event, iso_event;
1417 1418 1419 1420
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1421
	if (!event || !~event)
1422 1423
		return IRQ_NONE;

1424 1425
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1426
	log_irqs(event);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1443
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1444 1445 1446 1447
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1448
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1449 1450 1451
		iso_event &= ~(1 << i);
	}

1452
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1453 1454 1455 1456
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1457
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1458 1459 1460
		iso_event &= ~(1 << i);
	}

1461 1462 1463 1464
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1465 1466 1467
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1468 1469 1470 1471 1472 1473 1474
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1486 1487 1488
	return IRQ_HANDLED;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1516 1517 1518
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1519 1520
	u32 lps;
	int i;
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1532 1533
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1534 1535 1536 1537 1538
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1550 1551 1552 1553

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1554
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1555 1556
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1578
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1579
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1580
		  OHCI1394_masterIntEnable);
1581 1582
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1583 1584 1585 1586 1587 1588

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1589 1590
	/*
	 * When the link is not yet enabled, the atomic config rom
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1608 1609 1610 1611 1612 1613 1614
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1615

1616
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1617 1618 1619 1620 1621 1622 1623 1624
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1625

1626
	ohci->next_header = ohci->next_config_rom[0];
1627 1628
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1629 1630
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1631 1632 1633 1634 1635
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1636
			IRQF_SHARED, ohci_driver_name, ohci)) {
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1649 1650 1651 1652
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1653 1654 1655 1656 1657 1658

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1659
static int ohci_set_config_rom(struct fw_card *card,
1660
			       const __be32 *config_rom, size_t length)
1661 1662 1663
{
	struct fw_ohci *ohci;
	unsigned long flags;
1664
	int ret = -EBUSY;
1665
	__be32 *next_config_rom;
1666
	dma_addr_t uninitialized_var(next_config_rom_bus);
1667 1668 1669

	ohci = fw_ohci(card);

1670 1671
	/*
	 * When the OHCI controller is enabled, the config rom update
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1709
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1710 1711 1712 1713 1714 1715

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1716
		ret = 0;
1717 1718 1719 1720
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1721 1722
	/*
	 * Now initiate a bus reset to have the changes take
1723 1724 1725
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1726 1727
	 * takes effect.
	 */
1728
	if (ret == 0)
1729
		fw_core_initiate_bus_reset(&ohci->card, 1);
1730 1731 1732
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1733

1734
	return ret;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1751 1752 1753
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1754 1755
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1756
	int ret = -ENOENT;
1757

1758
	tasklet_disable(&ctx->tasklet);
1759

1760 1761
	if (packet->ack != 0)
		goto out;
1762

1763
	if (packet->payload_mapped)
1764 1765 1766
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1767
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1768 1769 1770
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1771
	ret = 0;
1772 1773
 out:
	tasklet_enable(&ctx->tasklet);
1774

1775
	return ret;
1776 1777
}

1778 1779
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1780
{
1781 1782 1783
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1784 1785
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1786
	int n, ret = 0;
1787

1788 1789 1790 1791
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1792 1793 1794 1795

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1796
		ret = -ESTALE;
1797 1798 1799
		goto out;
	}

1800 1801 1802 1803
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1804 1805 1806 1807 1808 1809 1810

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1811 1812
	flush_writes(ohci);
 out:
1813
	spin_unlock_irqrestore(&ohci->lock, flags);
1814 1815

	return ret;
1816
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1817
}
S
Stefan Richter 已提交
1818

1819
static u32 cycle_timer_ticks(u32 cycle_timer)
1820 1821 1822 1823 1824 1825
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1826

1827 1828 1829
	return ticks;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1845
static u32 ohci_get_cycle_time(struct fw_card *card)
1846 1847
{
	struct fw_ohci *ohci = fw_ohci(card);
1848 1849 1850
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1851
	int i;
1852

1853 1854
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1855
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1856 1857
		i = 0;
		c1 = c2;
1858 1859
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1860 1861
			c0 = c1;
			c1 = c2;
1862 1863 1864 1865 1866 1867
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1868 1869 1870
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1871
	}
1872

1873
	return c2;
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1898 1899 1900 1901 1902 1903
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1904
	struct descriptor *pd;
1905
	__le32 *ir_header;
1906
	void *p;
1907

1908 1909 1910 1911 1912
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1913 1914 1915
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1916 1917
	p = last + 1;
	copy_iso_headers(ctx, p);
1918

1919 1920
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1931 1932 1933
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1934
{
1935 1936
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1937 1938
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1939

1940 1941 1942 1943 1944
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1945 1946
		return 0;

1947 1948 1949 1950 1951 1952 1953 1954 1955
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1956
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1957 1958 1959 1960
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1961
	return 1;
1962 1963
}

1964
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1965
				int type, int channel, size_t header_size)
1966 1967 1968
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1969
	descriptor_callback_t callback;
1970
	u64 *channels, dont_care = ~0ULL;
1971
	u32 *mask, regs;
1972
	unsigned long flags;
1973
	int index, ret = -ENOMEM;
1974 1975

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1976
		channels = &dont_care;
1977 1978
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1979
		callback = handle_it_packet;
1980
	} else {
1981
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1982 1983
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1984
		callback = handle_ir_packet_per_buffer;
1985 1986 1987
	}

	spin_lock_irqsave(&ohci->lock, flags);
1988 1989 1990
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1991
		*mask &= ~(1 << index);
1992
	}
1993 1994 1995 1996 1997
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1998 1999 2000 2001 2002
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2003
	ctx = &list[index];
2004
	memset(ctx, 0, sizeof(*ctx));
2005 2006 2007 2008 2009
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2010 2011
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2012
		goto out_with_header;
2013 2014

	return &ctx->base;
2015 2016 2017 2018 2019 2020 2021 2022

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2023
	return ERR_PTR(ret);
2024 2025
}

2026 2027
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2028
{
S
Stefan Richter 已提交
2029
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2030
	struct fw_ohci *ohci = ctx->context.ohci;
2031
	u32 control, match;
2032 2033
	int index;

2034 2035
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2036 2037 2038
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2039
				(cycle & 0x7fff) << 16;
2040

2041 2042
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2043
		context_run(&ctx->context, match);
2044 2045
	} else {
		index = ctx - ohci->ir_context_list;
2046
		control = IR_CONTEXT_ISOCH_HEADER;
2047 2048 2049 2050 2051
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2052

2053 2054
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2055
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2056
		context_run(&ctx->context, control);
2057
	}
2058 2059 2060 2061

	return 0;
}

2062 2063 2064
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2065
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2081 2082 2083
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2084
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2085 2086 2087
	unsigned long flags;
	int index;

2088 2089
	ohci_stop_iso(base);
	context_release(&ctx->context);
2090
	free_page((unsigned long)ctx->header);
2091

2092 2093 2094 2095 2096 2097 2098 2099
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2100
		ohci->ir_context_channels |= 1ULL << base->channel;
2101 2102 2103 2104 2105
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2106 2107 2108 2109
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2110
{
S
Stefan Richter 已提交
2111
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2112
	struct descriptor *d, *last, *pd;
2113 2114
	struct fw_iso_packet *p;
	__le32 *header;
2115
	dma_addr_t d_bus, page_bus;
2116 2117
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2118
	int page, end_page, i, length, offset;
2119 2120

	p = packet;
2121
	payload_index = payload;
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2140
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2141

2142 2143 2144
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2145 2146

	if (!p->skip) {
2147
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2148
		d[0].req_count = cpu_to_le16(8);
2149 2150 2151 2152 2153 2154 2155 2156
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2157 2158

		header = (__le32 *) &d[1];
2159 2160 2161 2162 2163
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2164
		header[1] =
2165
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2166 2167 2168 2169 2170
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2171
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2184 2185 2186

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2187 2188 2189 2190 2191

		payload_index += length;
	}

	if (p->interrupt)
2192
		irq = DESCRIPTOR_IRQ_ALWAYS;
2193
	else
2194
		irq = DESCRIPTOR_NO_IRQ;
2195

2196
	last = z == 2 ? d : d + z - 1;
2197 2198 2199
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2200
				     irq);
2201

2202
	context_append(&ctx->context, d, z, header_z);
2203 2204 2205

	return 0;
}
S
Stefan Richter 已提交
2206

2207 2208 2209 2210
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2211 2212
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2213
	struct descriptor *d, *pd;
2214
	struct fw_iso_packet *p = packet;
2215 2216
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2217 2218
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2219 2220

	/*
2221 2222
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2223 2224
	 */
	packet_count = p->header_length / ctx->base.header_size;
2225
	header_size  = max(ctx->base.header_size, (size_t)8);
2226 2227 2228 2229 2230

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2231
	payload_per_buffer = p->payload_length / packet_count;
2232 2233 2234

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2235
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2236
		d = context_get_descriptors(&ctx->context,
2237
				z + header_z, &d_bus);
2238 2239 2240
		if (d == NULL)
			return -ENOMEM;

2241 2242 2243 2244
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2245 2246
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2247
		d->transfer_status = 0;
2248 2249
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2250
		rest = payload_per_buffer;
2251
		pd = d;
2252
		for (j = 1; j < z; j++) {
2253
			pd++;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2273 2274 2275
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2276
		if (p->interrupt && i == packet_count - 1)
2277 2278 2279 2280 2281 2282 2283 2284
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2285 2286 2287 2288
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2289
{
2290
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2291
	unsigned long flags;
2292
	int ret;
2293

2294
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2295
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2296
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2297
	else
2298 2299
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2300 2301
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2302
	return ret;
2303 2304
}

2305
static const struct fw_card_driver ohci_driver = {
2306 2307 2308 2309 2310
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2311
	.cancel_packet		= ohci_cancel_packet,
2312
	.enable_phys_dma	= ohci_enable_phys_dma,
2313
	.get_cycle_time		= ohci_get_cycle_time,
2314 2315 2316 2317

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2318
	.start_iso		= ohci_start_iso,
2319
	.stop_iso		= ohci_stop_iso,
2320 2321
};

2322
#ifdef CONFIG_PPC_PMAC
2323 2324
static void ohci_pmac_on(struct pci_dev *dev)
{
2325 2326 2327 2328 2329 2330 2331 2332
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2349 2350
#endif /* CONFIG_PPC_PMAC */

2351 2352
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2353 2354
{
	struct fw_ohci *ohci;
2355
	u32 bus_options, max_receive, link_speed, version;
2356
	u64 guid;
2357
	int i, err, n_ir, n_it;
2358 2359
	size_t size;

2360
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2361
	if (ohci == NULL) {
2362 2363
		err = -ENOMEM;
		goto fail;
2364 2365 2366 2367
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2368 2369
	ohci_pmac_on(dev);

2370 2371
	err = pci_enable_device(dev);
	if (err) {
2372
		fw_error("Failed to enable OHCI hardware\n");
2373
		goto fail_free;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2385 2386
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2387
		fw_error("MMIO resource unavailable\n");
2388
		goto fail_disable;
2389 2390 2391 2392 2393
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2394 2395
		err = -ENXIO;
		goto fail_iomem;
2396 2397
	}

2398 2399 2400 2401 2402 2403 2404
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2405 2406
	if (param_quirks)
		ohci->quirks = param_quirks;
2407

2408 2409 2410 2411 2412 2413
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2414
	context_init(&ohci->at_request_ctx, ohci,
2415
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2416

2417
	context_init(&ohci->at_response_ctx, ohci,
2418
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2419 2420

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2421 2422
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2423
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2424 2425
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2426
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2427 2428

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2429
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2430
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2431 2432
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2433
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2434 2435

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2436
		err = -ENOMEM;
2437
		goto fail_contexts;
2438 2439 2440 2441 2442 2443 2444 2445
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2446
		err = -ENOMEM;
2447
		goto fail_contexts;
2448 2449 2450 2451 2452 2453 2454 2455
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2456
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2457
	if (err)
2458
		goto fail_self_id;
2459

2460 2461 2462 2463 2464
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2465

2466
	return 0;
2467 2468 2469 2470

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2471
 fail_contexts:
2472
	kfree(ohci->ir_context_list);
2473 2474 2475 2476 2477
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2478 2479 2480 2481 2482
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2483 2484
 fail_free:
	kfree(&ohci->card);
2485
	ohci_pmac_off(dev);
2486 2487 2488
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2489 2490

	return err;
2491 2492 2493 2494 2495 2496 2497
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2498 2499
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2500 2501
	fw_core_remove_card(&ohci->card);

2502 2503 2504 2505
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2506 2507 2508

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2509 2510 2511 2512 2513 2514 2515

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2516 2517
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2518 2519 2520 2521
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2522 2523 2524 2525 2526
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2527
	kfree(&ohci->card);
2528
	ohci_pmac_off(dev);
2529

2530 2531 2532
	fw_notify("Removed fw-ohci device.\n");
}

2533
#ifdef CONFIG_PM
2534
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2535
{
2536
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2537 2538 2539
	int err;

	software_reset(ohci);
2540 2541
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2542
	if (err) {
2543
		fw_error("pci_save_state failed\n");
2544 2545
		return err;
	}
2546
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2547 2548
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2549
	ohci_pmac_off(dev);
2550

2551 2552 2553
	return 0;
}

2554
static int pci_resume(struct pci_dev *dev)
2555
{
2556
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2557 2558
	int err;

2559 2560 2561 2562
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2563
	if (err) {
2564
		fw_error("pci_enable_device failed\n");
2565 2566 2567
		return err;
	}

2568
	return ohci_enable(&ohci->card, NULL, 0);
2569 2570 2571
}
#endif

2572
static const struct pci_device_id pci_table[] = {
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2584 2585 2586 2587
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2588 2589 2590 2591 2592 2593
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2594 2595 2596 2597 2598
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);