ohci.c 71.1 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

249 250
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

251
#define OHCI_PARAM_DEBUG_AT_AR		1
252
#define OHCI_PARAM_DEBUG_SELFIDS	2
253 254
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
255 256 257 258 259

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
260 261 262
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
263 264 265 266
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
267 268 269 270 271 272
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
273 274
		return;

275
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
276 277 278 279 280 281 282 283 284
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
285
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
286 287 288 289 290 291
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
292
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
293
		    OHCI1394_regAccessFail | OHCI1394_busReset)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

311
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
312 313 314 315
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

316 317
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
318 319 320

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
321 322 323 324 325 326
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
327
		else
328 329 330 331
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

379
	if (evt == OHCI1394_evt_bus_reset) {
380 381
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
382 383 384
		return;
	}

385
	if (header[0] == ~header[1]) {
386 387
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
406
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
407 408
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
409 410 411 412 413 414
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
415 416
		break;
	default:
417 418 419 420 421 422
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
423 424 425 426 427 428
	}
}

#else

#define log_irqs(evt)
429
#define log_selfids(node_id, generation, self_id_count, sid)
430 431 432 433
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
434
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
435 436 437 438
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
439
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
440 441 442 443
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
444
static inline void flush_writes(const struct fw_ohci *ohci)
445 446 447 448 449
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

450 451
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
452 453 454 455 456
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
457
	flush_writes(ohci);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

473
static int ar_context_add_page(struct ar_context *ctx)
474
{
475 476
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
477
	dma_addr_t uninitialized_var(ab_bus);
478 479
	size_t offset;

480
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
481 482 483
	if (ab == NULL)
		return -ENOMEM;

484
	ab->next = NULL;
485
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
486 487 488
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
489 490 491 492 493 494
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

495
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
496 497 498
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

499
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
500
	flush_writes(ctx->ohci);
501 502

	return 0;
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

520 521
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
522
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
523 524 525 526
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

527
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
528 529
{
	struct fw_ohci *ohci = ctx->ohci;
530 531
	struct fw_packet p;
	u32 status, length, tcode;
532
	int evt;
533

534 535 536
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
537 538 539 540 541

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
542
		p.header[3] = (__force __u32) buffer[3];
543
		p.header_length = 16;
544
		p.payload_length = 0;
545 546 547
		break;

	case TCODE_READ_BLOCK_REQUEST :
548
		p.header[3] = cond_le32_to_cpu(buffer[3]);
549 550 551 552 553
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
554 555 556
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
557
		p.header[3] = cond_le32_to_cpu(buffer[3]);
558
		p.header_length = 16;
559
		p.payload_length = p.header[3] >> 16;
560 561 562 563
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
564
	case OHCI_TCODE_PHY_PACKET:
565
		p.header_length = 12;
566
		p.payload_length = 0;
567
		break;
568 569 570 571 572

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
573
	}
574

575 576 577 578
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
579
	status = cond_le32_to_cpu(buffer[length]);
580
	evt    = (status >> 16) & 0x1f;
581

582
	p.ack        = evt - 16;
583 584 585
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
586

587
	log_ar_at_event('R', p.speed, p.header, evt);
588

589 590
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
591 592 593 594 595
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
596
	 * request.
597 598 599 600
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
601
	 */
602
	if (evt == OHCI1394_evt_bus_reset) {
603
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
604 605
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
606
		fw_core_handle_request(&ohci->card, &p);
607
	} else {
608
		fw_core_handle_response(&ohci->card, &p);
609
	}
610

611 612
	return buffer + length + 1;
}
613

614 615 616 617 618 619 620 621 622 623 624 625 626
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
627 628
		dma_addr_t start_bus;
		void *start;
629

630 631
		/*
		 * This descriptor is finished and we may have a
632
		 * packet split across this and the next buffer. We
633 634
		 * reuse the page for reassembling the split packet.
		 */
635 636

		offset = offsetof(struct ar_buffer, data);
637 638
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
639 640 641 642 643 644 645 646 647 648 649 650 651 652

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

653
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
654
				  start, start_bus);
655 656 657 658 659 660 661 662 663
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
664 665
}

666 667
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
668
{
669
	struct ar_buffer ab;
670

671 672 673
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
674 675
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

676 677 678 679 680
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

681 682 683 684 685 686 687 688 689 690
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
691
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
692 693

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
694
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
695
	flush_writes(ctx->ohci);
696
}
S
Stefan Richter 已提交
697

698
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
699 700 701 702 703 704 705 706 707 708 709 710 711
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

712 713 714 715 716 717
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
718
	struct descriptor_buffer *desc;
719

720 721 722
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
723
	while (last->branch_address != 0) {
724
		struct descriptor_buffer *old_desc = desc;
725 726
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
727 728 729 730 731 732 733 734 735
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
736
		last = find_branch_descriptor(d, z);
737 738 739 740

		if (!ctx->callback(ctx, d, last))
			break;

741 742 743 744 745 746 747 748 749 750
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
751 752 753
	}
}

754 755 756 757
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
758
static int context_add_buffer(struct context *ctx)
759 760
{
	struct descriptor_buffer *desc;
761
	dma_addr_t uninitialized_var(bus_addr);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

787 788
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
789 790 791
{
	ctx->ohci = ohci;
	ctx->regs = regs;
792 793 794 795
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
796 797
		return -ENOMEM;

798 799 800
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

801 802 803
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

804 805
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
806
	 * branch address and looks like it's been sent.  That way we
807
	 * have a descriptor to append DMA programs to.
808
	 */
809 810 811 812 813 814
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
815 816 817 818

	return 0;
}

819
static void context_release(struct context *ctx)
820 821
{
	struct fw_card *card = &ctx->ohci->card;
822
	struct descriptor_buffer *desc, *tmp;
823

824 825 826 827
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
828 829
}

830
/* Must be called with ohci->lock held */
831 832
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
833
{
834 835 836 837 838 839 840 841 842
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
843

844 845 846 847 848 849 850 851 852 853
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
854

855
	d = desc->buffer + desc->used / sizeof(*d);
856
	memset(d, 0, z * sizeof(*d));
857
	*d_bus = desc->buffer_bus + desc->used;
858 859 860 861

	return d;
}

862
static void context_run(struct context *ctx, u32 extra)
863 864 865
{
	struct fw_ohci *ohci = ctx->ohci;

866
	reg_write(ohci, COMMAND_PTR(ctx->regs),
867
		  le32_to_cpu(ctx->last->branch_address));
868 869
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
870 871 872 873 874 875 876
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
877
	struct descriptor_buffer *desc = ctx->buffer_tail;
878

879
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
880

881 882 883
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
884

885
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
886 887 888 889 890 891
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
892
	int i;
893

894
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
895
	flush_writes(ctx->ohci);
896

897
	for (i = 0; i < 10; i++) {
898
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
899
		if ((reg & CONTEXT_ACTIVE) == 0)
900
			return;
901

902
		mdelay(1);
903
	}
904
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
905
}
906

907 908 909
struct driver_data {
	struct fw_packet *packet;
};
910

911 912
/*
 * This function apppends a packet to the DMA queue for transmission.
913
 * Must always be called with the ochi->lock held to ensure proper
914 915
 * generation handling and locking around packet queue manipulation.
 */
916 917
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
918 919
{
	struct fw_ohci *ohci = ctx->ohci;
920
	dma_addr_t d_bus, uninitialized_var(payload_bus);
921 922 923
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
924
	int z, tcode;
925
	u32 reg;
926

927 928 929 930
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
931 932
	}

933
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
934 935
	d[0].res_count = cpu_to_le16(packet->timestamp);

936 937
	/*
	 * The DMA format for asyncronous link packets is different
938 939
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
940 941
	 * which we need to prepend an extra quadlet.
	 */
942 943

	header = (__le32 *) &d[1];
944 945 946
	switch (packet->header_length) {
	case 16:
	case 12:
947 948 949 950 951
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
952 953 954

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
955
			header[3] = cpu_to_le32(packet->header[3]);
956
		else
957 958 959
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
960 961 962
		break;

	case 8:
963 964 965 966 967
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
968 969 970 971 972 973 974 975 976 977 978 979 980
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
981 982
	}

983 984
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
985
	packet->driver_data = driver_data;
986

987 988 989 990
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
991
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
992 993 994
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
995 996
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
997 998 999 1000 1001

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1002
	} else {
1003 1004
		last = &d[0];
		z = 2;
1005 1006
	}

1007 1008 1009
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1024
		if (packet->payload_mapped)
1025 1026
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1027 1028 1029 1030 1031
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1032

1033
	/* If the context isn't already running, start it up. */
1034
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1035
	if ((reg & CONTEXT_RUN) == 0)
1036 1037 1038
		context_run(ctx, 0);

	return 0;
1039 1040
}

1041 1042 1043
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1044
{
1045
	struct driver_data *driver_data;
1046
	struct fw_packet *packet;
1047
	struct fw_ohci *ohci = context->ohci;
1048 1049
	int evt;

1050 1051 1052
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1053

1054 1055 1056 1057 1058
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1059

1060
	if (packet->payload_mapped)
1061
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1062 1063
				 packet->payload_length, DMA_TO_DEVICE);

1064 1065
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1066

1067 1068
	log_ar_at_event('T', packet->speed, packet->header, evt);

1069 1070 1071 1072 1073
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1074

1075
	case OHCI1394_evt_flushed:
1076 1077 1078 1079
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1080 1081
		packet->ack = RCODE_GENERATION;
		break;
1082

1083
	case OHCI1394_evt_missing_ack:
1084 1085 1086 1087
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1088 1089
		packet->ack = RCODE_NO_ACK;
		break;
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1100

1101 1102 1103 1104
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1105

1106
	packet->callback(packet, &ohci->card, packet->ack);
1107

1108
	return 1;
1109 1110
}

1111 1112 1113 1114 1115
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1116

1117 1118
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1119 1120 1121 1122
{
	struct fw_packet response;
	int tcode, length, i;

1123
	tcode = HEADER_GET_TCODE(packet->header[0]);
1124
	if (TCODE_IS_BLOCK_PACKET(tcode))
1125
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1144 1145
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1146 1147 1148 1149 1150 1151
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1152 1153
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1154
	payload = packet->payload;
1155
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1181
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1182 1183 1184 1185
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1186
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1187 1188 1189 1190
{
	u64 offset;
	u32 csr;

1191 1192 1193 1194
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1195 1196 1197

	offset =
		((unsigned long long)
1198
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1219 1220 1221 1222 1223

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1224
}
1225

1226
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1227 1228
{
	unsigned long flags;
1229
	int ret;
1230 1231 1232

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1233
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1234
	    ctx->ohci->generation == packet->generation) {
1235 1236 1237
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1238
	}
1239

1240
	ret = at_context_queue_packet(ctx, packet);
1241 1242
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1243
	if (ret < 0)
1244
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1245

1246 1247 1248 1249 1250
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1251
	int self_id_count, i, j, reg;
1252 1253
	int generation, new_generation;
	unsigned long flags;
1254 1255
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1256 1257 1258

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1259
		fw_notify("node ID not valid, new bus reset in progress\n");
1260 1261
		return;
	}
1262 1263 1264 1265 1266 1267
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1268

1269 1270 1271 1272 1273
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1274 1275
	/*
	 * The count in the SelfIDCount register is the number of
1276 1277
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1278 1279
	 * bit extra to get the actual number of self IDs.
	 */
1280 1281
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1282 1283 1284
		fw_notify("inconsistent self IDs\n");
		return;
	}
1285
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1286
	rmb();
1287 1288

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1289 1290 1291 1292
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1293 1294
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1295
	}
1296
	rmb();
1297

1298 1299
	/*
	 * Check the consistency of the self IDs we just read.  The
1300 1301 1302 1303 1304 1305 1306 1307 1308
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1309 1310
	 * of self IDs.
	 */
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1323 1324
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1325 1326
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1327
	if (ohci->quirks & QUIRK_RESET_PACKET)
1328 1329
		ohci->request_generation = generation;

1330 1331
	/*
	 * This next bit is unrelated to the AT context stuff but we
1332 1333 1334 1335
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1336 1337
	 * next_config_rom pointer so a new udpate can take place.
	 */
1338 1339

	if (ohci->next_config_rom != NULL) {
1340 1341 1342 1343
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1344 1345 1346 1347
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1348 1349
		/*
		 * Restore config_rom image and manually update
1350 1351
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1352 1353
		 * do that last.
		 */
1354 1355
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1356 1357 1358
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1359 1360
	}

1361 1362 1363 1364 1365
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1366 1367
	spin_unlock_irqrestore(&ohci->lock, flags);

1368 1369 1370 1371
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1372 1373
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1374

1375
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1376 1377 1378 1379 1380 1381
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1382
	u32 event, iso_event;
1383 1384 1385 1386
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1387
	if (!event || !~event)
1388 1389
		return IRQ_NONE;

1390 1391
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1392
	log_irqs(event);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1409
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1410 1411 1412 1413
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1414
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1415 1416 1417
		iso_event &= ~(1 << i);
	}

1418
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1419 1420 1421 1422
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1423
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1424 1425 1426
		iso_event &= ~(1 << i);
	}

1427 1428 1429 1430
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1431 1432 1433
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1434 1435 1436 1437 1438 1439 1440
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1452 1453 1454
	return IRQ_HANDLED;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1482 1483 1484
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1485 1486
	u32 lps;
	int i;
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1498 1499
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1500 1501 1502 1503 1504
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1516 1517 1518 1519

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1520
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1521 1522
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1544
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1545
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1546
		  OHCI1394_masterIntEnable);
1547 1548
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1549 1550 1551 1552 1553 1554

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1555 1556
	/*
	 * When the link is not yet enabled, the atomic config rom
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1574 1575 1576 1577 1578 1579 1580
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1581

1582
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1583 1584 1585 1586 1587 1588 1589 1590
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1591

1592
	ohci->next_header = ohci->next_config_rom[0];
1593 1594
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1595 1596
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1597 1598 1599 1600 1601
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1602
			IRQF_SHARED, ohci_driver_name, ohci)) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1615 1616 1617 1618
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1619 1620 1621 1622 1623 1624

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1625
static int ohci_set_config_rom(struct fw_card *card,
1626
			       const __be32 *config_rom, size_t length)
1627 1628 1629
{
	struct fw_ohci *ohci;
	unsigned long flags;
1630
	int ret = -EBUSY;
1631
	__be32 *next_config_rom;
1632
	dma_addr_t uninitialized_var(next_config_rom_bus);
1633 1634 1635

	ohci = fw_ohci(card);

1636 1637
	/*
	 * When the OHCI controller is enabled, the config rom update
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1675
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1676 1677 1678 1679 1680 1681

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1682
		ret = 0;
1683 1684 1685 1686
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1687 1688
	/*
	 * Now initiate a bus reset to have the changes take
1689 1690 1691
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1692 1693
	 * takes effect.
	 */
1694
	if (ret == 0)
1695
		fw_core_initiate_bus_reset(&ohci->card, 1);
1696 1697 1698
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1699

1700
	return ret;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1717 1718 1719
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1720 1721
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1722
	int ret = -ENOENT;
1723

1724
	tasklet_disable(&ctx->tasklet);
1725

1726 1727
	if (packet->ack != 0)
		goto out;
1728

1729
	if (packet->payload_mapped)
1730 1731 1732
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1733
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1734 1735 1736
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1737
	ret = 0;
1738 1739
 out:
	tasklet_enable(&ctx->tasklet);
1740

1741
	return ret;
1742 1743
}

1744 1745
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1746
{
1747 1748 1749
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1750 1751
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1752
	int n, ret = 0;
1753

1754 1755 1756 1757
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1758 1759 1760 1761

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1762
		ret = -ESTALE;
1763 1764 1765
		goto out;
	}

1766 1767 1768 1769
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1770 1771 1772 1773 1774 1775 1776

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1777 1778
	flush_writes(ohci);
 out:
1779
	spin_unlock_irqrestore(&ohci->lock, flags);
1780 1781

	return ret;
1782
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1783
}
S
Stefan Richter 已提交
1784

1785
static u32 cycle_timer_ticks(u32 cycle_timer)
1786 1787 1788 1789 1790 1791
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1792

1793 1794 1795
	return ticks;
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1811
static u32 ohci_get_cycle_time(struct fw_card *card)
1812 1813
{
	struct fw_ohci *ohci = fw_ohci(card);
1814 1815 1816
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1817
	int i;
1818

1819 1820
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1821
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1822 1823
		i = 0;
		c1 = c2;
1824 1825
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1826 1827
			c0 = c1;
			c1 = c2;
1828 1829 1830 1831 1832 1833
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1834 1835 1836
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1837
	}
1838

1839
	return c2;
1840 1841
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1864 1865 1866 1867 1868 1869
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1870
	struct descriptor *pd;
1871
	__le32 *ir_header;
1872
	void *p;
1873

1874 1875 1876 1877 1878
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1879 1880 1881
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1882 1883
	p = last + 1;
	copy_iso_headers(ctx, p);
1884

1885 1886
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1897 1898 1899
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1900
{
1901 1902
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1903 1904
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
1905

1906 1907 1908 1909 1910
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
1911 1912
		return 0;

1913 1914 1915 1916 1917 1918 1919 1920 1921
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1922
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1923 1924 1925 1926
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
1927
	return 1;
1928 1929
}

1930
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1931
				int type, int channel, size_t header_size)
1932 1933 1934
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1935
	descriptor_callback_t callback;
1936
	u64 *channels, dont_care = ~0ULL;
1937
	u32 *mask, regs;
1938
	unsigned long flags;
1939
	int index, ret = -ENOMEM;
1940 1941

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1942
		channels = &dont_care;
1943 1944
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1945
		callback = handle_it_packet;
1946
	} else {
1947
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1948 1949
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1950
		callback = handle_ir_packet_per_buffer;
1951 1952 1953
	}

	spin_lock_irqsave(&ohci->lock, flags);
1954 1955 1956
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1957
		*mask &= ~(1 << index);
1958
	}
1959 1960 1961 1962 1963
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1964 1965 1966 1967 1968
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1969
	ctx = &list[index];
1970
	memset(ctx, 0, sizeof(*ctx));
1971 1972 1973 1974 1975
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1976 1977
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1978
		goto out_with_header;
1979 1980

	return &ctx->base;
1981 1982 1983 1984 1985 1986 1987 1988

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

1989
	return ERR_PTR(ret);
1990 1991
}

1992 1993
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1994
{
S
Stefan Richter 已提交
1995
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1996
	struct fw_ohci *ohci = ctx->context.ohci;
1997
	u32 control, match;
1998 1999
	int index;

2000 2001
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2002 2003 2004
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2005
				(cycle & 0x7fff) << 16;
2006

2007 2008
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2009
		context_run(&ctx->context, match);
2010 2011
	} else {
		index = ctx - ohci->ir_context_list;
2012
		control = IR_CONTEXT_ISOCH_HEADER;
2013 2014 2015 2016 2017
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2018

2019 2020
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2021
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2022
		context_run(&ctx->context, control);
2023
	}
2024 2025 2026 2027

	return 0;
}

2028 2029 2030
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2031
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2047 2048 2049
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2050
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2051 2052 2053
	unsigned long flags;
	int index;

2054 2055
	ohci_stop_iso(base);
	context_release(&ctx->context);
2056
	free_page((unsigned long)ctx->header);
2057

2058 2059 2060 2061 2062 2063 2064 2065
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2066
		ohci->ir_context_channels |= 1ULL << base->channel;
2067 2068 2069 2070 2071
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2072 2073 2074 2075
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2076
{
S
Stefan Richter 已提交
2077
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2078
	struct descriptor *d, *last, *pd;
2079 2080
	struct fw_iso_packet *p;
	__le32 *header;
2081
	dma_addr_t d_bus, page_bus;
2082 2083
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2084
	int page, end_page, i, length, offset;
2085 2086

	p = packet;
2087
	payload_index = payload;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2106
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2107

2108 2109 2110
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2111 2112

	if (!p->skip) {
2113
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2114
		d[0].req_count = cpu_to_le16(8);
2115 2116 2117 2118 2119 2120 2121 2122
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2123 2124

		header = (__le32 *) &d[1];
2125 2126 2127 2128 2129
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2130
		header[1] =
2131
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2132 2133 2134 2135 2136
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2137
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2150 2151 2152

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2153 2154 2155 2156 2157

		payload_index += length;
	}

	if (p->interrupt)
2158
		irq = DESCRIPTOR_IRQ_ALWAYS;
2159
	else
2160
		irq = DESCRIPTOR_NO_IRQ;
2161

2162
	last = z == 2 ? d : d + z - 1;
2163 2164 2165
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2166
				     irq);
2167

2168
	context_append(&ctx->context, d, z, header_z);
2169 2170 2171

	return 0;
}
S
Stefan Richter 已提交
2172

2173 2174 2175 2176
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2177 2178
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2179
	struct descriptor *d, *pd;
2180
	struct fw_iso_packet *p = packet;
2181 2182
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2183 2184
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2185 2186

	/*
2187 2188
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2189 2190
	 */
	packet_count = p->header_length / ctx->base.header_size;
2191
	header_size  = max(ctx->base.header_size, (size_t)8);
2192 2193 2194 2195 2196

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2197
	payload_per_buffer = p->payload_length / packet_count;
2198 2199 2200

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2201
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2202
		d = context_get_descriptors(&ctx->context,
2203
				z + header_z, &d_bus);
2204 2205 2206
		if (d == NULL)
			return -ENOMEM;

2207 2208 2209 2210
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2211 2212
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2213
		d->transfer_status = 0;
2214 2215
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2216
		rest = payload_per_buffer;
2217
		pd = d;
2218
		for (j = 1; j < z; j++) {
2219
			pd++;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2239 2240 2241
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2242
		if (p->interrupt && i == packet_count - 1)
2243 2244 2245 2246 2247 2248 2249 2250
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2251 2252 2253 2254
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2255
{
2256
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2257
	unsigned long flags;
2258
	int ret;
2259

2260
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2261
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2262
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2263
	else
2264 2265
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2266 2267
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2268
	return ret;
2269 2270
}

2271
static const struct fw_card_driver ohci_driver = {
2272 2273 2274 2275 2276
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2277
	.cancel_packet		= ohci_cancel_packet,
2278
	.enable_phys_dma	= ohci_enable_phys_dma,
2279
	.get_cycle_time		= ohci_get_cycle_time,
2280 2281 2282 2283

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2284
	.start_iso		= ohci_start_iso,
2285
	.stop_iso		= ohci_stop_iso,
2286 2287
};

2288
#ifdef CONFIG_PPC_PMAC
2289 2290
static void ohci_pmac_on(struct pci_dev *dev)
{
2291 2292 2293 2294 2295 2296 2297 2298
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2315 2316
#endif /* CONFIG_PPC_PMAC */

2317 2318
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2319 2320
{
	struct fw_ohci *ohci;
2321
	u32 bus_options, max_receive, link_speed, version;
2322
	u64 guid;
2323
	int i, err;
2324 2325
	size_t size;

2326
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2327
	if (ohci == NULL) {
2328 2329
		err = -ENOMEM;
		goto fail;
2330 2331 2332 2333
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2334 2335
	ohci_pmac_on(dev);

2336 2337
	err = pci_enable_device(dev);
	if (err) {
2338
		fw_error("Failed to enable OHCI hardware\n");
2339
		goto fail_free;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2351 2352
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2353
		fw_error("MMIO resource unavailable\n");
2354
		goto fail_disable;
2355 2356 2357 2358 2359
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2360 2361
		err = -ENXIO;
		goto fail_iomem;
2362 2363
	}

2364 2365
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;

2366 2367 2368 2369 2370 2371 2372
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2373

2374 2375 2376 2377 2378 2379
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2380
	context_init(&ohci->at_request_ctx, ohci,
2381
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2382

2383
	context_init(&ohci->at_response_ctx, ohci,
2384
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2385 2386 2387 2388 2389 2390 2391 2392

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2393
	ohci->ir_context_channels = ~0ULL;
2394 2395 2396 2397 2398 2399
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2400
		err = -ENOMEM;
2401
		goto fail_contexts;
2402 2403 2404 2405 2406 2407 2408 2409
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2410
		err = -ENOMEM;
2411
		goto fail_contexts;
2412 2413 2414 2415 2416 2417 2418 2419
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2420
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2421
	if (err)
2422
		goto fail_self_id;
2423

2424
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2425
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2426

2427
	return 0;
2428 2429 2430 2431

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2432
 fail_contexts:
2433
	kfree(ohci->ir_context_list);
2434 2435 2436 2437 2438
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2439 2440 2441 2442 2443
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2444 2445
 fail_free:
	kfree(&ohci->card);
2446
	ohci_pmac_off(dev);
2447 2448 2449
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2450 2451

	return err;
2452 2453 2454 2455 2456 2457 2458
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2459 2460
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2461 2462
	fw_core_remove_card(&ohci->card);

2463 2464 2465 2466
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2467 2468 2469

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2470 2471 2472 2473 2474 2475 2476

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2477 2478
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2479 2480 2481 2482
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2483 2484 2485 2486 2487
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2488
	kfree(&ohci->card);
2489
	ohci_pmac_off(dev);
2490

2491 2492 2493
	fw_notify("Removed fw-ohci device.\n");
}

2494
#ifdef CONFIG_PM
2495
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2496
{
2497
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2498 2499 2500
	int err;

	software_reset(ohci);
2501 2502
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2503
	if (err) {
2504
		fw_error("pci_save_state failed\n");
2505 2506
		return err;
	}
2507
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2508 2509
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2510
	ohci_pmac_off(dev);
2511

2512 2513 2514
	return 0;
}

2515
static int pci_resume(struct pci_dev *dev)
2516
{
2517
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2518 2519
	int err;

2520 2521 2522 2523
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2524
	if (err) {
2525
		fw_error("pci_enable_device failed\n");
2526 2527 2528
		return err;
	}

2529
	return ohci_enable(&ohci->card, NULL, 0);
2530 2531 2532
}
#endif

2533
static const struct pci_device_id pci_table[] = {
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2545 2546 2547 2548
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2549 2550 2551 2552 2553 2554
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2555 2556 2557 2558 2559
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);