ohci.c 94.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
258
#define OHCI_TCODE_PHY_PACKET		0x0e
259
#define OHCI_VERSION_1_1		0x010010
260

261 262
static char ohci_driver_name[] = KBUILD_MODNAME;

263
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
264
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
265 266
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

267 268 269
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
270
#define QUIRK_NO_1394A			8
271
#define QUIRK_NO_MSI			16
272 273 274

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
275
	unsigned short vendor, device, revision, flags;
276
} ohci_quirks[] = {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
303 304
};

305 306 307 308 309 310 311
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
312
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
313
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
314 315
	")");

316
#define OHCI_PARAM_DEBUG_AT_AR		1
317
#define OHCI_PARAM_DEBUG_SELFIDS	2
318 319
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
320

321 322
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

323 324 325 326
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
327 328 329
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
330 331 332 333
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
334 335 336 337 338 339
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
340 341
		return;

342
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
343 344 345 346 347 348 349 350 351
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
352
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
353
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
354
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
355
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
356 357 358 359 360
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
361 362
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
363
		    OHCI1394_regAccessFail | OHCI1394_busReset)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

381
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
382 383 384 385
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

386 387
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
388 389 390

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
391 392 393 394 395 396
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
397
		else
398 399 400 401
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

445
	if (evt == OHCI1394_evt_bus_reset) {
446 447
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
448 449 450
		return;
	}

451 452 453 454 455 456 457 458 459 460 461 462 463 464
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
465
	case 0xa:
466
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
467
		break;
468 469 470 471
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
472
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
473 474 475 476 477 478
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
479 480
		break;
	default:
481 482 483 484 485 486
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
487 488 489 490 491
	}
}

#else

492 493 494 495
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
496 497 498

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
499
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
500 501 502 503
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
504
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
505 506 507 508
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
509
static inline void flush_writes(const struct fw_ohci *ohci)
510 511 512 513 514
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

515 516 517 518 519 520
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
521
static int read_phy_reg(struct fw_ohci *ohci, int addr)
522
{
523
	u32 val;
524
	int i;
525 526

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
527
	for (i = 0; i < 3 + 100; i++) {
528
		val = reg_read(ohci, OHCI1394_PhyControl);
529 530 531
		if (!~val)
			return -ENODEV; /* Card was ejected. */

532 533 534
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

535 536 537 538 539 540
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
541
	}
542
	fw_error("failed to read phy reg\n");
543

544 545
	return -EBUSY;
}
546

547 548 549
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
550 551

	reg_write(ohci, OHCI1394_PhyControl,
552
		  OHCI1394_PhyControl_Write(addr, val));
553
	for (i = 0; i < 3 + 100; i++) {
554
		val = reg_read(ohci, OHCI1394_PhyControl);
555 556 557
		if (!~val)
			return -ENODEV; /* Card was ejected. */

558 559
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
560

561 562
		if (i >= 3)
			msleep(1);
563 564 565 566
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
567 568
}

569 570
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
571
{
572
	int ret = read_phy_reg(ohci, addr);
573 574
	if (ret < 0)
		return ret;
575

576 577 578 579 580 581 582
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

583
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
584 585
}

586
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
587
{
588
	int ret;
589

590
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
591 592
	if (ret < 0)
		return ret;
593

594
	return read_phy_reg(ohci, addr);
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
620 621
}

622 623 624 625 626 627
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
628
{
629
	struct descriptor *d;
630

631 632 633 634
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
635

636
	wmb(); /* finish init of new descriptors before branch_address update */
637 638 639 640
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
641

642
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
643 644
}

645
static void ar_context_release(struct ar_context *ctx)
646
{
647
	unsigned int i;
648

649 650
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
651

652 653 654 655 656 657 658
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
659 660
}

661
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
662
{
663 664 665
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
666

667
		fw_error("AR error: %s; DMA stopped\n", error_msg);
668
	}
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
765 766
}

767 768
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
769
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
770 771 772 773
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

774
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
775 776
{
	struct fw_ohci *ohci = ctx->ohci;
777 778
	struct fw_packet p;
	u32 status, length, tcode;
779
	int evt;
780

781 782 783
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
784 785 786 787 788

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
789
		p.header[3] = (__force __u32) buffer[3];
790
		p.header_length = 16;
791
		p.payload_length = 0;
792 793 794
		break;

	case TCODE_READ_BLOCK_REQUEST :
795
		p.header[3] = cond_le32_to_cpu(buffer[3]);
796 797 798 799 800
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
801 802 803
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
804
		p.header[3] = cond_le32_to_cpu(buffer[3]);
805
		p.header_length = 16;
806
		p.payload_length = p.header[3] >> 16;
807 808 809 810
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
811 812 813 814
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
815
	case OHCI_TCODE_PHY_PACKET:
816
		p.header_length = 12;
817
		p.payload_length = 0;
818
		break;
819 820

	default:
821 822
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
823
	}
824

825 826 827 828
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
829
	status = cond_le32_to_cpu(buffer[length]);
830
	evt    = (status >> 16) & 0x1f;
831

832
	p.ack        = evt - 16;
833 834 835
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
836

837
	log_ar_at_event('R', p.speed, p.header, evt);
838

839
	/*
840 841 842 843 844 845 846 847 848
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
849 850 851 852 853
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
854
	 * request.
855 856 857 858
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
859
	 */
860
	if (evt == OHCI1394_evt_bus_reset) {
861
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
862 863
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
864
		fw_core_handle_request(&ohci->card, &p);
865
	} else {
866
		fw_core_handle_response(&ohci->card, &p);
867
	}
868

869 870
	return buffer + length + 1;
}
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

900 901 902
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
903 904
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
905

906 907 908
	p = ctx->pointer;
	if (!p)
		return;
909

910 911 912 913
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
914

915
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
916
		/*
917 918 919 920
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
921
		 */
922 923 924 925 926 927 928
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
929

930 931 932 933 934 935
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
936

937 938
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
939

940
	return;
941

942 943
error:
	ctx->pointer = NULL;
944 945
}

946 947
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
948
{
949 950 951 952
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
953

954 955
	ctx->regs        = regs;
	ctx->ohci        = ohci;
956 957
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
977
				 -1, PAGE_KERNEL);
978 979 980
	if (!ctx->buffer)
		goto out_of_memory;

981 982
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
983 984 985 986 987 988 989 990 991 992 993

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
994

995
	return 0;
996 997 998 999 1000

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1001 1002 1003 1004
}

static void ar_context_run(struct ar_context *ctx)
{
1005 1006 1007 1008
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1009

1010
	ctx->pointer = ctx->buffer;
1011

1012
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1013
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1014
}
S
Stefan Richter 已提交
1015

1016
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1017
{
1018
	__le16 branch;
1019

1020
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1021 1022

	/* figure out which descriptor the branch address goes in */
1023
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1024 1025 1026 1027 1028
		return d;
	else
		return d + z - 1;
}

1029 1030 1031 1032 1033 1034
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1035
	struct descriptor_buffer *desc;
1036

1037 1038 1039
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1040
	while (last->branch_address != 0) {
1041
		struct descriptor_buffer *old_desc = desc;
1042 1043
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1044 1045 1046 1047 1048 1049 1050 1051 1052
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1053
		last = find_branch_descriptor(d, z);
1054 1055 1056 1057

		if (!ctx->callback(ctx, d, last))
			break;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1068 1069 1070
	}
}

1071 1072 1073 1074
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1075
static int context_add_buffer(struct context *ctx)
1076 1077
{
	struct descriptor_buffer *desc;
1078
	dma_addr_t uninitialized_var(bus_addr);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1104 1105
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1106 1107 1108
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1109 1110 1111 1112
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1113 1114
		return -ENOMEM;

1115 1116 1117
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1118 1119 1120
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1121 1122
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1123
	 * branch address and looks like it's been sent.  That way we
1124
	 * have a descriptor to append DMA programs to.
1125
	 */
1126 1127 1128 1129 1130 1131
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1132 1133 1134 1135

	return 0;
}

1136
static void context_release(struct context *ctx)
1137 1138
{
	struct fw_card *card = &ctx->ohci->card;
1139
	struct descriptor_buffer *desc, *tmp;
1140

1141 1142 1143 1144
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1145 1146
}

1147
/* Must be called with ohci->lock held */
1148 1149
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1150
{
1151 1152 1153 1154 1155 1156 1157 1158 1159
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1171

1172
	d = desc->buffer + desc->used / sizeof(*d);
1173
	memset(d, 0, z * sizeof(*d));
1174
	*d_bus = desc->buffer_bus + desc->used;
1175 1176 1177 1178

	return d;
}

1179
static void context_run(struct context *ctx, u32 extra)
1180 1181 1182
{
	struct fw_ohci *ohci = ctx->ohci;

1183
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1184
		  le32_to_cpu(ctx->last->branch_address));
1185 1186
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1187
	ctx->running = true;
1188 1189 1190 1191 1192 1193 1194
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1195
	struct descriptor_buffer *desc = ctx->buffer_tail;
1196

1197
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1198

1199
	desc->used += (z + extra) * sizeof(*d);
1200 1201

	wmb(); /* finish init of new descriptors before branch_address update */
1202 1203
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1204 1205 1206 1207 1208
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1209
	int i;
1210

1211
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1212
	ctx->running = false;
1213

1214
	for (i = 0; i < 1000; i++) {
1215
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1216
		if ((reg & CONTEXT_ACTIVE) == 0)
1217
			return;
1218

1219 1220
		if (i)
			udelay(10);
1221
	}
1222
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1223
}
1224

1225
struct driver_data {
1226
	u8 inline_data[8];
1227 1228
	struct fw_packet *packet;
};
1229

1230 1231
/*
 * This function apppends a packet to the DMA queue for transmission.
1232
 * Must always be called with the ochi->lock held to ensure proper
1233 1234
 * generation handling and locking around packet queue manipulation.
 */
1235 1236
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1237 1238
{
	struct fw_ohci *ohci = ctx->ohci;
1239
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1240 1241 1242
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1243 1244
	int z, tcode;

1245 1246 1247 1248
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1249 1250
	}

1251
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1252 1253
	d[0].res_count = cpu_to_le16(packet->timestamp);

1254 1255
	/*
	 * The DMA format for asyncronous link packets is different
1256
	 * from the IEEE1394 layout, so shift the fields around
1257
	 * accordingly.
1258
	 */
1259

1260
	tcode = (packet->header[0] >> 4) & 0x0f;
1261
	header = (__le32 *) &d[1];
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1272 1273 1274 1275 1276
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1277 1278

		if (TCODE_IS_BLOCK_PACKET(tcode))
1279
			header[3] = cpu_to_le32(packet->header[3]);
1280
		else
1281 1282 1283
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1284 1285
		break;

1286
	case TCODE_LINK_INTERNAL:
1287 1288
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1289 1290
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1291
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1292

1293
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1294
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1295 1296
		break;

1297
	case TCODE_STREAM_DATA:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1308 1309
	}

1310
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1311 1312
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1313
	packet->driver_data = driver_data;
1314

1315
	if (packet->payload_length > 0) {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1331 1332 1333 1334 1335 1336
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1337
	} else {
1338 1339
		last = &d[0];
		z = 2;
1340 1341
	}

1342 1343 1344
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1345

1346 1347
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1348
		if (packet->payload_mapped)
1349 1350
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1351 1352 1353 1354 1355
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1356

1357
	if (ctx->running)
1358
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1359
	else
1360 1361 1362
		context_run(ctx, 0);

	return 0;
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1376 1377 1378
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1379
{
1380
	struct driver_data *driver_data;
1381
	struct fw_packet *packet;
1382
	struct fw_ohci *ohci = context->ohci;
1383 1384
	int evt;

1385
	if (last->transfer_status == 0 && !context->flushing)
1386 1387
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1388

1389 1390 1391 1392 1393
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1394

1395
	if (packet->payload_mapped)
1396
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1397 1398
				 packet->payload_length, DMA_TO_DEVICE);

1399 1400
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1401

1402 1403
	log_ar_at_event('T', packet->speed, packet->header, evt);

1404 1405 1406 1407 1408
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1409

1410
	case OHCI1394_evt_flushed:
1411 1412 1413 1414
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1415 1416
		packet->ack = RCODE_GENERATION;
		break;
1417

1418
	case OHCI1394_evt_missing_ack:
1419 1420 1421 1422 1423 1424 1425 1426 1427
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1428
		break;
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1439

1440 1441 1442 1443 1444 1445 1446
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1447 1448 1449 1450
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1451

1452
	packet->callback(packet, &ohci->card, packet->ack);
1453

1454
	return 1;
1455 1456
}

1457 1458 1459 1460 1461
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1462

1463 1464
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1465 1466 1467 1468
{
	struct fw_packet response;
	int tcode, length, i;

1469
	tcode = HEADER_GET_TCODE(packet->header[0]);
1470
	if (TCODE_IS_BLOCK_PACKET(tcode))
1471
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1490 1491
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1492 1493
{
	struct fw_packet response;
1494
	int tcode, length, ext_tcode, sel, try;
1495 1496 1497
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1498 1499
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500
	payload = packet->payload;
1501
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1533 1534 1535 1536 1537

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1538
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1539
{
1540
	u64 offset, csr;
1541

1542 1543 1544 1545
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1546 1547 1548

	offset =
		((unsigned long long)
1549
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1570 1571 1572 1573 1574

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1575
}
1576

1577
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1578 1579
{
	unsigned long flags;
1580
	int ret;
1581 1582 1583

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1584
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1585
	    ctx->ohci->generation == packet->generation) {
1586 1587 1588
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1589
	}
1590

1591
	ret = at_context_queue_packet(ctx, packet);
1592 1593
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1594
	if (ret < 0)
1595
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1596

1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1712 1713 1714
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1715
	int self_id_count, i, j, reg;
1716 1717
	int generation, new_generation;
	unsigned long flags;
1718 1719
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1720
	bool is_new_root;
1721 1722 1723

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1724
		fw_notify("node ID not valid, new bus reset in progress\n");
1725 1726
		return;
	}
1727 1728 1729 1730 1731 1732
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1733

1734 1735 1736 1737 1738 1739
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1740 1741 1742 1743 1744
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1745 1746
	/*
	 * The count in the SelfIDCount register is the number of
1747 1748
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1749 1750
	 * bit extra to get the actual number of self IDs.
	 */
1751 1752
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1753 1754 1755
		fw_notify("inconsistent self IDs\n");
		return;
	}
1756
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1757
	rmb();
1758 1759

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1760 1761 1762 1763
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1764 1765
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1766
	}
1767
	rmb();
1768

1769 1770
	/*
	 * Check the consistency of the self IDs we just read.  The
1771 1772 1773 1774 1775 1776 1777 1778 1779
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1780 1781
	 * of self IDs.
	 */
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1793
	ohci->generation = -1; /* prevent AT packet queueing */
1794 1795
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1796 1797 1798

	spin_unlock_irqrestore(&ohci->lock, flags);

1799 1800 1801 1802 1803
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1804 1805 1806 1807 1808 1809
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1810 1811
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1812
	if (ohci->quirks & QUIRK_RESET_PACKET)
1813 1814
		ohci->request_generation = generation;

1815 1816
	/*
	 * This next bit is unrelated to the AT context stuff but we
1817 1818 1819 1820
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1821
	 * next_config_rom pointer so a new update can take place.
1822
	 */
1823 1824

	if (ohci->next_config_rom != NULL) {
1825 1826 1827 1828
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1829 1830 1831 1832
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1833 1834
		/*
		 * Restore config_rom image and manually update
1835 1836
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1837 1838
		 * do that last.
		 */
1839 1840
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1841 1842 1843
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1844 1845
	}

1846 1847 1848 1849 1850
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1851 1852
	spin_unlock_irqrestore(&ohci->lock, flags);

1853 1854 1855 1856
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1857 1858
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1859

1860
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1861 1862 1863
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1864 1865 1866 1867 1868
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1869
	u32 event, iso_event;
1870 1871 1872 1873
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1874
	if (!event || !~event)
1875 1876
		return IRQ_NONE;

1877 1878 1879 1880 1881 1882
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1883
	log_irqs(event);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1910 1911
	}

1912 1913 1914
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1915

1916 1917 1918 1919 1920 1921
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1922 1923
	}

1924 1925 1926 1927
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1928 1929 1930 1931 1932
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1933
		fw_error("PCI posted write error\n");
1934
	}
1935

1936 1937 1938 1939 1940 1941 1942
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1954 1955 1956
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1957 1958 1959 1960
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1961 1962
	} else
		flush_writes(ohci);
1963

1964 1965 1966
	return IRQ_HANDLED;
}

1967 1968
static int software_reset(struct fw_ohci *ohci)
{
1969
	u32 val;
1970 1971 1972
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1973 1974 1975 1976
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
1977

1978
		if (!(val & OHCI1394_HCControl_softReset))
1979
			return 0;
1980

1981 1982 1983 1984 1985 1986
		msleep(1);
	}

	return -EBUSY;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1996 1997 1998
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1999
	int ret, clear, set, offset;
2000 2001 2002 2003 2004 2005 2006 2007

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2008 2009 2010 2011 2012 2013 2014 2015
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2030
	ret = update_phy_reg(ohci, 5, clear, set);
2031 2032
	if (ret < 0)
		return ret;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2047 2048
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2049 2050 2051
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2052
	u32 lps, seconds, version, irqs;
2053
	int i, ret;
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2065 2066
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2067 2068 2069 2070 2071
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2083 2084 2085 2086

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2087
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2088 2089 2090 2091 2092 2093 2094
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2095 2096
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2097

2098 2099 2100 2101
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2102 2103 2104 2105
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2106
		card->broadcast_channel_auto_allocated = true;
2107 2108
	}

2109 2110 2111 2112
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2113
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2114 2115 2116 2117 2118

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2119 2120 2121
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2122

2123
	/* Activate link_on bit and contender bit in our self ID packets.*/
2124 2125 2126
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2127

2128 2129
	/*
	 * When the link is not yet enabled, the atomic config rom
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2147 2148 2149 2150 2151 2152 2153
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2154

2155
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2156 2157 2158 2159 2160 2161 2162 2163
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2164

2165
	ohci->next_header = ohci->next_config_rom[0];
2166 2167
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2168 2169
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2170 2171 2172 2173
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2174 2175
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2176
	if (request_irq(dev->irq, irq_handler,
2177 2178 2179 2180
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2181 2182 2183 2184 2185
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2186 2187 2188 2189 2190 2191
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2192
		OHCI1394_cycle64Seconds |
2193 2194 2195
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2196 2197 2198 2199 2200
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2201 2202 2203
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2204 2205 2206 2207 2208 2209

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2210 2211 2212
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2213

2214 2215
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2216 2217 2218 2219

	return 0;
}

2220
static int ohci_set_config_rom(struct fw_card *card,
2221
			       const __be32 *config_rom, size_t length)
2222 2223 2224 2225
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2226
	dma_addr_t uninitialized_var(next_config_rom_bus);
2227 2228 2229

	ohci = fw_ohci(card);

2230 2231
	/*
	 * When the OHCI controller is enabled, the config rom update
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2276 2277 2278
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2279 2280
		next_config_rom = NULL;
	}
2281

2282
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2283

2284 2285
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2286

2287
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2288 2289 2290

	spin_unlock_irqrestore(&ohci->lock, flags);

2291 2292 2293 2294 2295
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2296 2297
	/*
	 * Now initiate a bus reset to have the changes take
2298 2299 2300
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2301 2302
	 * takes effect.
	 */
2303

2304 2305 2306
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2323 2324 2325
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2326 2327
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2328
	int ret = -ENOENT;
2329

2330
	tasklet_disable(&ctx->tasklet);
2331

2332 2333
	if (packet->ack != 0)
		goto out;
2334

2335
	if (packet->payload_mapped)
2336 2337 2338
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2339
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2340 2341 2342
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2343
	ret = 0;
2344 2345
 out:
	tasklet_enable(&ctx->tasklet);
2346

2347
	return ret;
2348 2349
}

2350 2351
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2352
{
2353 2354 2355
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2356 2357
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2358
	int n, ret = 0;
2359

2360 2361 2362 2363
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2364 2365 2366 2367

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2368
		ret = -ESTALE;
2369 2370 2371
		goto out;
	}

2372 2373 2374 2375
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2376 2377 2378 2379 2380 2381 2382

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2383 2384
	flush_writes(ohci);
 out:
2385
	spin_unlock_irqrestore(&ohci->lock, flags);
2386 2387

	return ret;
2388
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2389
}
S
Stefan Richter 已提交
2390

2391
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2392
{
2393
	struct fw_ohci *ohci = fw_ohci(card);
2394 2395
	unsigned long flags;
	u32 value;
2396 2397

	switch (csr_offset) {
2398 2399 2400 2401 2402
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2403
			value = CSR_STATE_BIT_CMSTR;
2404
		else
2405 2406 2407
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2408

2409
		return value;
2410

2411 2412 2413
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2414 2415 2416
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2428 2429 2430 2431
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2432 2433 2434 2435
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2436 2437 2438 2439
	default:
		WARN_ON(1);
		return 0;
	}
2440 2441
}

2442
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2443 2444
{
	struct fw_ohci *ohci = fw_ohci(card);
2445
	unsigned long flags;
2446

2447
	switch (csr_offset) {
2448 2449 2450 2451 2452 2453
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2454 2455
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2456
		break;
2457

2458 2459 2460 2461 2462 2463
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2464 2465
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2466
		break;
2467

2468 2469 2470 2471 2472
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2473 2474 2475 2476 2477 2478 2479
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2480 2481 2482 2483 2484 2485
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2486 2487 2488 2489 2490 2491 2492
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2493 2494 2495 2496 2497
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2498 2499 2500 2501
	default:
		WARN_ON(1);
		break;
	}
2502 2503
}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2526 2527 2528 2529 2530 2531
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2532
	struct descriptor *pd;
2533
	__le32 *ir_header;
2534
	void *p;
2535

2536
	for (pd = d; pd <= last; pd++)
2537 2538 2539
		if (pd->transfer_status)
			break;
	if (pd > last)
2540 2541 2542
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2543 2544
	p = last + 1;
	copy_iso_headers(ctx, p);
2545

2546 2547
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2548 2549 2550 2551
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2552 2553 2554 2555 2556 2557
		ctx->header_length = 0;
	}

	return 1;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2580 2581 2582
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2583
{
2584 2585
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2586 2587
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2588

2589 2590 2591 2592 2593
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2594 2595
		return 0;

2596 2597 2598 2599 2600 2601 2602 2603 2604
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2605 2606 2607
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2608 2609
		ctx->header_length = 0;
	}
2610
	return 1;
2611 2612
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2625
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2626
				int type, int channel, size_t header_size)
2627 2628
{
	struct fw_ohci *ohci = fw_ohci(card);
2629 2630 2631 2632
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2633
	unsigned long flags;
2634
	int index, ret = -EBUSY;
2635

2636
	spin_lock_irqsave(&ohci->lock, flags);
2637

2638 2639 2640
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2641
		callback = handle_it_packet;
2642 2643 2644 2645 2646 2647 2648 2649 2650
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2651
		channels = &ohci->ir_context_channels;
2652
		mask     = &ohci->ir_context_mask;
2653
		callback = handle_ir_packet_per_buffer;
2654 2655 2656 2657 2658 2659 2660 2661
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2662

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2678
	}
2679

2680 2681 2682
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2683
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2684

2685
	memset(ctx, 0, sizeof(*ctx));
2686 2687
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2688 2689
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2690
		goto out;
2691
	}
2692 2693
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2694
		goto out_with_header;
2695

2696 2697 2698
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2699
	return &ctx->base;
2700 2701 2702 2703 2704

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2715
	*mask |= 1 << index;
2716

2717 2718
	spin_unlock_irqrestore(&ohci->lock, flags);

2719
	return ERR_PTR(ret);
2720 2721
}

2722 2723
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2724
{
S
Stefan Richter 已提交
2725
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2726
	struct fw_ohci *ohci = ctx->context.ohci;
2727
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2728 2729
	int index;

2730 2731 2732 2733
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2734 2735
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2736
		index = ctx - ohci->it_context_list;
2737 2738 2739
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2740
				(cycle & 0x7fff) << 16;
2741

2742 2743
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2744
		context_run(&ctx->context, match);
2745 2746 2747 2748 2749 2750
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2751
		index = ctx - ohci->ir_context_list;
2752 2753 2754 2755 2756
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2757

2758 2759
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2760
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2761
		context_run(&ctx->context, control);
2762 2763 2764 2765

		ctx->sync = sync;
		ctx->tags = tags;

2766
		break;
2767
	}
2768 2769 2770 2771

	return 0;
}

2772 2773 2774
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2775
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2776 2777
	int index;

2778 2779
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2780 2781
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2782 2783 2784 2785
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2786 2787
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2788
		break;
2789 2790 2791
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2792
	tasklet_kill(&ctx->context.tasklet);
2793 2794 2795 2796

	return 0;
}

2797 2798 2799
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2800
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2801 2802 2803
	unsigned long flags;
	int index;

2804 2805
	ohci_stop_iso(base);
	context_release(&ctx->context);
2806
	free_page((unsigned long)ctx->header);
2807

2808 2809
	spin_lock_irqsave(&ohci->lock, flags);

2810 2811
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2812 2813
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2814 2815 2816
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2817 2818
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2819
		ohci->ir_context_channels |= 1ULL << base->channel;
2820 2821 2822 2823 2824 2825 2826 2827 2828
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2829 2830 2831 2832 2833
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2864 2865 2866 2867 2868 2869 2870 2871
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2872
		if (ctx->context.running)
2873 2874 2875 2876 2877
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2878
		if (ctx->context.running)
2879 2880 2881 2882 2883
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2884 2885 2886 2887
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2888
{
2889
	struct descriptor *d, *last, *pd;
2890 2891
	struct fw_iso_packet *p;
	__le32 *header;
2892
	dma_addr_t d_bus, page_bus;
2893 2894
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2895
	int page, end_page, i, length, offset;
2896 2897

	p = packet;
2898
	payload_index = payload;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2917
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2918

2919 2920 2921
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2922 2923

	if (!p->skip) {
2924
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2925
		d[0].req_count = cpu_to_le16(8);
2926 2927 2928 2929 2930 2931 2932 2933
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2934 2935

		header = (__le32 *) &d[1];
2936 2937 2938 2939 2940
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2941
		header[1] =
2942
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2943 2944 2945 2946 2947
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2948
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2961 2962 2963

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2964 2965 2966 2967 2968

		payload_index += length;
	}

	if (p->interrupt)
2969
		irq = DESCRIPTOR_IRQ_ALWAYS;
2970
	else
2971
		irq = DESCRIPTOR_NO_IRQ;
2972

2973
	last = z == 2 ? d : d + z - 1;
2974 2975 2976
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2977
				     irq);
2978

2979
	context_append(&ctx->context, d, z, header_z);
2980 2981 2982

	return 0;
}
S
Stefan Richter 已提交
2983

2984 2985 2986 2987
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2988
{
2989
	struct descriptor *d, *pd;
2990 2991
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2992 2993
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2994 2995

	/*
2996 2997
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2998
	 */
2999
	packet_count = packet->header_length / ctx->base.header_size;
3000
	header_size  = max(ctx->base.header_size, (size_t)8);
3001 3002 3003 3004 3005

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3006
	payload_per_buffer = packet->payload_length / packet_count;
3007 3008 3009

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3010
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3011
		d = context_get_descriptors(&ctx->context,
3012
				z + header_z, &d_bus);
3013 3014 3015
		if (d == NULL)
			return -ENOMEM;

3016 3017
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3018
		if (packet->skip && i == 0)
3019
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3020 3021
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3022
		d->transfer_status = 0;
3023 3024
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3025
		rest = payload_per_buffer;
3026
		pd = d;
3027
		for (j = 1; j < z; j++) {
3028
			pd++;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3048 3049 3050
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3051
		if (packet->interrupt && i == packet_count - 1)
3052 3053 3054 3055 3056 3057 3058 3059
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3112 3113 3114 3115
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3116
{
3117
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3118
	unsigned long flags;
3119
	int ret = -ENOSYS;
3120

3121
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3133 3134
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3135
	return ret;
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3146
static const struct fw_card_driver ohci_driver = {
3147
	.enable			= ohci_enable,
3148
	.read_phy_reg		= ohci_read_phy_reg,
3149 3150 3151 3152
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3153
	.cancel_packet		= ohci_cancel_packet,
3154
	.enable_phys_dma	= ohci_enable_phys_dma,
3155 3156
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3157 3158 3159

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3160
	.set_iso_channels	= ohci_set_iso_channels,
3161
	.queue_iso		= ohci_queue_iso,
3162
	.flush_queue_iso	= ohci_flush_queue_iso,
3163
	.start_iso		= ohci_start_iso,
3164
	.stop_iso		= ohci_stop_iso,
3165 3166
};

3167
#ifdef CONFIG_PPC_PMAC
3168
static void pmac_ohci_on(struct pci_dev *dev)
3169
{
3170 3171 3172 3173 3174 3175 3176 3177
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3178 3179
}

3180
static void pmac_ohci_off(struct pci_dev *dev)
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3192 3193
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3194 3195
#endif /* CONFIG_PPC_PMAC */

3196 3197
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3198 3199
{
	struct fw_ohci *ohci;
3200
	u32 bus_options, max_receive, link_speed, version;
3201
	u64 guid;
3202
	int i, err;
3203 3204
	size_t size;

3205
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3206
	if (ohci == NULL) {
3207 3208
		err = -ENOMEM;
		goto fail;
3209 3210 3211 3212
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3213
	pmac_ohci_on(dev);
3214

3215 3216
	err = pci_enable_device(dev);
	if (err) {
3217
		fw_error("Failed to enable OHCI hardware\n");
3218
		goto fail_free;
3219 3220 3221 3222 3223 3224 3225
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3226
	mutex_init(&ohci->phy_reg_mutex);
3227 3228 3229 3230

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3231 3232
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3233
		fw_error("MMIO resource unavailable\n");
3234
		goto fail_disable;
3235 3236 3237 3238 3239
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3240 3241
		err = -ENXIO;
		goto fail_iomem;
3242 3243
	}

3244
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3245 3246 3247 3248 3249
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3250 3251 3252
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3253 3254
	if (param_quirks)
		ohci->quirks = param_quirks;
3255

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3273 3274
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3275
		goto fail_misc_buf;
3276

3277
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3278 3279 3280
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3281

3282 3283 3284 3285
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3286

3287 3288 3289 3290
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3291 3292

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3293
	ohci->ir_context_channels = ~0ULL;
3294
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3295
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3296
	ohci->ir_context_mask = ohci->ir_context_support;
3297 3298
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3299
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3300 3301

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3302
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3303
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3304
	ohci->it_context_mask = ohci->it_context_support;
3305 3306
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3307
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3308 3309

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3310
		err = -ENOMEM;
3311
		goto fail_contexts;
3312 3313
	}

3314 3315
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3316 3317 3318 3319 3320 3321 3322

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3323
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3324
	if (err)
3325
		goto fail_contexts;
3326

3327 3328 3329 3330
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3331
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3332

3333
	return 0;
3334

3335
 fail_contexts:
3336
	kfree(ohci->ir_context_list);
3337 3338
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3339
 fail_atreq_ctx:
3340
	context_release(&ohci->at_request_ctx);
3341
 fail_arrsp_ctx:
3342
	ar_context_release(&ohci->ar_response_ctx);
3343
 fail_arreq_ctx:
3344
	ar_context_release(&ohci->ar_request_ctx);
3345 3346 3347
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3348
 fail_iounmap:
3349 3350 3351 3352 3353
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3354
 fail_free:
3355
	kfree(ohci);
3356
	pmac_ohci_off(dev);
3357 3358 3359
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3360 3361

	return err;
3362 3363 3364 3365 3366 3367 3368
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3369 3370
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3371 3372
	fw_core_remove_card(&ohci->card);

3373 3374 3375 3376
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3377 3378 3379

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3380 3381 3382 3383 3384 3385 3386 3387 3388

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3389 3390
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3391 3392
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3393 3394
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3395
	pci_disable_msi(dev);
3396 3397 3398
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3399
	kfree(ohci);
3400
	pmac_ohci_off(dev);
3401

3402 3403 3404
	fw_notify("Removed fw-ohci device.\n");
}

3405
#ifdef CONFIG_PM
3406
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3407
{
3408
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3409 3410 3411
	int err;

	software_reset(ohci);
3412
	free_irq(dev->irq, ohci);
3413
	pci_disable_msi(dev);
3414
	err = pci_save_state(dev);
3415
	if (err) {
3416
		fw_error("pci_save_state failed\n");
3417 3418
		return err;
	}
3419
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3420 3421
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3422
	pmac_ohci_off(dev);
3423

3424 3425 3426
	return 0;
}

3427
static int pci_resume(struct pci_dev *dev)
3428
{
3429
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3430 3431
	int err;

3432
	pmac_ohci_on(dev);
3433 3434 3435
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3436
	if (err) {
3437
		fw_error("pci_enable_device failed\n");
3438 3439 3440
		return err;
	}

3441 3442 3443 3444 3445 3446 3447
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3448 3449 3450 3451 3452
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3453

3454
	return 0;
3455 3456 3457
}
#endif

3458
static const struct pci_device_id pci_table[] = {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3470 3471 3472 3473
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3474 3475 3476 3477 3478 3479
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3480 3481 3482 3483 3484
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);