ohci.c 71.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

236 237 238 239 240 241 242 243
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
244 245
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
							    QUIRK_RESET_PACKET},
246 247 248 249 250 251 252
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

253 254 255 256 257 258 259 260 261
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
	")");

262 263
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

264
#define OHCI_PARAM_DEBUG_AT_AR		1
265
#define OHCI_PARAM_DEBUG_SELFIDS	2
266 267
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
268 269 270 271 272

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
273 274 275
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276 277 278 279
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
280 281 282 283 284 285
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
286 287
		return;

288
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289 290 291 292 293 294 295 296 297
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
298
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
299 300 301 302 303 304
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
305
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306
		    OHCI1394_regAccessFail | OHCI1394_busReset)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

324
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 326 327 328
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

329 330
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
331 332 333

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
334 335 336 337 338 339
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340
		else
341 342 343 344
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

392
	if (evt == OHCI1394_evt_bus_reset) {
393 394
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
395 396 397
		return;
	}

398
	if (header[0] == ~header[1]) {
399 400
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
419
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420 421
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422 423 424 425 426 427
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
428 429
		break;
	default:
430 431 432 433 434 435
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
436 437 438 439 440 441
	}
}

#else

#define log_irqs(evt)
442
#define log_selfids(node_id, generation, self_id_count, sid)
443 444 445 446
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
447
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 449 450 451
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
452
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 454 455 456
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
457
static inline void flush_writes(const struct fw_ohci *ohci)
458 459 460 461 462
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

463 464
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
465 466 467 468 469
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
470
	flush_writes(ohci);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

486
static int ar_context_add_page(struct ar_context *ctx)
487
{
488 489
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
490
	dma_addr_t uninitialized_var(ab_bus);
491 492
	size_t offset;

493
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
494 495 496
	if (ab == NULL)
		return -ENOMEM;

497
	ab->next = NULL;
498
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
499 500 501
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
502 503 504 505 506 507
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

508
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
509 510 511
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

512
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
513
	flush_writes(ctx->ohci);
514 515

	return 0;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

533 534
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
535
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
536 537 538 539
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

540
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
541 542
{
	struct fw_ohci *ohci = ctx->ohci;
543 544
	struct fw_packet p;
	u32 status, length, tcode;
545
	int evt;
546

547 548 549
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
550 551 552 553 554

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
555
		p.header[3] = (__force __u32) buffer[3];
556
		p.header_length = 16;
557
		p.payload_length = 0;
558 559 560
		break;

	case TCODE_READ_BLOCK_REQUEST :
561
		p.header[3] = cond_le32_to_cpu(buffer[3]);
562 563 564 565 566
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
567 568 569
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
570
		p.header[3] = cond_le32_to_cpu(buffer[3]);
571
		p.header_length = 16;
572
		p.payload_length = p.header[3] >> 16;
573 574 575 576
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
577
	case OHCI_TCODE_PHY_PACKET:
578
		p.header_length = 12;
579
		p.payload_length = 0;
580
		break;
581 582 583 584 585

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
586
	}
587

588 589 590 591
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
592
	status = cond_le32_to_cpu(buffer[length]);
593
	evt    = (status >> 16) & 0x1f;
594

595
	p.ack        = evt - 16;
596 597 598
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
599

600
	log_ar_at_event('R', p.speed, p.header, evt);
601

602 603
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
604 605 606 607 608
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
609
	 * request.
610 611 612 613
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
614
	 */
615
	if (evt == OHCI1394_evt_bus_reset) {
616
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
617 618
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
619
		fw_core_handle_request(&ohci->card, &p);
620
	} else {
621
		fw_core_handle_response(&ohci->card, &p);
622
	}
623

624 625
	return buffer + length + 1;
}
626

627 628 629 630 631 632 633 634 635 636 637 638 639
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
640 641
		dma_addr_t start_bus;
		void *start;
642

643 644
		/*
		 * This descriptor is finished and we may have a
645
		 * packet split across this and the next buffer. We
646 647
		 * reuse the page for reassembling the split packet.
		 */
648 649

		offset = offsetof(struct ar_buffer, data);
650 651
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
652 653 654 655 656 657 658 659 660 661 662 663 664 665

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

666
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
667
				  start, start_bus);
668 669 670 671 672 673 674 675 676
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
677 678
}

679 680
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
681
{
682
	struct ar_buffer ab;
683

684 685 686
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
687 688
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

689 690 691 692 693
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

694 695 696 697 698 699 700 701 702 703
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
704
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
705 706

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
707
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
708
	flush_writes(ctx->ohci);
709
}
S
Stefan Richter 已提交
710

711
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
712 713 714 715 716 717 718 719 720 721 722 723 724
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

725 726 727 728 729 730
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
731
	struct descriptor_buffer *desc;
732

733 734 735
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
736
	while (last->branch_address != 0) {
737
		struct descriptor_buffer *old_desc = desc;
738 739
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
740 741 742 743 744 745 746 747 748
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
749
		last = find_branch_descriptor(d, z);
750 751 752 753

		if (!ctx->callback(ctx, d, last))
			break;

754 755 756 757 758 759 760 761 762 763
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
764 765 766
	}
}

767 768 769 770
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
771
static int context_add_buffer(struct context *ctx)
772 773
{
	struct descriptor_buffer *desc;
774
	dma_addr_t uninitialized_var(bus_addr);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

800 801
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
802 803 804
{
	ctx->ohci = ohci;
	ctx->regs = regs;
805 806 807 808
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
809 810
		return -ENOMEM;

811 812 813
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

814 815 816
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

817 818
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
819
	 * branch address and looks like it's been sent.  That way we
820
	 * have a descriptor to append DMA programs to.
821
	 */
822 823 824 825 826 827
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
828 829 830 831

	return 0;
}

832
static void context_release(struct context *ctx)
833 834
{
	struct fw_card *card = &ctx->ohci->card;
835
	struct descriptor_buffer *desc, *tmp;
836

837 838 839 840
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
841 842
}

843
/* Must be called with ohci->lock held */
844 845
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
846
{
847 848 849 850 851 852 853 854 855
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
856

857 858 859 860 861 862 863 864 865 866
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
867

868
	d = desc->buffer + desc->used / sizeof(*d);
869
	memset(d, 0, z * sizeof(*d));
870
	*d_bus = desc->buffer_bus + desc->used;
871 872 873 874

	return d;
}

875
static void context_run(struct context *ctx, u32 extra)
876 877 878
{
	struct fw_ohci *ohci = ctx->ohci;

879
	reg_write(ohci, COMMAND_PTR(ctx->regs),
880
		  le32_to_cpu(ctx->last->branch_address));
881 882
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
883 884 885 886 887 888 889
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
890
	struct descriptor_buffer *desc = ctx->buffer_tail;
891

892
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
893

894 895 896
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
897

898
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
899 900 901 902 903 904
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
905
	int i;
906

907
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
908
	flush_writes(ctx->ohci);
909

910
	for (i = 0; i < 10; i++) {
911
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
912
		if ((reg & CONTEXT_ACTIVE) == 0)
913
			return;
914

915
		mdelay(1);
916
	}
917
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
918
}
919

920 921 922
struct driver_data {
	struct fw_packet *packet;
};
923

924 925
/*
 * This function apppends a packet to the DMA queue for transmission.
926
 * Must always be called with the ochi->lock held to ensure proper
927 928
 * generation handling and locking around packet queue manipulation.
 */
929 930
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
931 932
{
	struct fw_ohci *ohci = ctx->ohci;
933
	dma_addr_t d_bus, uninitialized_var(payload_bus);
934 935 936
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
937
	int z, tcode;
938
	u32 reg;
939

940 941 942 943
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
944 945
	}

946
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
947 948
	d[0].res_count = cpu_to_le16(packet->timestamp);

949 950
	/*
	 * The DMA format for asyncronous link packets is different
951 952
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
953 954
	 * which we need to prepend an extra quadlet.
	 */
955 956

	header = (__le32 *) &d[1];
957 958 959
	switch (packet->header_length) {
	case 16:
	case 12:
960 961 962 963 964
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
965 966 967

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
968
			header[3] = cpu_to_le32(packet->header[3]);
969
		else
970 971 972
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
973 974 975
		break;

	case 8:
976 977 978 979 980
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
981 982 983 984 985 986 987 988 989 990 991 992 993
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
994 995
	}

996 997
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
998
	packet->driver_data = driver_data;
999

1000 1001 1002 1003
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1004
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1005 1006 1007
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1008 1009
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1010 1011 1012 1013 1014

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1015
	} else {
1016 1017
		last = &d[0];
		z = 2;
1018 1019
	}

1020 1021 1022
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1037
		if (packet->payload_mapped)
1038 1039
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1040 1041 1042 1043 1044
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1045

1046
	/* If the context isn't already running, start it up. */
1047
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1048
	if ((reg & CONTEXT_RUN) == 0)
1049 1050 1051
		context_run(ctx, 0);

	return 0;
1052 1053
}

1054 1055 1056
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1057
{
1058
	struct driver_data *driver_data;
1059
	struct fw_packet *packet;
1060
	struct fw_ohci *ohci = context->ohci;
1061 1062
	int evt;

1063 1064 1065
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1066

1067 1068 1069 1070 1071
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1072

1073
	if (packet->payload_mapped)
1074
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1075 1076
				 packet->payload_length, DMA_TO_DEVICE);

1077 1078
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1079

1080 1081
	log_ar_at_event('T', packet->speed, packet->header, evt);

1082 1083 1084 1085 1086
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1087

1088
	case OHCI1394_evt_flushed:
1089 1090 1091 1092
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1093 1094
		packet->ack = RCODE_GENERATION;
		break;
1095

1096
	case OHCI1394_evt_missing_ack:
1097 1098 1099 1100
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1101 1102
		packet->ack = RCODE_NO_ACK;
		break;
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1113

1114 1115 1116 1117
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1118

1119
	packet->callback(packet, &ohci->card, packet->ack);
1120

1121
	return 1;
1122 1123
}

1124 1125 1126 1127 1128
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1129

1130 1131
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1132 1133 1134 1135
{
	struct fw_packet response;
	int tcode, length, i;

1136
	tcode = HEADER_GET_TCODE(packet->header[0]);
1137
	if (TCODE_IS_BLOCK_PACKET(tcode))
1138
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1157 1158
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1159 1160 1161 1162 1163 1164
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1165 1166
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1167
	payload = packet->payload;
1168
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1194
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1195 1196 1197 1198
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1199
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1200 1201 1202 1203
{
	u64 offset;
	u32 csr;

1204 1205 1206 1207
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1208 1209 1210

	offset =
		((unsigned long long)
1211
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1232 1233 1234 1235 1236

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1237
}
1238

1239
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1240 1241
{
	unsigned long flags;
1242
	int ret;
1243 1244 1245

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1246
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1247
	    ctx->ohci->generation == packet->generation) {
1248 1249 1250
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1251
	}
1252

1253
	ret = at_context_queue_packet(ctx, packet);
1254 1255
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1256
	if (ret < 0)
1257
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1258

1259 1260 1261 1262 1263
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1264
	int self_id_count, i, j, reg;
1265 1266
	int generation, new_generation;
	unsigned long flags;
1267 1268
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1269 1270 1271

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1272
		fw_notify("node ID not valid, new bus reset in progress\n");
1273 1274
		return;
	}
1275 1276 1277 1278 1279 1280
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1281

1282 1283 1284 1285 1286
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1287 1288
	/*
	 * The count in the SelfIDCount register is the number of
1289 1290
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1291 1292
	 * bit extra to get the actual number of self IDs.
	 */
1293 1294
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1295 1296 1297
		fw_notify("inconsistent self IDs\n");
		return;
	}
1298
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1299
	rmb();
1300 1301

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1302 1303 1304 1305
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1306 1307
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1308
	}
1309
	rmb();
1310

1311 1312
	/*
	 * Check the consistency of the self IDs we just read.  The
1313 1314 1315 1316 1317 1318 1319 1320 1321
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1322 1323
	 * of self IDs.
	 */
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1336 1337
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1338 1339
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1340
	if (ohci->quirks & QUIRK_RESET_PACKET)
1341 1342
		ohci->request_generation = generation;

1343 1344
	/*
	 * This next bit is unrelated to the AT context stuff but we
1345 1346 1347 1348
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1349 1350
	 * next_config_rom pointer so a new udpate can take place.
	 */
1351 1352

	if (ohci->next_config_rom != NULL) {
1353 1354 1355 1356
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1357 1358 1359 1360
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1361 1362
		/*
		 * Restore config_rom image and manually update
1363 1364
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1365 1366
		 * do that last.
		 */
1367 1368
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1369 1370 1371
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1372 1373
	}

1374 1375 1376 1377 1378
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1379 1380
	spin_unlock_irqrestore(&ohci->lock, flags);

1381 1382 1383 1384
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1385 1386
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1387

1388
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1389 1390 1391 1392 1393 1394
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1395
	u32 event, iso_event;
1396 1397 1398 1399
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1400
	if (!event || !~event)
1401 1402
		return IRQ_NONE;

1403 1404
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1405
	log_irqs(event);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1422
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1423 1424 1425 1426
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1427
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1428 1429 1430
		iso_event &= ~(1 << i);
	}

1431
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1432 1433 1434 1435
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1436
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1437 1438 1439
		iso_event &= ~(1 << i);
	}

1440 1441 1442 1443
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1444 1445 1446
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1447 1448 1449 1450 1451 1452 1453
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1465 1466 1467
	return IRQ_HANDLED;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1495 1496 1497
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1498 1499
	u32 lps;
	int i;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1511 1512
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1513 1514 1515 1516 1517
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1529 1530 1531 1532

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1533
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1534 1535
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1557
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1558
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1559
		  OHCI1394_masterIntEnable);
1560 1561
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1562 1563 1564 1565 1566 1567

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1568 1569
	/*
	 * When the link is not yet enabled, the atomic config rom
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1587 1588 1589 1590 1591 1592 1593
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1594

1595
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1596 1597 1598 1599 1600 1601 1602 1603
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1604

1605
	ohci->next_header = ohci->next_config_rom[0];
1606 1607
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1608 1609
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1610 1611 1612 1613 1614
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1615
			IRQF_SHARED, ohci_driver_name, ohci)) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1628 1629 1630 1631
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1632 1633 1634 1635 1636 1637

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1638
static int ohci_set_config_rom(struct fw_card *card,
1639
			       const __be32 *config_rom, size_t length)
1640 1641 1642
{
	struct fw_ohci *ohci;
	unsigned long flags;
1643
	int ret = -EBUSY;
1644
	__be32 *next_config_rom;
1645
	dma_addr_t uninitialized_var(next_config_rom_bus);
1646 1647 1648

	ohci = fw_ohci(card);

1649 1650
	/*
	 * When the OHCI controller is enabled, the config rom update
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1688
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1689 1690 1691 1692 1693 1694

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1695
		ret = 0;
1696 1697 1698 1699
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1700 1701
	/*
	 * Now initiate a bus reset to have the changes take
1702 1703 1704
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1705 1706
	 * takes effect.
	 */
1707
	if (ret == 0)
1708
		fw_core_initiate_bus_reset(&ohci->card, 1);
1709 1710 1711
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1712

1713
	return ret;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1730 1731 1732
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1733 1734
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1735
	int ret = -ENOENT;
1736

1737
	tasklet_disable(&ctx->tasklet);
1738

1739 1740
	if (packet->ack != 0)
		goto out;
1741

1742
	if (packet->payload_mapped)
1743 1744 1745
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1746
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1747 1748 1749
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1750
	ret = 0;
1751 1752
 out:
	tasklet_enable(&ctx->tasklet);
1753

1754
	return ret;
1755 1756
}

1757 1758
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1759
{
1760 1761 1762
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1763 1764
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1765
	int n, ret = 0;
1766

1767 1768 1769 1770
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1771 1772 1773 1774

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1775
		ret = -ESTALE;
1776 1777 1778
		goto out;
	}

1779 1780 1781 1782
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1783 1784 1785 1786 1787 1788 1789

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1790 1791
	flush_writes(ohci);
 out:
1792
	spin_unlock_irqrestore(&ohci->lock, flags);
1793 1794

	return ret;
1795
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1796
}
S
Stefan Richter 已提交
1797

1798
static u32 cycle_timer_ticks(u32 cycle_timer)
1799 1800 1801 1802 1803 1804
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1805

1806 1807 1808
	return ticks;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1824
static u32 ohci_get_cycle_time(struct fw_card *card)
1825 1826
{
	struct fw_ohci *ohci = fw_ohci(card);
1827 1828 1829
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1830
	int i;
1831

1832 1833
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1834
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1835 1836
		i = 0;
		c1 = c2;
1837 1838
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1839 1840
			c0 = c1;
			c1 = c2;
1841 1842 1843 1844 1845 1846
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1847 1848 1849
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1850
	}
1851

1852
	return c2;
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1877 1878 1879 1880 1881 1882
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1883
	struct descriptor *pd;
1884
	__le32 *ir_header;
1885
	void *p;
1886

1887 1888 1889 1890 1891
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1892 1893 1894
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1895 1896
	p = last + 1;
	copy_iso_headers(ctx, p);
1897

1898 1899
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1910 1911 1912
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1913
{
1914 1915
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1916 1917
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1918

1919 1920 1921 1922 1923
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1924 1925
		return 0;

1926 1927 1928 1929 1930 1931 1932 1933 1934
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936 1937 1938 1939
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1940
	return 1;
1941 1942
}

1943
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944
				int type, int channel, size_t header_size)
1945 1946 1947
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1948
	descriptor_callback_t callback;
1949
	u64 *channels, dont_care = ~0ULL;
1950
	u32 *mask, regs;
1951
	unsigned long flags;
1952
	int index, ret = -ENOMEM;
1953 1954

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955
		channels = &dont_care;
1956 1957
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1958
		callback = handle_it_packet;
1959
	} else {
1960
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1961 1962
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1963
		callback = handle_ir_packet_per_buffer;
1964 1965 1966
	}

	spin_lock_irqsave(&ohci->lock, flags);
1967 1968 1969
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1970
		*mask &= ~(1 << index);
1971
	}
1972 1973 1974 1975 1976
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1977 1978 1979 1980 1981
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1982
	ctx = &list[index];
1983
	memset(ctx, 0, sizeof(*ctx));
1984 1985 1986 1987 1988
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1989 1990
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1991
		goto out_with_header;
1992 1993

	return &ctx->base;
1994 1995 1996 1997 1998 1999 2000 2001

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2002
	return ERR_PTR(ret);
2003 2004
}

2005 2006
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2007
{
S
Stefan Richter 已提交
2008
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2009
	struct fw_ohci *ohci = ctx->context.ohci;
2010
	u32 control, match;
2011 2012
	int index;

2013 2014
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2015 2016 2017
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2018
				(cycle & 0x7fff) << 16;
2019

2020 2021
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2022
		context_run(&ctx->context, match);
2023 2024
	} else {
		index = ctx - ohci->ir_context_list;
2025
		control = IR_CONTEXT_ISOCH_HEADER;
2026 2027 2028 2029 2030
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2031

2032 2033
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2034
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2035
		context_run(&ctx->context, control);
2036
	}
2037 2038 2039 2040

	return 0;
}

2041 2042 2043
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2044
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2060 2061 2062
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2063
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2064 2065 2066
	unsigned long flags;
	int index;

2067 2068
	ohci_stop_iso(base);
	context_release(&ctx->context);
2069
	free_page((unsigned long)ctx->header);
2070

2071 2072 2073 2074 2075 2076 2077 2078
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2079
		ohci->ir_context_channels |= 1ULL << base->channel;
2080 2081 2082 2083 2084
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2085 2086 2087 2088
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2089
{
S
Stefan Richter 已提交
2090
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2091
	struct descriptor *d, *last, *pd;
2092 2093
	struct fw_iso_packet *p;
	__le32 *header;
2094
	dma_addr_t d_bus, page_bus;
2095 2096
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2097
	int page, end_page, i, length, offset;
2098 2099

	p = packet;
2100
	payload_index = payload;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2119
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2120

2121 2122 2123
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2124 2125

	if (!p->skip) {
2126
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2127
		d[0].req_count = cpu_to_le16(8);
2128 2129 2130 2131 2132 2133 2134 2135
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2136 2137

		header = (__le32 *) &d[1];
2138 2139 2140 2141 2142
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2143
		header[1] =
2144
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2145 2146 2147 2148 2149
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2150
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2163 2164 2165

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2166 2167 2168 2169 2170

		payload_index += length;
	}

	if (p->interrupt)
2171
		irq = DESCRIPTOR_IRQ_ALWAYS;
2172
	else
2173
		irq = DESCRIPTOR_NO_IRQ;
2174

2175
	last = z == 2 ? d : d + z - 1;
2176 2177 2178
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2179
				     irq);
2180

2181
	context_append(&ctx->context, d, z, header_z);
2182 2183 2184

	return 0;
}
S
Stefan Richter 已提交
2185

2186 2187 2188 2189
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2190 2191
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2192
	struct descriptor *d, *pd;
2193
	struct fw_iso_packet *p = packet;
2194 2195
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2196 2197
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2198 2199

	/*
2200 2201
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2202 2203
	 */
	packet_count = p->header_length / ctx->base.header_size;
2204
	header_size  = max(ctx->base.header_size, (size_t)8);
2205 2206 2207 2208 2209

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2210
	payload_per_buffer = p->payload_length / packet_count;
2211 2212 2213

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2214
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2215
		d = context_get_descriptors(&ctx->context,
2216
				z + header_z, &d_bus);
2217 2218 2219
		if (d == NULL)
			return -ENOMEM;

2220 2221 2222 2223
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2224 2225
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2226
		d->transfer_status = 0;
2227 2228
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2229
		rest = payload_per_buffer;
2230
		pd = d;
2231
		for (j = 1; j < z; j++) {
2232
			pd++;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2252 2253 2254
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2255
		if (p->interrupt && i == packet_count - 1)
2256 2257 2258 2259 2260 2261 2262 2263
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2264 2265 2266 2267
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2268
{
2269
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2270
	unsigned long flags;
2271
	int ret;
2272

2273
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2274
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2275
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2276
	else
2277 2278
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2279 2280
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2281
	return ret;
2282 2283
}

2284
static const struct fw_card_driver ohci_driver = {
2285 2286 2287 2288 2289
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2290
	.cancel_packet		= ohci_cancel_packet,
2291
	.enable_phys_dma	= ohci_enable_phys_dma,
2292
	.get_cycle_time		= ohci_get_cycle_time,
2293 2294 2295 2296

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2297
	.start_iso		= ohci_start_iso,
2298
	.stop_iso		= ohci_stop_iso,
2299 2300
};

2301
#ifdef CONFIG_PPC_PMAC
2302 2303
static void ohci_pmac_on(struct pci_dev *dev)
{
2304 2305 2306 2307 2308 2309 2310 2311
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2328 2329
#endif /* CONFIG_PPC_PMAC */

2330 2331
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2332 2333
{
	struct fw_ohci *ohci;
2334
	u32 bus_options, max_receive, link_speed, version;
2335
	u64 guid;
2336
	int i, err, n_ir, n_it;
2337 2338
	size_t size;

2339
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2340
	if (ohci == NULL) {
2341 2342
		err = -ENOMEM;
		goto fail;
2343 2344 2345 2346
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2347 2348
	ohci_pmac_on(dev);

2349 2350
	err = pci_enable_device(dev);
	if (err) {
2351
		fw_error("Failed to enable OHCI hardware\n");
2352
		goto fail_free;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2364 2365
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2366
		fw_error("MMIO resource unavailable\n");
2367
		goto fail_disable;
2368 2369 2370 2371 2372
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2373 2374
		err = -ENXIO;
		goto fail_iomem;
2375 2376
	}

2377 2378 2379 2380 2381 2382 2383
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2384 2385
	if (param_quirks)
		ohci->quirks = param_quirks;
2386

2387 2388 2389 2390 2391 2392
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2393
	context_init(&ohci->at_request_ctx, ohci,
2394
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2395

2396
	context_init(&ohci->at_response_ctx, ohci,
2397
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2398 2399

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2400 2401
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2402
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2403 2404
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2405
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2406 2407

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2408
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2409
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2410 2411
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2412
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2413 2414

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2415
		err = -ENOMEM;
2416
		goto fail_contexts;
2417 2418 2419 2420 2421 2422 2423 2424
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2425
		err = -ENOMEM;
2426
		goto fail_contexts;
2427 2428 2429 2430 2431 2432 2433 2434
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2435
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2436
	if (err)
2437
		goto fail_self_id;
2438

2439 2440 2441 2442 2443
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2444

2445
	return 0;
2446 2447 2448 2449

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2450
 fail_contexts:
2451
	kfree(ohci->ir_context_list);
2452 2453 2454 2455 2456
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2457 2458 2459 2460 2461
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2462 2463
 fail_free:
	kfree(&ohci->card);
2464
	ohci_pmac_off(dev);
2465 2466 2467
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2468 2469

	return err;
2470 2471 2472 2473 2474 2475 2476
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2477 2478
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2479 2480
	fw_core_remove_card(&ohci->card);

2481 2482 2483 2484
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2485 2486 2487

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2488 2489 2490 2491 2492 2493 2494

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2495 2496
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2497 2498 2499 2500
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2501 2502 2503 2504 2505
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2506
	kfree(&ohci->card);
2507
	ohci_pmac_off(dev);
2508

2509 2510 2511
	fw_notify("Removed fw-ohci device.\n");
}

2512
#ifdef CONFIG_PM
2513
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2514
{
2515
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2516 2517 2518
	int err;

	software_reset(ohci);
2519 2520
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2521
	if (err) {
2522
		fw_error("pci_save_state failed\n");
2523 2524
		return err;
	}
2525
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2526 2527
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2528
	ohci_pmac_off(dev);
2529

2530 2531 2532
	return 0;
}

2533
static int pci_resume(struct pci_dev *dev)
2534
{
2535
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2536 2537
	int err;

2538 2539 2540 2541
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2542
	if (err) {
2543
		fw_error("pci_enable_device failed\n");
2544 2545 2546
		return err;
	}

2547
	return ohci_enable(&ohci->card, NULL, 0);
2548 2549 2550
}
#endif

2551
static const struct pci_device_id pci_table[] = {
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2563 2564 2565 2566
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2567 2568 2569 2570 2571 2572
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2573 2574 2575 2576 2577
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);