ohci.c 95.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
258
#define OHCI_TCODE_PHY_PACKET		0x0e
259
#define OHCI_VERSION_1_1		0x010010
260

261 262
static char ohci_driver_name[] = KBUILD_MODNAME;

263
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
264
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
265
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
266
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
267

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

293 294 295
	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_NO_MSI},

296 297 298 299 300 301 302 303 304 305 306
	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
307 308
};

309 310 311 312 313 314 315
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
316
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
317
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
318 319
	")");

320
#define OHCI_PARAM_DEBUG_AT_AR		1
321
#define OHCI_PARAM_DEBUG_SELFIDS	2
322 323
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
324

325 326
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

327 328 329 330
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
331 332 333
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
334 335 336 337
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
338 339 340 341 342 343
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
344 345
		return;

346
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
347 348 349 350 351 352 353 354 355
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
356
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
357
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
358
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
359
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
360 361 362 363 364
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
365 366
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
367
		    OHCI1394_regAccessFail | OHCI1394_busReset)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

385
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
386 387 388 389
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

390 391
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
392 393 394

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
395 396 397 398 399 400
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
401
		else
402 403 404 405
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

449
	if (evt == OHCI1394_evt_bus_reset) {
450 451
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
452 453 454
		return;
	}

455 456 457 458 459 460 461 462 463 464 465 466 467 468
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
469
	case 0xa:
470
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
471
		break;
472 473 474 475
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
476
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
477 478 479 480 481 482
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
483 484
		break;
	default:
485 486 487 488 489 490
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
491 492 493 494 495
	}
}

#else

496 497 498 499
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
500 501 502

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
503
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
504 505 506 507
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
508
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
509 510 511 512
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
513
static inline void flush_writes(const struct fw_ohci *ohci)
514 515 516 517 518
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

519 520 521 522 523 524
/*
 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 */
525
static int read_phy_reg(struct fw_ohci *ohci, int addr)
526
{
527
	u32 val;
528
	int i;
529 530

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
531
	for (i = 0; i < 3 + 100; i++) {
532
		val = reg_read(ohci, OHCI1394_PhyControl);
533 534 535
		if (!~val)
			return -ENODEV; /* Card was ejected. */

536 537 538
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

539 540 541 542 543 544
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
545
	}
546
	fw_error("failed to read phy reg\n");
547

548 549
	return -EBUSY;
}
550

551 552 553
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
554 555

	reg_write(ohci, OHCI1394_PhyControl,
556
		  OHCI1394_PhyControl_Write(addr, val));
557
	for (i = 0; i < 3 + 100; i++) {
558
		val = reg_read(ohci, OHCI1394_PhyControl);
559 560 561
		if (!~val)
			return -ENODEV; /* Card was ejected. */

562 563
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
564

565 566
		if (i >= 3)
			msleep(1);
567 568 569 570
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
571 572
}

573 574
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
575
{
576
	int ret = read_phy_reg(ohci, addr);
577 578
	if (ret < 0)
		return ret;
579

580 581 582 583 584 585 586
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

587
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
588 589
}

590
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
591
{
592
	int ret;
593

594
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
595 596
	if (ret < 0)
		return ret;
597

598
	return read_phy_reg(ohci, addr);
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
624 625
}

626 627 628 629 630 631
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
632
{
633
	struct descriptor *d;
634

635 636 637 638
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
639

640
	wmb(); /* finish init of new descriptors before branch_address update */
641 642 643 644
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
645

646
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
647 648
}

649
static void ar_context_release(struct ar_context *ctx)
650
{
651
	unsigned int i;
652

653 654
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
655

656 657 658 659 660 661 662
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
663 664
}

665
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
666
{
667 668 669
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
670

671
		fw_error("AR error: %s; DMA stopped\n", error_msg);
672
	}
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
769 770
}

771 772
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
773
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
774 775 776 777
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

778
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
779 780
{
	struct fw_ohci *ohci = ctx->ohci;
781 782
	struct fw_packet p;
	u32 status, length, tcode;
783
	int evt;
784

785 786 787
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
788 789 790 791 792

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
793
		p.header[3] = (__force __u32) buffer[3];
794
		p.header_length = 16;
795
		p.payload_length = 0;
796 797 798
		break;

	case TCODE_READ_BLOCK_REQUEST :
799
		p.header[3] = cond_le32_to_cpu(buffer[3]);
800 801 802 803 804
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
805 806 807
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
808
		p.header[3] = cond_le32_to_cpu(buffer[3]);
809
		p.header_length = 16;
810
		p.payload_length = p.header[3] >> 16;
811 812 813 814
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
815 816 817 818
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
819
	case OHCI_TCODE_PHY_PACKET:
820
		p.header_length = 12;
821
		p.payload_length = 0;
822
		break;
823 824

	default:
825 826
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
827
	}
828

829 830 831 832
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
833
	status = cond_le32_to_cpu(buffer[length]);
834
	evt    = (status >> 16) & 0x1f;
835

836
	p.ack        = evt - 16;
837 838 839
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
840

841
	log_ar_at_event('R', p.speed, p.header, evt);
842

843
	/*
844 845 846 847 848 849 850 851 852
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
853 854 855 856 857
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
858
	 * request.
859 860 861 862
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
863
	 */
864
	if (evt == OHCI1394_evt_bus_reset) {
865
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
866 867
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
868
		fw_core_handle_request(&ohci->card, &p);
869
	} else {
870
		fw_core_handle_response(&ohci->card, &p);
871
	}
872

873 874
	return buffer + length + 1;
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

904 905 906
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
907 908
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
909

910 911 912
	p = ctx->pointer;
	if (!p)
		return;
913

914 915 916 917
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
918

919
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
920
		/*
921 922 923 924
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
925
		 */
926 927 928 929 930 931 932
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
933

934 935 936 937 938 939
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
940

941 942
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
943

944
	return;
945

946 947
error:
	ctx->pointer = NULL;
948 949
}

950 951
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
952
{
953 954 955 956
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
957

958 959
	ctx->regs        = regs;
	ctx->ohci        = ohci;
960 961
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
981
				 -1, PAGE_KERNEL);
982 983 984
	if (!ctx->buffer)
		goto out_of_memory;

985 986
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
987 988 989 990 991 992 993 994 995 996 997

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
998

999
	return 0;
1000 1001 1002 1003 1004

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
1005 1006 1007 1008
}

static void ar_context_run(struct ar_context *ctx)
{
1009 1010 1011 1012
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
1013

1014
	ctx->pointer = ctx->buffer;
1015

1016
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1017
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1018
}
S
Stefan Richter 已提交
1019

1020
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1021
{
1022
	__le16 branch;
1023

1024
	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1025 1026

	/* figure out which descriptor the branch address goes in */
1027
	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1028 1029 1030 1031 1032
		return d;
	else
		return d + z - 1;
}

1033 1034 1035 1036 1037 1038
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1039
	struct descriptor_buffer *desc;
1040

1041 1042 1043
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1044
	while (last->branch_address != 0) {
1045
		struct descriptor_buffer *old_desc = desc;
1046 1047
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1048 1049 1050 1051 1052 1053 1054 1055 1056
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1057
		last = find_branch_descriptor(d, z);
1058 1059 1060 1061

		if (!ctx->callback(ctx, d, last))
			break;

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1072 1073 1074
	}
}

1075 1076 1077 1078
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1079
static int context_add_buffer(struct context *ctx)
1080 1081
{
	struct descriptor_buffer *desc;
1082
	dma_addr_t uninitialized_var(bus_addr);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1108 1109
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1110 1111 1112
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1113 1114 1115 1116
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1117 1118
		return -ENOMEM;

1119 1120 1121
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1122 1123 1124
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1125 1126
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1127
	 * branch address and looks like it's been sent.  That way we
1128
	 * have a descriptor to append DMA programs to.
1129
	 */
1130 1131 1132 1133 1134 1135
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1136 1137 1138 1139

	return 0;
}

1140
static void context_release(struct context *ctx)
1141 1142
{
	struct fw_card *card = &ctx->ohci->card;
1143
	struct descriptor_buffer *desc, *tmp;
1144

1145 1146 1147 1148
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1149 1150
}

1151
/* Must be called with ohci->lock held */
1152 1153
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1154
{
1155 1156 1157 1158 1159 1160 1161 1162 1163
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1175

1176
	d = desc->buffer + desc->used / sizeof(*d);
1177
	memset(d, 0, z * sizeof(*d));
1178
	*d_bus = desc->buffer_bus + desc->used;
1179 1180 1181 1182

	return d;
}

1183
static void context_run(struct context *ctx, u32 extra)
1184 1185 1186
{
	struct fw_ohci *ohci = ctx->ohci;

1187
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1188
		  le32_to_cpu(ctx->last->branch_address));
1189 1190
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1191
	ctx->running = true;
1192 1193 1194 1195 1196 1197 1198
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1199
	struct descriptor_buffer *desc = ctx->buffer_tail;
1200

1201
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1202

1203
	desc->used += (z + extra) * sizeof(*d);
1204 1205

	wmb(); /* finish init of new descriptors before branch_address update */
1206 1207
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1208 1209 1210 1211 1212
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1213
	int i;
1214

1215
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1216
	ctx->running = false;
1217

1218
	for (i = 0; i < 1000; i++) {
1219
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1220
		if ((reg & CONTEXT_ACTIVE) == 0)
1221
			return;
1222

1223 1224
		if (i)
			udelay(10);
1225
	}
1226
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1227
}
1228

1229
struct driver_data {
1230
	u8 inline_data[8];
1231 1232
	struct fw_packet *packet;
};
1233

1234 1235
/*
 * This function apppends a packet to the DMA queue for transmission.
1236
 * Must always be called with the ochi->lock held to ensure proper
1237 1238
 * generation handling and locking around packet queue manipulation.
 */
1239 1240
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1241 1242
{
	struct fw_ohci *ohci = ctx->ohci;
1243
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1244 1245 1246
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1247 1248
	int z, tcode;

1249 1250 1251 1252
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1253 1254
	}

1255
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1256 1257
	d[0].res_count = cpu_to_le16(packet->timestamp);

1258 1259
	/*
	 * The DMA format for asyncronous link packets is different
1260
	 * from the IEEE1394 layout, so shift the fields around
1261
	 * accordingly.
1262
	 */
1263

1264
	tcode = (packet->header[0] >> 4) & 0x0f;
1265
	header = (__le32 *) &d[1];
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1276 1277 1278 1279 1280
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1281 1282

		if (TCODE_IS_BLOCK_PACKET(tcode))
1283
			header[3] = cpu_to_le32(packet->header[3]);
1284
		else
1285 1286 1287
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1288 1289
		break;

1290
	case TCODE_LINK_INTERNAL:
1291 1292
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1293 1294
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1295
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1296

1297
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1298
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1299 1300
		break;

1301
	case TCODE_STREAM_DATA:
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1312 1313
	}

1314
	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1315 1316
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1317
	packet->driver_data = driver_data;
1318

1319
	if (packet->payload_length > 0) {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		if (packet->payload_length > sizeof(driver_data->inline_data)) {
			payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
			if (dma_mapping_error(ohci->card.device, payload_bus)) {
				packet->ack = RCODE_SEND_ERROR;
				return -1;
			}
			packet->payload_bus	= payload_bus;
			packet->payload_mapped	= true;
		} else {
			memcpy(driver_data->inline_data, packet->payload,
			       packet->payload_length);
			payload_bus = d_bus + 3 * sizeof(*d);
1335 1336 1337 1338 1339 1340
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1341
	} else {
1342 1343
		last = &d[0];
		z = 2;
1344 1345
	}

1346 1347 1348
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1349

1350 1351
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1352
		if (packet->payload_mapped)
1353 1354
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1355 1356 1357 1358 1359
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1360

1361
	if (ctx->running)
1362
		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1363
	else
1364 1365 1366
		context_run(ctx, 0);

	return 0;
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1380 1381 1382
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1383
{
1384
	struct driver_data *driver_data;
1385
	struct fw_packet *packet;
1386
	struct fw_ohci *ohci = context->ohci;
1387 1388
	int evt;

1389
	if (last->transfer_status == 0 && !context->flushing)
1390 1391
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1392

1393 1394 1395 1396 1397
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1398

1399
	if (packet->payload_mapped)
1400
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1401 1402
				 packet->payload_length, DMA_TO_DEVICE);

1403 1404
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1405

1406 1407
	log_ar_at_event('T', packet->speed, packet->header, evt);

1408 1409 1410 1411 1412
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1413

1414
	case OHCI1394_evt_flushed:
1415 1416 1417 1418
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1419 1420
		packet->ack = RCODE_GENERATION;
		break;
1421

1422
	case OHCI1394_evt_missing_ack:
1423 1424 1425 1426 1427 1428 1429 1430 1431
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1432
		break;
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1443

1444 1445 1446 1447 1448 1449 1450
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1451 1452 1453 1454
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1455

1456
	packet->callback(packet, &ohci->card, packet->ack);
1457

1458
	return 1;
1459 1460
}

1461 1462 1463 1464 1465
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1466

1467 1468
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1469 1470 1471 1472
{
	struct fw_packet response;
	int tcode, length, i;

1473
	tcode = HEADER_GET_TCODE(packet->header[0]);
1474
	if (TCODE_IS_BLOCK_PACKET(tcode))
1475
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1494 1495
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1496 1497
{
	struct fw_packet response;
1498
	int tcode, length, ext_tcode, sel, try;
1499 1500 1501
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1502 1503
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504
	payload = packet->payload;
1505
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1537 1538 1539 1540 1541

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1542
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1543
{
1544
	u64 offset, csr;
1545

1546 1547 1548 1549
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1550 1551 1552

	offset =
		((unsigned long long)
1553
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1574 1575 1576 1577 1578

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1579
}
1580

1581
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1582 1583
{
	unsigned long flags;
1584
	int ret;
1585 1586 1587

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1588
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1589
	    ctx->ohci->generation == packet->generation) {
1590 1591 1592
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1593
	}
1594

1595
	ret = at_context_queue_packet(ctx, packet);
1596 1597
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1598
	if (ret < 0)
1599
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1600

1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1716 1717 1718
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1719
	int self_id_count, i, j, reg;
1720 1721
	int generation, new_generation;
	unsigned long flags;
1722 1723
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1724
	bool is_new_root;
1725 1726 1727

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1728
		fw_notify("node ID not valid, new bus reset in progress\n");
1729 1730
		return;
	}
1731 1732 1733 1734 1735 1736
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1737

1738 1739 1740 1741 1742 1743
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1744 1745 1746 1747 1748
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1749 1750
	/*
	 * The count in the SelfIDCount register is the number of
1751 1752
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1753 1754
	 * bit extra to get the actual number of self IDs.
	 */
1755 1756
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1757 1758 1759
		fw_notify("inconsistent self IDs\n");
		return;
	}
1760
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1761
	rmb();
1762 1763

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1764 1765 1766 1767
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1768 1769
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1770
	}
1771
	rmb();
1772

1773 1774
	/*
	 * Check the consistency of the self IDs we just read.  The
1775 1776 1777 1778 1779 1780 1781 1782 1783
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1784 1785
	 * of self IDs.
	 */
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1797
	ohci->generation = -1; /* prevent AT packet queueing */
1798 1799
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1800 1801 1802

	spin_unlock_irqrestore(&ohci->lock, flags);

1803 1804 1805 1806 1807
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1808 1809 1810 1811 1812 1813
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1814 1815
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1816
	if (ohci->quirks & QUIRK_RESET_PACKET)
1817 1818
		ohci->request_generation = generation;

1819 1820
	/*
	 * This next bit is unrelated to the AT context stuff but we
1821 1822 1823 1824
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1825
	 * next_config_rom pointer so a new update can take place.
1826
	 */
1827 1828

	if (ohci->next_config_rom != NULL) {
1829 1830 1831 1832
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1833 1834 1835 1836
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1837 1838
		/*
		 * Restore config_rom image and manually update
1839 1840
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1841 1842
		 * do that last.
		 */
1843 1844
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1845 1846 1847
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1848 1849
	}

1850 1851 1852 1853 1854
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1855 1856
	spin_unlock_irqrestore(&ohci->lock, flags);

1857 1858 1859 1860
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1861 1862
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1863

1864
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1865 1866 1867
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1868 1869 1870 1871 1872
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1873
	u32 event, iso_event;
1874 1875 1876 1877
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1878
	if (!event || !~event)
1879 1880
		return IRQ_NONE;

1881 1882 1883 1884 1885 1886
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1887
	log_irqs(event);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1914 1915
	}

1916 1917 1918
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1919

1920 1921 1922 1923 1924 1925
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1926 1927
	}

1928 1929 1930 1931
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1932 1933 1934 1935 1936
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1937
		fw_error("PCI posted write error\n");
1938
	}
1939

1940 1941 1942 1943 1944 1945 1946
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1958 1959 1960
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1961 1962 1963 1964
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1965 1966
	} else
		flush_writes(ohci);
1967

1968 1969 1970
	return IRQ_HANDLED;
}

1971 1972
static int software_reset(struct fw_ohci *ohci)
{
1973
	u32 val;
1974 1975 1976
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1977 1978 1979 1980
	for (i = 0; i < 500; i++) {
		val = reg_read(ohci, OHCI1394_HCControlSet);
		if (!~val)
			return -ENODEV; /* Card was ejected. */
1981

1982
		if (!(val & OHCI1394_HCControl_softReset))
1983
			return 0;
1984

1985 1986 1987 1988 1989 1990
		msleep(1);
	}

	return -EBUSY;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

2000 2001 2002
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
2003
	int ret, clear, set, offset;
2004 2005 2006 2007 2008 2009 2010 2011

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
2012 2013 2014 2015 2016 2017 2018 2019
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2034
	ret = update_phy_reg(ohci, 5, clear, set);
2035 2036
	if (ret < 0)
		return ret;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2051 2052
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2053 2054 2055
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2056
	u32 lps, seconds, version, irqs;
2057
	int i, ret;
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2069 2070
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2071 2072 2073 2074 2075
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2087 2088 2089 2090

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2091
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2092 2093 2094 2095 2096 2097 2098
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2099 2100
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2101

2102 2103 2104 2105
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2106 2107 2108 2109
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2110
		card->broadcast_channel_auto_allocated = true;
2111 2112
	}

2113 2114 2115 2116
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2117
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2118 2119 2120 2121 2122

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2123 2124 2125
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2126

2127
	/* Activate link_on bit and contender bit in our self ID packets.*/
2128 2129 2130
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2131

2132 2133
	/*
	 * When the link is not yet enabled, the atomic config rom
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2151 2152 2153 2154 2155 2156 2157
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2158

2159
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2160 2161 2162 2163 2164 2165 2166 2167
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2168

2169
	ohci->next_header = ohci->next_config_rom[0];
2170 2171
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2172 2173
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2174 2175 2176 2177
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2178 2179
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2180
	if (request_irq(dev->irq, irq_handler,
2181 2182 2183 2184
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2185 2186 2187 2188 2189 2190 2191

		if (config_rom) {
			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					  ohci->next_config_rom,
					  ohci->next_config_rom_bus);
			ohci->next_config_rom = NULL;
		}
2192 2193 2194
		return -EIO;
	}

2195 2196 2197 2198 2199 2200
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2201
		OHCI1394_cycle64Seconds |
2202 2203 2204
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2205 2206 2207 2208 2209
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2210 2211 2212
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
2213 2214 2215 2216 2217 2218

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_rcvPhyPkt);

	ar_context_run(&ohci->ar_request_ctx);
2219 2220 2221
	ar_context_run(&ohci->ar_response_ctx);

	flush_writes(ohci);
2222

2223 2224
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2225 2226 2227 2228

	return 0;
}

2229
static int ohci_set_config_rom(struct fw_card *card,
2230
			       const __be32 *config_rom, size_t length)
2231 2232 2233 2234
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2235
	dma_addr_t uninitialized_var(next_config_rom_bus);
2236 2237 2238

	ohci = fw_ohci(card);

2239 2240
	/*
	 * When the OHCI controller is enabled, the config rom update
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2285 2286 2287
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2288 2289
		next_config_rom = NULL;
	}
2290

2291
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2292

2293 2294
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2295

2296
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2297 2298 2299

	spin_unlock_irqrestore(&ohci->lock, flags);

2300 2301 2302 2303 2304
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2305 2306
	/*
	 * Now initiate a bus reset to have the changes take
2307 2308 2309
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2310 2311
	 * takes effect.
	 */
2312

2313 2314 2315
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2332 2333 2334
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2335 2336
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2337
	int ret = -ENOENT;
2338

2339
	tasklet_disable(&ctx->tasklet);
2340

2341 2342
	if (packet->ack != 0)
		goto out;
2343

2344
	if (packet->payload_mapped)
2345 2346 2347
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2348
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2349 2350 2351
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2352
	ret = 0;
2353 2354
 out:
	tasklet_enable(&ctx->tasklet);
2355

2356
	return ret;
2357 2358
}

2359 2360
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2361
{
2362 2363 2364
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2365 2366
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2367
	int n, ret = 0;
2368

2369 2370 2371 2372
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2373 2374 2375 2376

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2377
		ret = -ESTALE;
2378 2379 2380
		goto out;
	}

2381 2382 2383 2384
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2385 2386 2387 2388 2389 2390 2391

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2392 2393
	flush_writes(ohci);
 out:
2394
	spin_unlock_irqrestore(&ohci->lock, flags);
2395 2396

	return ret;
2397
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2398
}
S
Stefan Richter 已提交
2399

2400
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2401
{
2402
	struct fw_ohci *ohci = fw_ohci(card);
2403 2404
	unsigned long flags;
	u32 value;
2405 2406

	switch (csr_offset) {
2407 2408 2409 2410 2411
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2412
			value = CSR_STATE_BIT_CMSTR;
2413
		else
2414 2415 2416
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2417

2418
		return value;
2419

2420 2421 2422
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2423 2424 2425
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2437 2438 2439 2440
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2441 2442 2443 2444
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2445 2446 2447 2448
	default:
		WARN_ON(1);
		return 0;
	}
2449 2450
}

2451
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2452 2453
{
	struct fw_ohci *ohci = fw_ohci(card);
2454
	unsigned long flags;
2455

2456
	switch (csr_offset) {
2457 2458 2459 2460 2461 2462
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2463 2464
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2465
		break;
2466

2467 2468 2469 2470 2471 2472
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2473 2474
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2475
		break;
2476

2477 2478 2479 2480 2481
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2482 2483 2484 2485 2486 2487 2488
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2489 2490 2491 2492 2493 2494
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2495 2496 2497 2498 2499 2500 2501
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2502 2503 2504 2505 2506
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2507 2508 2509 2510
	default:
		WARN_ON(1);
		break;
	}
2511 2512
}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2535 2536 2537 2538 2539 2540
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2541
	struct descriptor *pd;
2542
	__le32 *ir_header;
2543
	void *p;
2544

2545
	for (pd = d; pd <= last; pd++)
2546 2547 2548
		if (pd->transfer_status)
			break;
	if (pd > last)
2549 2550 2551
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2552 2553
	p = last + 1;
	copy_iso_headers(ctx, p);
2554

2555 2556
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2557 2558 2559 2560
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2561 2562 2563 2564 2565 2566
		ctx->header_length = 0;
	}

	return 1;
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2589 2590 2591
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2592
{
2593 2594
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2595 2596
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2597

2598 2599 2600 2601 2602
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2603 2604
		return 0;

2605 2606 2607 2608 2609 2610 2611 2612 2613
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2614 2615 2616
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2617 2618
		ctx->header_length = 0;
	}
2619
	return 1;
2620 2621
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2634
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2635
				int type, int channel, size_t header_size)
2636 2637
{
	struct fw_ohci *ohci = fw_ohci(card);
2638 2639 2640 2641
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2642
	unsigned long flags;
2643
	int index, ret = -EBUSY;
2644

2645
	spin_lock_irqsave(&ohci->lock, flags);
2646

2647 2648 2649
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2650
		callback = handle_it_packet;
2651 2652 2653 2654 2655 2656 2657 2658 2659
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2660
		channels = &ohci->ir_context_channels;
2661
		mask     = &ohci->ir_context_mask;
2662
		callback = handle_ir_packet_per_buffer;
2663 2664 2665 2666 2667 2668 2669 2670
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2687
	}
2688

2689 2690 2691
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2692
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2693

2694
	memset(ctx, 0, sizeof(*ctx));
2695 2696
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2697 2698
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2699
		goto out;
2700
	}
2701 2702
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2703
		goto out_with_header;
2704

2705 2706 2707
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2708
	return &ctx->base;
2709 2710 2711 2712 2713

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2724
	*mask |= 1 << index;
2725

2726 2727
	spin_unlock_irqrestore(&ohci->lock, flags);

2728
	return ERR_PTR(ret);
2729 2730
}

2731 2732
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2733
{
S
Stefan Richter 已提交
2734
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2735
	struct fw_ohci *ohci = ctx->context.ohci;
2736
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2737 2738
	int index;

2739 2740 2741 2742
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2743 2744
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2745
		index = ctx - ohci->it_context_list;
2746 2747 2748
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2749
				(cycle & 0x7fff) << 16;
2750

2751 2752
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2753
		context_run(&ctx->context, match);
2754 2755 2756 2757 2758 2759
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2760
		index = ctx - ohci->ir_context_list;
2761 2762 2763 2764 2765
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2766

2767 2768
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2769
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2770
		context_run(&ctx->context, control);
2771 2772 2773 2774

		ctx->sync = sync;
		ctx->tags = tags;

2775
		break;
2776
	}
2777 2778 2779 2780

	return 0;
}

2781 2782 2783
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2784
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2785 2786
	int index;

2787 2788
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2789 2790
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2791 2792 2793 2794
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2795 2796
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2797
		break;
2798 2799 2800
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2801
	tasklet_kill(&ctx->context.tasklet);
2802 2803 2804 2805

	return 0;
}

2806 2807 2808
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2809
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2810 2811 2812
	unsigned long flags;
	int index;

2813 2814
	ohci_stop_iso(base);
	context_release(&ctx->context);
2815
	free_page((unsigned long)ctx->header);
2816

2817 2818
	spin_lock_irqsave(&ohci->lock, flags);

2819 2820
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2821 2822
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2823 2824 2825
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2826 2827
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2828
		ohci->ir_context_channels |= 1ULL << base->channel;
2829 2830 2831 2832 2833 2834 2835 2836 2837
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2838 2839 2840 2841 2842
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2873 2874 2875 2876 2877 2878 2879 2880
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2881
		if (ctx->context.running)
2882 2883 2884 2885 2886
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2887
		if (ctx->context.running)
2888 2889 2890 2891 2892
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2893 2894 2895 2896
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2897
{
2898
	struct descriptor *d, *last, *pd;
2899 2900
	struct fw_iso_packet *p;
	__le32 *header;
2901
	dma_addr_t d_bus, page_bus;
2902 2903
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2904
	int page, end_page, i, length, offset;
2905 2906

	p = packet;
2907
	payload_index = payload;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2926
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2927

2928 2929 2930
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2931 2932

	if (!p->skip) {
2933
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2934
		d[0].req_count = cpu_to_le16(8);
2935 2936 2937 2938 2939 2940 2941 2942
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2943 2944

		header = (__le32 *) &d[1];
2945 2946 2947 2948 2949
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2950
		header[1] =
2951
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2952 2953 2954 2955 2956
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2957
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2970 2971 2972

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2973 2974 2975 2976 2977

		payload_index += length;
	}

	if (p->interrupt)
2978
		irq = DESCRIPTOR_IRQ_ALWAYS;
2979
	else
2980
		irq = DESCRIPTOR_NO_IRQ;
2981

2982
	last = z == 2 ? d : d + z - 1;
2983 2984 2985
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2986
				     irq);
2987

2988
	context_append(&ctx->context, d, z, header_z);
2989 2990 2991

	return 0;
}
S
Stefan Richter 已提交
2992

2993 2994 2995 2996
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2997
{
2998
	struct descriptor *d, *pd;
2999 3000
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
3001 3002
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
3003 3004

	/*
3005 3006
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
3007
	 */
3008
	packet_count = packet->header_length / ctx->base.header_size;
3009
	header_size  = max(ctx->base.header_size, (size_t)8);
3010 3011 3012 3013 3014

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
3015
	payload_per_buffer = packet->payload_length / packet_count;
3016 3017 3018

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
3019
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3020
		d = context_get_descriptors(&ctx->context,
3021
				z + header_z, &d_bus);
3022 3023 3024
		if (d == NULL)
			return -ENOMEM;

3025 3026
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
3027
		if (packet->skip && i == 0)
3028
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3029 3030
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
3031
		d->transfer_status = 0;
3032 3033
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3034
		rest = payload_per_buffer;
3035
		pd = d;
3036
		for (j = 1; j < z; j++) {
3037
			pd++;
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3057 3058 3059
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3060
		if (packet->interrupt && i == packet_count - 1)
3061 3062 3063 3064 3065 3066 3067 3068
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3121 3122 3123 3124
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3125
{
3126
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3127
	unsigned long flags;
3128
	int ret = -ENOSYS;
3129

3130
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3142 3143
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3144
	return ret;
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154
static void ohci_flush_queue_iso(struct fw_iso_context *base)
{
	struct context *ctx =
			&container_of(base, struct iso_context, base)->context;

	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
}

3155
static const struct fw_card_driver ohci_driver = {
3156
	.enable			= ohci_enable,
3157
	.read_phy_reg		= ohci_read_phy_reg,
3158 3159 3160 3161
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3162
	.cancel_packet		= ohci_cancel_packet,
3163
	.enable_phys_dma	= ohci_enable_phys_dma,
3164 3165
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3166 3167 3168

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3169
	.set_iso_channels	= ohci_set_iso_channels,
3170
	.queue_iso		= ohci_queue_iso,
3171
	.flush_queue_iso	= ohci_flush_queue_iso,
3172
	.start_iso		= ohci_start_iso,
3173
	.stop_iso		= ohci_stop_iso,
3174 3175
};

3176
#ifdef CONFIG_PPC_PMAC
3177
static void pmac_ohci_on(struct pci_dev *dev)
3178
{
3179 3180 3181 3182 3183 3184 3185 3186
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3187 3188
}

3189
static void pmac_ohci_off(struct pci_dev *dev)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3201 3202
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3203 3204
#endif /* CONFIG_PPC_PMAC */

3205 3206
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3207 3208
{
	struct fw_ohci *ohci;
3209
	u32 bus_options, max_receive, link_speed, version;
3210
	u64 guid;
3211
	int i, err;
3212 3213
	size_t size;

3214 3215 3216 3217 3218
	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
		return -ENOSYS;
	}

3219
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3220
	if (ohci == NULL) {
3221 3222
		err = -ENOMEM;
		goto fail;
3223 3224 3225 3226
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3227
	pmac_ohci_on(dev);
3228

3229 3230
	err = pci_enable_device(dev);
	if (err) {
3231
		fw_error("Failed to enable OHCI hardware\n");
3232
		goto fail_free;
3233 3234 3235 3236 3237 3238 3239
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3240
	mutex_init(&ohci->phy_reg_mutex);
3241 3242 3243 3244

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3245 3246
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3247
		fw_error("MMIO resource unavailable\n");
3248
		goto fail_disable;
3249 3250 3251 3252 3253
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3254 3255
		err = -ENXIO;
		goto fail_iomem;
3256 3257
	}

3258
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3259 3260 3261 3262 3263
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3264 3265 3266
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3267 3268
	if (param_quirks)
		ohci->quirks = param_quirks;
3269

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3287 3288
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3289
		goto fail_misc_buf;
3290

3291
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3292 3293 3294
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3295

3296 3297 3298 3299
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3300

3301 3302 3303 3304
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3305 3306

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3307
	ohci->ir_context_channels = ~0ULL;
3308
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3309
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3310
	ohci->ir_context_mask = ohci->ir_context_support;
3311 3312
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3313
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3314 3315

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3316
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3317
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3318
	ohci->it_context_mask = ohci->it_context_support;
3319 3320
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3321
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3322 3323

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3324
		err = -ENOMEM;
3325
		goto fail_contexts;
3326 3327
	}

3328 3329
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3330 3331 3332 3333 3334 3335 3336

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3337
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3338
	if (err)
3339
		goto fail_contexts;
3340

3341 3342 3343 3344
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3345
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3346

3347
	return 0;
3348

3349
 fail_contexts:
3350
	kfree(ohci->ir_context_list);
3351 3352
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3353
 fail_atreq_ctx:
3354
	context_release(&ohci->at_request_ctx);
3355
 fail_arrsp_ctx:
3356
	ar_context_release(&ohci->ar_response_ctx);
3357
 fail_arreq_ctx:
3358
	ar_context_release(&ohci->ar_request_ctx);
3359 3360 3361
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3362
 fail_iounmap:
3363 3364 3365 3366 3367
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3368
 fail_free:
3369
	kfree(ohci);
3370
	pmac_ohci_off(dev);
3371 3372 3373
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3374 3375

	return err;
3376 3377 3378 3379 3380 3381 3382
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3383 3384
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3385 3386
	fw_core_remove_card(&ohci->card);

3387 3388 3389 3390
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3391 3392 3393

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3394 3395 3396 3397 3398 3399 3400 3401 3402

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3403 3404
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3405 3406
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3407 3408
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3409
	pci_disable_msi(dev);
3410 3411 3412
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3413
	kfree(ohci);
3414
	pmac_ohci_off(dev);
3415

3416 3417 3418
	fw_notify("Removed fw-ohci device.\n");
}

3419
#ifdef CONFIG_PM
3420
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3421
{
3422
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3423 3424 3425
	int err;

	software_reset(ohci);
3426
	free_irq(dev->irq, ohci);
3427
	pci_disable_msi(dev);
3428
	err = pci_save_state(dev);
3429
	if (err) {
3430
		fw_error("pci_save_state failed\n");
3431 3432
		return err;
	}
3433
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3434 3435
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3436
	pmac_ohci_off(dev);
3437

3438 3439 3440
	return 0;
}

3441
static int pci_resume(struct pci_dev *dev)
3442
{
3443
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3444 3445
	int err;

3446
	pmac_ohci_on(dev);
3447 3448 3449
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3450
	if (err) {
3451
		fw_error("pci_enable_device failed\n");
3452 3453 3454
		return err;
	}

3455 3456 3457 3458 3459 3460 3461
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3462 3463 3464 3465 3466
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3467

3468
	return 0;
3469 3470 3471
}
#endif

3472
static const struct pci_device_id pci_table[] = {
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3484 3485 3486 3487
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3488 3489 3490 3491 3492 3493
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3494 3495 3496 3497 3498
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);