ohci.c 85.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mutex.h>
37
#include <linux/pci.h>
38
#include <linux/pci_ids.h>
39
#include <linux/slab.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
42
#include <linux/time.h>
A
Andrew Morton 已提交
43

S
Stefan Richter 已提交
44
#include <asm/byteorder.h>
S
Stefan Richter 已提交
45
#include <asm/page.h>
46
#include <asm/system.h>
47

48 49 50 51
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

52 53
#include "core.h"
#include "ohci.h"
54

55 56 57 58 59 60 61 62 63 64 65 66 67
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
68 69 70 71 72 73 74 75 76 77

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

78 79 80 81
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
82

83
struct ar_buffer {
84
	struct descriptor descriptor;
85 86 87
	struct ar_buffer *next;
	__le32 data[0];
};
88

89 90 91 92 93
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
94
	u32 regs;
95 96 97
	struct tasklet_struct tasklet;
};

98 99 100 101 102
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
103 104 105 106 107 108 109 110 111 112 113 114 115

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

116
struct context {
S
Stefan Richter 已提交
117
	struct fw_ohci *ohci;
118
	u32 regs;
119
	int total_allocation;
S
Stefan Richter 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
145 146 147

	descriptor_callback_t callback;

S
Stefan Richter 已提交
148
	struct tasklet_struct tasklet;
149 150
};

151 152 153 154 155 156
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157 158 159

struct iso_context {
	struct fw_iso_context base;
160
	struct context context;
161
	int excess_bytes;
162 163
	void *header;
	size_t header_length;
164 165 166 167 168 169 170 171
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
172
	int node_id;
173
	int generation;
174
	int request_generation;	/* for timestamping incoming requests */
175
	unsigned quirks;
176
	unsigned int pri_req_max;
177
	u32 bus_time;
178
	bool is_root;
179
	bool csr_state_setclear_abdicate;
180

181 182 183 184
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
185 186
	spinlock_t lock;

187 188
	struct mutex phy_reg_mutex;

189 190
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
191 192
	struct context at_request_ctx;
	struct context at_response_ctx;
193

194
	u32 it_context_mask;     /* unoccupied IT contexts */
195
	struct iso_context *it_context_list;
196 197
	u64 ir_context_channels; /* unoccupied channels */
	u32 ir_context_mask;     /* unoccupied IR contexts */
198
	struct iso_context *ir_context_list;
199 200
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
201 202 203 204 205 206 207 208 209 210 211 212

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
213 214
};

A
Adrian Bunk 已提交
215
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 217 218 219
{
	return container_of(card, struct fw_ohci, card);
}

220 221 222 223 224 225
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
226 227 228 229 230 231

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

232
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
233 234 235 236 237 238 239
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
240
#define OHCI_TCODE_PHY_PACKET		0x0e
241
#define OHCI_VERSION_1_1		0x010010
242

243 244
static char ohci_driver_name[] = KBUILD_MODNAME;

245
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
246 247
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

248 249 250
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
251
#define QUIRK_NO_1394A			8
252
#define QUIRK_NO_MSI			16
253 254 255 256 257

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
258
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259 260
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
261 262
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
263
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
265 266
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER |
						QUIRK_NO_MSI},
267
	{PCI_VENDOR_ID_RICOH,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
268 269 270
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

271 272 273 274 275 276 277
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
278
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
279
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
280 281
	")");

282
#define OHCI_PARAM_DEBUG_AT_AR		1
283
#define OHCI_PARAM_DEBUG_SELFIDS	2
284 285
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
286

287 288
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

289 290 291 292
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
293 294 295
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
296 297 298 299
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
300 301 302 303 304 305
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
306 307
		return;

308
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
309 310 311 312 313 314 315 316 317
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
318
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
319
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
320 321 322 323 324 325
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
326 327
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
328
		    OHCI1394_regAccessFail | OHCI1394_busReset)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

346
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
347 348 349 350
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

351 352
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
353 354 355

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
356 357 358 359 360 361
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
362
		else
363 364 365 366
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

414
	if (evt == OHCI1394_evt_bus_reset) {
415 416
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
417 418 419
		return;
	}

420
	if (header[0] == ~header[1]) {
421 422
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
441
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
442 443
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
444 445 446 447 448 449
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
450 451
		break;
	default:
452 453 454 455 456 457
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
458 459 460 461 462
	}
}

#else

463 464 465 466
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
467 468 469

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
470
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
471 472 473 474
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
475
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
476 477 478 479
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
480
static inline void flush_writes(const struct fw_ohci *ohci)
481 482 483 484 485
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

486
static int read_phy_reg(struct fw_ohci *ohci, int addr)
487
{
488
	u32 val;
489
	int i;
490 491

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
492
	for (i = 0; i < 3 + 100; i++) {
493 494 495 496
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

497 498 499 500 501 502
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
503
	}
504
	fw_error("failed to read phy reg\n");
505

506 507
	return -EBUSY;
}
508

509 510 511
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
512 513

	reg_write(ohci, OHCI1394_PhyControl,
514
		  OHCI1394_PhyControl_Write(addr, val));
515
	for (i = 0; i < 3 + 100; i++) {
516 517 518
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
519

520 521
		if (i >= 3)
			msleep(1);
522 523 524 525
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
526 527
}

528 529
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
530
{
531
	int ret = read_phy_reg(ohci, addr);
532 533
	if (ret < 0)
		return ret;
534

535 536 537 538 539 540 541
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

542
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
543 544
}

545
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
546
{
547
	int ret;
548

549
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
550 551
	if (ret < 0)
		return ret;
552

553
	return read_phy_reg(ohci, addr);
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
579 580
}

581 582
static void ar_context_link_page(struct ar_context *ctx,
				 struct ar_buffer *ab, dma_addr_t ab_bus)
583
{
584 585
	size_t offset;

586
	ab->next = NULL;
587
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
588 589 590
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
591 592 593 594 595 596
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

597
	wmb(); /* finish init of new descriptors before branch_address update */
598
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
599 600 601
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

602
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
603
	flush_writes(ctx->ohci);
604 605 606 607 608 609 610 611 612 613 614 615 616
}

static int ar_context_add_page(struct ar_context *ctx)
{
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t uninitialized_var(ab_bus);

	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ar_context_link_page(ctx, ab, ab_bus);
617 618

	return 0;
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

636 637
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
638
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
639 640 641 642
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

643
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
644 645
{
	struct fw_ohci *ohci = ctx->ohci;
646 647
	struct fw_packet p;
	u32 status, length, tcode;
648
	int evt;
649

650 651 652
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
653 654 655 656 657

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
658
		p.header[3] = (__force __u32) buffer[3];
659
		p.header_length = 16;
660
		p.payload_length = 0;
661 662 663
		break;

	case TCODE_READ_BLOCK_REQUEST :
664
		p.header[3] = cond_le32_to_cpu(buffer[3]);
665 666 667 668 669
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
670 671 672
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
673
		p.header[3] = cond_le32_to_cpu(buffer[3]);
674
		p.header_length = 16;
675
		p.payload_length = p.header[3] >> 16;
676 677 678 679
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
680
	case OHCI_TCODE_PHY_PACKET:
681
		p.header_length = 12;
682
		p.payload_length = 0;
683
		break;
684 685 686 687 688

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
689
	}
690

691 692 693 694
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
695
	status = cond_le32_to_cpu(buffer[length]);
696
	evt    = (status >> 16) & 0x1f;
697

698
	p.ack        = evt - 16;
699 700 701
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
702

703
	log_ar_at_event('R', p.speed, p.header, evt);
704

705
	/*
706 707 708 709 710 711 712 713 714
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
715 716 717 718 719
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
720
	 * request.
721 722 723 724
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
725
	 */
726
	if (evt == OHCI1394_evt_bus_reset) {
727
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
728 729
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
730
		fw_core_handle_request(&ohci->card, &p);
731
	} else {
732
		fw_core_handle_response(&ohci->card, &p);
733
	}
734

735 736
	return buffer + length + 1;
}
737

738 739 740 741 742 743
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;
744
	__le16 res_count;
745 746 747 748

	ab = ctx->current_buffer;
	d = &ab->descriptor;

749 750
	res_count = ACCESS_ONCE(d->res_count);
	if (res_count == 0) {
751
		size_t size, size2, rest, pktsize, size3, offset;
752 753
		dma_addr_t start_bus;
		void *start;
754

755 756
		/*
		 * This descriptor is finished and we may have a
757
		 * packet split across this and the next buffer. We
758 759
		 * reuse the page for reassembling the split packet.
		 */
760 761

		offset = offsetof(struct ar_buffer, data);
762
		start = ab;
763
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
764
		buffer = ab->data;
765 766 767

		ab = ab->next;
		d = &ab->descriptor;
768
		size = start + PAGE_SIZE - ctx->pointer;
769
		/* valid buffer data in the next page */
770
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
771
		/* what actually fits in this page */
772
		size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
773
		memmove(buffer, ctx->pointer, size);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		memcpy(buffer + size, ab->data, size2);

		while (size > 0) {
			void *next = handle_ar_packet(ctx, buffer);
			pktsize = next - buffer;
			if (pktsize >= size) {
				/*
				 * We have handled all the data that was
				 * originally in this page, so we can now
				 * continue in the next page.
				 */
				buffer = next;
				break;
			}
			/* move the next packet to the start of the buffer */
			memmove(buffer, next, size + size2 - pktsize);
			size -= pktsize;
			/* fill up this page again */
			size3 = min(rest - size2,
793
				    (size_t)PAGE_SIZE - offset - size - size2);
794 795 796 797 798
			memcpy(buffer + size + size2,
			       (void *) ab->data + size2, size3);
			size2 += size3;
		}

799 800 801 802 803
		if (rest > 0) {
			/* handle the packets that are fully in the next page */
			buffer = (void *) ab->data +
					(buffer - (start + offset + size));
			end = (void *) ab->data + rest;
804

805 806
			while (buffer < end)
				buffer = handle_ar_packet(ctx, buffer);
807

808 809 810
			ctx->current_buffer = ab;
			ctx->pointer = end;

811
			ar_context_link_page(ctx, start, start_bus);
812 813 814
		} else {
			ctx->pointer = start + PAGE_SIZE;
		}
815 816 817
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
818
			(void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
819 820 821 822

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
823 824
}

825 826
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
827
{
828
	struct ar_buffer ab;
829

830 831 832
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
833 834
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

835 836 837 838 839
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

840 841 842 843 844 845 846 847 848 849
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
850
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
851 852

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
853
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
854
	flush_writes(ctx->ohci);
855
}
S
Stefan Richter 已提交
856

857
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
858 859 860 861 862 863 864 865 866 867 868 869 870
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

871 872 873 874 875 876
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
877
	struct descriptor_buffer *desc;
878

879 880 881
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
882
	while (last->branch_address != 0) {
883
		struct descriptor_buffer *old_desc = desc;
884 885
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
886 887 888 889 890 891 892 893 894
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
895
		last = find_branch_descriptor(d, z);
896 897 898 899

		if (!ctx->callback(ctx, d, last))
			break;

900 901 902 903 904 905 906 907 908 909
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
910 911 912
	}
}

913 914 915 916
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
917
static int context_add_buffer(struct context *ctx)
918 919
{
	struct descriptor_buffer *desc;
920
	dma_addr_t uninitialized_var(bus_addr);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

946 947
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
948 949 950
{
	ctx->ohci = ohci;
	ctx->regs = regs;
951 952 953 954
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
955 956
		return -ENOMEM;

957 958 959
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

960 961 962
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

963 964
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
965
	 * branch address and looks like it's been sent.  That way we
966
	 * have a descriptor to append DMA programs to.
967
	 */
968 969 970 971 972 973
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
974 975 976 977

	return 0;
}

978
static void context_release(struct context *ctx)
979 980
{
	struct fw_card *card = &ctx->ohci->card;
981
	struct descriptor_buffer *desc, *tmp;
982

983 984 985 986
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
987 988
}

989
/* Must be called with ohci->lock held */
990 991
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
992
{
993 994 995 996 997 998 999 1000 1001
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1013

1014
	d = desc->buffer + desc->used / sizeof(*d);
1015
	memset(d, 0, z * sizeof(*d));
1016
	*d_bus = desc->buffer_bus + desc->used;
1017 1018 1019 1020

	return d;
}

1021
static void context_run(struct context *ctx, u32 extra)
1022 1023 1024
{
	struct fw_ohci *ohci = ctx->ohci;

1025
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1026
		  le32_to_cpu(ctx->last->branch_address));
1027 1028
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1029 1030 1031 1032 1033 1034 1035
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1036
	struct descriptor_buffer *desc = ctx->buffer_tail;
1037

1038
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1039

1040
	desc->used += (z + extra) * sizeof(*d);
1041 1042

	wmb(); /* finish init of new descriptors before branch_address update */
1043 1044
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1045

1046
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1047 1048 1049 1050 1051 1052
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1053
	int i;
1054

1055
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1056
	flush_writes(ctx->ohci);
1057

1058
	for (i = 0; i < 10; i++) {
1059
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1060
		if ((reg & CONTEXT_ACTIVE) == 0)
1061
			return;
1062

1063
		mdelay(1);
1064
	}
1065
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1066
}
1067

1068 1069 1070
struct driver_data {
	struct fw_packet *packet;
};
1071

1072 1073
/*
 * This function apppends a packet to the DMA queue for transmission.
1074
 * Must always be called with the ochi->lock held to ensure proper
1075 1076
 * generation handling and locking around packet queue manipulation.
 */
1077 1078
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1079 1080
{
	struct fw_ohci *ohci = ctx->ohci;
1081
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1082 1083 1084
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1085
	int z, tcode;
1086
	u32 reg;
1087

1088 1089 1090 1091
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1092 1093
	}

1094
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1095 1096
	d[0].res_count = cpu_to_le16(packet->timestamp);

1097 1098
	/*
	 * The DMA format for asyncronous link packets is different
1099 1100
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1101 1102
	 * which we need to prepend an extra quadlet.
	 */
1103 1104

	header = (__le32 *) &d[1];
1105 1106 1107
	switch (packet->header_length) {
	case 16:
	case 12:
1108 1109 1110 1111 1112
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1113 1114 1115

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1116
			header[3] = cpu_to_le32(packet->header[3]);
1117
		else
1118 1119 1120
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1121 1122 1123
		break;

	case 8:
1124 1125 1126 1127 1128
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1129 1130 1131

		if (is_ping_packet(packet->header))
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1145 1146
	}

1147 1148
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1149
	packet->driver_data = driver_data;
1150

1151 1152 1153 1154
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1155
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1156 1157 1158
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1159 1160
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1161 1162 1163 1164 1165

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1166
	} else {
1167 1168
		last = &d[0];
		z = 2;
1169 1170
	}

1171 1172 1173
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1188
		if (packet->payload_mapped)
1189 1190
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1191 1192 1193 1194 1195
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1196

1197
	/* If the context isn't already running, start it up. */
1198
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1199
	if ((reg & CONTEXT_RUN) == 0)
1200 1201 1202
		context_run(ctx, 0);

	return 0;
1203 1204
}

1205 1206 1207
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1208
{
1209
	struct driver_data *driver_data;
1210
	struct fw_packet *packet;
1211
	struct fw_ohci *ohci = context->ohci;
1212 1213
	int evt;

1214 1215 1216
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1217

1218 1219 1220 1221 1222
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1223

1224
	if (packet->payload_mapped)
1225
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1226 1227
				 packet->payload_length, DMA_TO_DEVICE);

1228 1229
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1230

1231 1232
	log_ar_at_event('T', packet->speed, packet->header, evt);

1233 1234 1235 1236 1237
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1238

1239
	case OHCI1394_evt_flushed:
1240 1241 1242 1243
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1244 1245
		packet->ack = RCODE_GENERATION;
		break;
1246

1247
	case OHCI1394_evt_missing_ack:
1248 1249 1250 1251
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1252 1253
		packet->ack = RCODE_NO_ACK;
		break;
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1264

1265 1266 1267 1268
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1269

1270
	packet->callback(packet, &ohci->card, packet->ack);
1271

1272
	return 1;
1273 1274
}

1275 1276 1277 1278 1279
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1280

1281 1282
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1283 1284 1285 1286
{
	struct fw_packet response;
	int tcode, length, i;

1287
	tcode = HEADER_GET_TCODE(packet->header[0]);
1288
	if (TCODE_IS_BLOCK_PACKET(tcode))
1289
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1308 1309
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1310 1311
{
	struct fw_packet response;
1312
	int tcode, length, ext_tcode, sel, try;
1313 1314 1315
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1316 1317
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1318
	payload = packet->payload;
1319
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1351 1352 1353 1354 1355

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1356
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1357
{
1358
	u64 offset, csr;
1359

1360 1361 1362 1363
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1364 1365 1366

	offset =
		((unsigned long long)
1367
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1388 1389 1390 1391 1392

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1393
}
1394

1395
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1396 1397
{
	unsigned long flags;
1398
	int ret;
1399 1400 1401

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1402
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1403
	    ctx->ohci->generation == packet->generation) {
1404 1405 1406
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1407
	}
1408

1409
	ret = at_context_queue_packet(ctx, packet);
1410 1411
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1412
	if (ret < 0)
1413
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1414

1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1489 1490 1491
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1492
	int self_id_count, i, j, reg;
1493 1494
	int generation, new_generation;
	unsigned long flags;
1495 1496
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1497
	bool is_new_root;
1498 1499 1500

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1501
		fw_notify("node ID not valid, new bus reset in progress\n");
1502 1503
		return;
	}
1504 1505 1506 1507 1508 1509
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1510

1511 1512 1513 1514 1515 1516
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1517 1518 1519 1520 1521
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1522 1523
	/*
	 * The count in the SelfIDCount register is the number of
1524 1525
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1526 1527
	 * bit extra to get the actual number of self IDs.
	 */
1528 1529
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1530 1531 1532
		fw_notify("inconsistent self IDs\n");
		return;
	}
1533
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1534
	rmb();
1535 1536

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1537 1538 1539 1540
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1541 1542
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1543
	}
1544
	rmb();
1545

1546 1547
	/*
	 * Check the consistency of the self IDs we just read.  The
1548 1549 1550 1551 1552 1553 1554 1555 1556
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1557 1558
	 * of self IDs.
	 */
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1571 1572
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1573 1574
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1575
	if (ohci->quirks & QUIRK_RESET_PACKET)
1576 1577
		ohci->request_generation = generation;

1578 1579
	/*
	 * This next bit is unrelated to the AT context stuff but we
1580 1581 1582 1583
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1584
	 * next_config_rom pointer so a new update can take place.
1585
	 */
1586 1587

	if (ohci->next_config_rom != NULL) {
1588 1589 1590 1591
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1592 1593 1594 1595
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1596 1597
		/*
		 * Restore config_rom image and manually update
1598 1599
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1600 1601
		 * do that last.
		 */
1602 1603
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1604 1605 1606
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1607 1608
	}

1609 1610 1611 1612 1613
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1614 1615
	spin_unlock_irqrestore(&ohci->lock, flags);

1616 1617 1618 1619
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1620 1621
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1622

1623
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1624 1625 1626
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1627 1628 1629 1630 1631
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1632
	u32 event, iso_event;
1633 1634 1635 1636
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1637
	if (!event || !~event)
1638 1639
		return IRQ_NONE;

1640 1641
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1642
	log_irqs(event);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1659
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1660 1661 1662 1663
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1664
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1665 1666 1667
		iso_event &= ~(1 << i);
	}

1668
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1669 1670 1671 1672
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1673
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1674 1675 1676
		iso_event &= ~(1 << i);
	}

1677 1678 1679 1680
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1681 1682 1683
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1684 1685 1686 1687 1688 1689 1690
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1702 1703 1704 1705 1706 1707
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1708 1709 1710
	return IRQ_HANDLED;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1727 1728 1729 1730 1731 1732 1733 1734 1735
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1736 1737 1738
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1739
	int ret, clear, set, offset;
1740 1741 1742 1743 1744 1745 1746 1747

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1748 1749 1750 1751 1752 1753 1754 1755
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1770
	ret = update_phy_reg(ohci, 5, clear, set);
1771 1772
	if (ret < 0)
		return ret;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1787 1788
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1789 1790 1791
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1792
	u32 lps, seconds, version, irqs;
1793
	int i, ret;
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1805 1806
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1807 1808 1809 1810 1811
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1823 1824 1825 1826

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1827
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1828 1829
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
1830
		  OHCI1394_LinkControl_rcvPhyPkt |
1831 1832 1833 1834 1835 1836
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1837 1838
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1839

1840 1841 1842 1843
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1844 1845 1846 1847
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1848
		card->broadcast_channel_auto_allocated = true;
1849 1850
	}

1851 1852 1853 1854
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1855
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1856 1857 1858 1859 1860 1861 1862 1863

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1864 1865 1866
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1867

1868
	/* Activate link_on bit and contender bit in our self ID packets.*/
1869 1870 1871
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1872

1873 1874
	/*
	 * When the link is not yet enabled, the atomic config rom
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1892 1893 1894 1895 1896 1897 1898
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1899

1900
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1901 1902 1903 1904 1905 1906 1907 1908
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1909

1910
	ohci->next_header = ohci->next_config_rom[0];
1911 1912
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1913 1914
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1915 1916 1917 1918
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1919 1920
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1921
	if (request_irq(dev->irq, irq_handler,
1922 1923 1924 1925
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1926 1927 1928 1929 1930
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1931 1932 1933 1934 1935 1936
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1937
		OHCI1394_cycle64Seconds |
1938 1939 1940 1941 1942 1943
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1944 1945 1946 1947 1948
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1949 1950
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1951 1952 1953 1954

	return 0;
}

1955
static int ohci_set_config_rom(struct fw_card *card,
1956
			       const __be32 *config_rom, size_t length)
1957 1958 1959
{
	struct fw_ohci *ohci;
	unsigned long flags;
1960
	int ret = -EBUSY;
1961
	__be32 *next_config_rom;
1962
	dma_addr_t uninitialized_var(next_config_rom_bus);
1963 1964 1965

	ohci = fw_ohci(card);

1966 1967
	/*
	 * When the OHCI controller is enabled, the config rom update
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

2005
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2006 2007 2008 2009 2010 2011

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
2012
		ret = 0;
2013 2014 2015 2016
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

2017 2018
	/*
	 * Now initiate a bus reset to have the changes take
2019 2020 2021
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2022 2023
	 * takes effect.
	 */
2024
	if (ret == 0)
2025
		fw_schedule_bus_reset(&ohci->card, true, true);
2026 2027 2028
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
2029

2030
	return ret;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2047 2048 2049
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2050 2051
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2052
	int ret = -ENOENT;
2053

2054
	tasklet_disable(&ctx->tasklet);
2055

2056 2057
	if (packet->ack != 0)
		goto out;
2058

2059
	if (packet->payload_mapped)
2060 2061 2062
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2063
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2064 2065 2066
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2067
	ret = 0;
2068 2069
 out:
	tasklet_enable(&ctx->tasklet);
2070

2071
	return ret;
2072 2073
}

2074 2075
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2076
{
2077 2078 2079
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2080 2081
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2082
	int n, ret = 0;
2083

2084 2085 2086 2087
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2088 2089 2090 2091

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2092
		ret = -ESTALE;
2093 2094 2095
		goto out;
	}

2096 2097 2098 2099
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2100 2101 2102 2103 2104 2105 2106

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2107 2108
	flush_writes(ohci);
 out:
2109
	spin_unlock_irqrestore(&ohci->lock, flags);
2110 2111

	return ret;
2112
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2113
}
S
Stefan Richter 已提交
2114

2115
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2116
{
2117
	struct fw_ohci *ohci = fw_ohci(card);
2118 2119
	unsigned long flags;
	u32 value;
2120 2121

	switch (csr_offset) {
2122 2123 2124 2125 2126
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2127
			value = CSR_STATE_BIT_CMSTR;
2128
		else
2129 2130 2131
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2132

2133
		return value;
2134

2135 2136 2137
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2138 2139 2140
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2152 2153 2154 2155
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2156 2157 2158 2159
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2160 2161 2162 2163
	default:
		WARN_ON(1);
		return 0;
	}
2164 2165
}

2166
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2167 2168
{
	struct fw_ohci *ohci = fw_ohci(card);
2169
	unsigned long flags;
2170

2171
	switch (csr_offset) {
2172 2173 2174 2175 2176 2177
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2178 2179
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2180
		break;
2181

2182 2183 2184 2185 2186 2187
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2188 2189
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2190
		break;
2191

2192 2193 2194 2195 2196
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2197 2198 2199 2200 2201 2202 2203
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2204 2205 2206 2207 2208 2209
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2210 2211 2212 2213 2214 2215 2216
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2217 2218 2219 2220 2221
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2222 2223 2224 2225
	default:
		WARN_ON(1);
		break;
	}
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2250 2251 2252 2253 2254 2255
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2256
	struct descriptor *pd;
2257
	__le32 *ir_header;
2258
	void *p;
2259

2260
	for (pd = d; pd <= last; pd++)
2261 2262 2263
		if (pd->transfer_status)
			break;
	if (pd > last)
2264 2265 2266
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2267 2268
	p = last + 1;
	copy_iso_headers(ctx, p);
2269

2270 2271
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2272 2273 2274 2275
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2276 2277 2278 2279 2280 2281
		ctx->header_length = 0;
	}

	return 1;
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2304 2305 2306
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2307
{
2308 2309
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2310 2311
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2312

2313 2314 2315 2316 2317
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2318 2319
		return 0;

2320 2321 2322 2323 2324 2325 2326 2327 2328
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2329 2330 2331
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2332 2333
		ctx->header_length = 0;
	}
2334
	return 1;
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2349
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2350
				int type, int channel, size_t header_size)
2351 2352
{
	struct fw_ohci *ohci = fw_ohci(card);
2353 2354 2355 2356
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2357
	unsigned long flags;
2358
	int index, ret = -EBUSY;
2359

2360
	spin_lock_irqsave(&ohci->lock, flags);
2361

2362 2363 2364
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2365
		callback = handle_it_packet;
2366 2367 2368 2369 2370 2371 2372 2373 2374
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2375
		channels = &ohci->ir_context_channels;
2376
		mask     = &ohci->ir_context_mask;
2377
		callback = handle_ir_packet_per_buffer;
2378 2379 2380 2381 2382 2383 2384 2385
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2402
	}
2403

2404 2405 2406
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2407
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2408

2409
	memset(ctx, 0, sizeof(*ctx));
2410 2411
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2412 2413
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2414
		goto out;
2415
	}
2416 2417
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2418
		goto out_with_header;
2419

2420 2421 2422
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2423
	return &ctx->base;
2424 2425 2426 2427 2428

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2439
	*mask |= 1 << index;
2440

2441 2442
	spin_unlock_irqrestore(&ohci->lock, flags);

2443
	return ERR_PTR(ret);
2444 2445
}

2446 2447
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2448
{
S
Stefan Richter 已提交
2449
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2450
	struct fw_ohci *ohci = ctx->context.ohci;
2451
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2452 2453
	int index;

2454 2455
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2456
		index = ctx - ohci->it_context_list;
2457 2458 2459
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2460
				(cycle & 0x7fff) << 16;
2461

2462 2463
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2464
		context_run(&ctx->context, match);
2465 2466 2467 2468 2469 2470
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2471
		index = ctx - ohci->ir_context_list;
2472 2473 2474 2475 2476
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2477

2478 2479
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2480
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2481
		context_run(&ctx->context, control);
2482
		break;
2483
	}
2484 2485 2486 2487

	return 0;
}

2488 2489 2490
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2491
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2492 2493
	int index;

2494 2495
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2496 2497
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2498 2499 2500 2501
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2502 2503
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2504
		break;
2505 2506 2507 2508 2509 2510 2511
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2512 2513 2514
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2515
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2516 2517 2518
	unsigned long flags;
	int index;

2519 2520
	ohci_stop_iso(base);
	context_release(&ctx->context);
2521
	free_page((unsigned long)ctx->header);
2522

2523 2524
	spin_lock_irqsave(&ohci->lock, flags);

2525 2526
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2527 2528
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2529 2530 2531
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2532 2533
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2534
		ohci->ir_context_channels |= 1ULL << base->channel;
2535 2536 2537 2538 2539 2540 2541 2542 2543
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2544 2545 2546 2547 2548
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2583
{
2584
	struct descriptor *d, *last, *pd;
2585 2586
	struct fw_iso_packet *p;
	__le32 *header;
2587
	dma_addr_t d_bus, page_bus;
2588 2589
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2590
	int page, end_page, i, length, offset;
2591 2592

	p = packet;
2593
	payload_index = payload;
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2612
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2613

2614 2615 2616
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2617 2618

	if (!p->skip) {
2619
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2620
		d[0].req_count = cpu_to_le16(8);
2621 2622 2623 2624 2625 2626 2627 2628
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2629 2630

		header = (__le32 *) &d[1];
2631 2632 2633 2634 2635
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2636
		header[1] =
2637
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2638 2639 2640 2641 2642
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2643
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2656 2657 2658

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2659 2660 2661 2662 2663

		payload_index += length;
	}

	if (p->interrupt)
2664
		irq = DESCRIPTOR_IRQ_ALWAYS;
2665
	else
2666
		irq = DESCRIPTOR_NO_IRQ;
2667

2668
	last = z == 2 ? d : d + z - 1;
2669 2670 2671
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2672
				     irq);
2673

2674
	context_append(&ctx->context, d, z, header_z);
2675 2676 2677

	return 0;
}
S
Stefan Richter 已提交
2678

2679 2680 2681 2682
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2683
{
2684
	struct descriptor *d, *pd;
2685 2686
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2687 2688
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2689 2690

	/*
2691 2692
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2693
	 */
2694
	packet_count = packet->header_length / ctx->base.header_size;
2695
	header_size  = max(ctx->base.header_size, (size_t)8);
2696 2697 2698 2699 2700

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2701
	payload_per_buffer = packet->payload_length / packet_count;
2702 2703 2704

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2705
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2706
		d = context_get_descriptors(&ctx->context,
2707
				z + header_z, &d_bus);
2708 2709 2710
		if (d == NULL)
			return -ENOMEM;

2711 2712
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2713
		if (packet->skip && i == 0)
2714
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2715 2716
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2717
		d->transfer_status = 0;
2718 2719
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2720
		rest = payload_per_buffer;
2721
		pd = d;
2722
		for (j = 1; j < z; j++) {
2723
			pd++;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2743 2744 2745
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2746
		if (packet->interrupt && i == packet_count - 1)
2747 2748 2749 2750 2751 2752 2753 2754
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

2807 2808 2809 2810
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2811
{
2812
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2813
	unsigned long flags;
2814
	int ret = -ENOSYS;
2815

2816
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
2828 2829
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2830
	return ret;
2831 2832
}

2833
static const struct fw_card_driver ohci_driver = {
2834
	.enable			= ohci_enable,
2835
	.read_phy_reg		= ohci_read_phy_reg,
2836 2837 2838 2839
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2840
	.cancel_packet		= ohci_cancel_packet,
2841
	.enable_phys_dma	= ohci_enable_phys_dma,
2842 2843
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2844 2845 2846

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
2847
	.set_iso_channels	= ohci_set_iso_channels,
2848
	.queue_iso		= ohci_queue_iso,
2849
	.start_iso		= ohci_start_iso,
2850
	.stop_iso		= ohci_stop_iso,
2851 2852
};

2853
#ifdef CONFIG_PPC_PMAC
2854
static void pmac_ohci_on(struct pci_dev *dev)
2855
{
2856 2857 2858 2859 2860 2861 2862 2863
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2864 2865
}

2866
static void pmac_ohci_off(struct pci_dev *dev)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2878 2879
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2880 2881
#endif /* CONFIG_PPC_PMAC */

2882 2883
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2884 2885
{
	struct fw_ohci *ohci;
2886
	u32 bus_options, max_receive, link_speed, version;
2887
	u64 guid;
2888
	int i, err, n_ir, n_it;
2889 2890
	size_t size;

2891
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2892
	if (ohci == NULL) {
2893 2894
		err = -ENOMEM;
		goto fail;
2895 2896 2897 2898
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2899
	pmac_ohci_on(dev);
2900

2901 2902
	err = pci_enable_device(dev);
	if (err) {
2903
		fw_error("Failed to enable OHCI hardware\n");
2904
		goto fail_free;
2905 2906 2907 2908 2909 2910 2911
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2912
	mutex_init(&ohci->phy_reg_mutex);
2913 2914 2915 2916

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2917 2918
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2919
		fw_error("MMIO resource unavailable\n");
2920
		goto fail_disable;
2921 2922 2923 2924 2925
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2926 2927
		err = -ENXIO;
		goto fail_iomem;
2928 2929
	}

2930 2931 2932 2933 2934 2935 2936
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2937 2938
	if (param_quirks)
		ohci->quirks = param_quirks;
2939

2940 2941 2942 2943 2944 2945
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2946
	context_init(&ohci->at_request_ctx, ohci,
2947
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2948

2949
	context_init(&ohci->at_response_ctx, ohci,
2950
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2951 2952

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2953 2954
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2955
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2956 2957
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2958
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2959 2960

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2961
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2962
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2963 2964
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2965
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2966 2967

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2968
		err = -ENOMEM;
2969
		goto fail_contexts;
2970 2971 2972 2973 2974 2975 2976 2977
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2978
		err = -ENOMEM;
2979
		goto fail_contexts;
2980 2981 2982 2983 2984 2985 2986 2987
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2988
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2989
	if (err)
2990
		goto fail_self_id;
2991

2992 2993 2994 2995 2996
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2997

2998
	return 0;
2999 3000 3001 3002

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3003
 fail_contexts:
3004
	kfree(ohci->ir_context_list);
3005 3006 3007 3008 3009
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
3010 3011 3012 3013 3014
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3015 3016
 fail_free:
	kfree(&ohci->card);
3017
	pmac_ohci_off(dev);
3018 3019 3020
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3021 3022

	return err;
3023 3024 3025 3026 3027 3028 3029
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3030 3031
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3032 3033
	fw_core_remove_card(&ohci->card);

3034 3035 3036 3037
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3038 3039 3040

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3041 3042 3043 3044 3045 3046 3047

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
3048 3049
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
3050 3051 3052 3053
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3054 3055
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3056
	pci_disable_msi(dev);
3057 3058 3059
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3060
	kfree(&ohci->card);
3061
	pmac_ohci_off(dev);
3062

3063 3064 3065
	fw_notify("Removed fw-ohci device.\n");
}

3066
#ifdef CONFIG_PM
3067
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3068
{
3069
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3070 3071 3072
	int err;

	software_reset(ohci);
3073
	free_irq(dev->irq, ohci);
3074
	pci_disable_msi(dev);
3075
	err = pci_save_state(dev);
3076
	if (err) {
3077
		fw_error("pci_save_state failed\n");
3078 3079
		return err;
	}
3080
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3081 3082
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3083
	pmac_ohci_off(dev);
3084

3085 3086 3087
	return 0;
}

3088
static int pci_resume(struct pci_dev *dev)
3089
{
3090
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3091 3092
	int err;

3093
	pmac_ohci_on(dev);
3094 3095 3096
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3097
	if (err) {
3098
		fw_error("pci_enable_device failed\n");
3099 3100 3101
		return err;
	}

3102
	return ohci_enable(&ohci->card, NULL, 0);
3103 3104 3105
}
#endif

3106
static const struct pci_device_id pci_table[] = {
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3118 3119 3120 3121
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3122 3123 3124 3125 3126 3127
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3128 3129 3130 3131 3132
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);