ohci.c 72.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
S
Stefan Richter 已提交
37
#include <linux/spinlock.h>
S
Stefan Richter 已提交
38
#include <linux/string.h>
A
Andrew Morton 已提交
39

40
#include <asm/atomic.h>
S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78 79 80 81 82 83 84 85 86 87 88
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

89 90 91 92
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
93

94
struct ar_buffer {
95
	struct descriptor descriptor;
96 97 98
	struct ar_buffer *next;
	__le32 data[0];
};
99

100 101 102 103 104
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
105
	u32 regs;
106 107 108
	struct tasklet_struct tasklet;
};

109 110 111 112 113
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
114 115 116 117 118 119 120 121 122 123 124 125 126

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

127
struct context {
S
Stefan Richter 已提交
128
	struct fw_ohci *ohci;
129
	u32 regs;
130
	int total_allocation;
S
Stefan Richter 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
156 157 158

	descriptor_callback_t callback;

S
Stefan Richter 已提交
159
	struct tasklet_struct tasklet;
160 161
};

162 163 164 165 166 167
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 169 170

struct iso_context {
	struct fw_iso_context base;
171
	struct context context;
172
	int excess_bytes;
173 174
	void *header;
	size_t header_length;
175 176 177 178 179 180 181 182 183 184 185
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
186
	int node_id;
187
	int generation;
188
	int request_generation;	/* for timestamping incoming requests */
189
	atomic_t bus_seconds;
190 191

	bool use_dualbuffer;
192
	bool old_uninorth;
193
	bool bus_reset_packet_quirk;
194

195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200 201 202 203 204 205 206 207 208 209 210
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
211 212
	struct context at_request_ctx;
	struct context at_response_ctx;
213 214 215

	u32 it_context_mask;
	struct iso_context *it_context_list;
216
	u64 ir_context_channels;
217 218 219 220
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
221
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
222 223 224 225
{
	return container_of(card, struct fw_ohci, card);
}

226 227 228 229 230 231
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
232 233 234 235 236 237

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

238
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
239 240 241 242 243 244 245
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
246
#define OHCI_TCODE_PHY_PACKET		0x0e
247
#define OHCI_VERSION_1_1		0x010010
248

249 250
static char ohci_driver_name[] = KBUILD_MODNAME;

251 252
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

253
#define OHCI_PARAM_DEBUG_AT_AR		1
254
#define OHCI_PARAM_DEBUG_SELFIDS	2
255 256
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
257 258 259 260 261

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
262 263 264
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
265 266 267 268
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
269 270 271 272 273 274
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
275 276
		return;

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_regAccessFail | OHCI1394_busReset)
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

313
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
314 315 316 317
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

318 319
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
320 321 322

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
323 324 325 326 327 328
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
329
		else
330 331 332 333
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

381
	if (evt == OHCI1394_evt_bus_reset) {
382 383
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
384 385 386
		return;
	}

387
	if (header[0] == ~header[1]) {
388 389
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
408
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
409 410
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
411 412 413 414 415 416
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
417 418
		break;
	default:
419 420 421 422 423 424
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
425 426 427 428 429 430
	}
}

#else

#define log_irqs(evt)
431
#define log_selfids(node_id, generation, self_id_count, sid)
432 433 434 435
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
436
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
437 438 439 440
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
441
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
442 443 444 445
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
446
static inline void flush_writes(const struct fw_ohci *ohci)
447 448 449 450 451
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

452 453
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
454 455 456 457 458
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
459
	flush_writes(ohci);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

475
static int ar_context_add_page(struct ar_context *ctx)
476
{
477 478
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
479
	dma_addr_t uninitialized_var(ab_bus);
480 481
	size_t offset;

482
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
483 484 485
	if (ab == NULL)
		return -ENOMEM;

486
	ab->next = NULL;
487
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
488 489 490
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
491 492 493 494 495 496
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

497
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
498 499 500
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

501
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
502
	flush_writes(ctx->ohci);
503 504

	return 0;
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

522 523 524 525 526 527 528
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

529
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
530 531
{
	struct fw_ohci *ohci = ctx->ohci;
532 533
	struct fw_packet p;
	u32 status, length, tcode;
534
	int evt;
535

536 537 538
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
539 540 541 542 543

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
544
		p.header[3] = (__force __u32) buffer[3];
545
		p.header_length = 16;
546
		p.payload_length = 0;
547 548 549
		break;

	case TCODE_READ_BLOCK_REQUEST :
550
		p.header[3] = cond_le32_to_cpu(buffer[3]);
551 552 553 554 555
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
556 557 558
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
559
		p.header[3] = cond_le32_to_cpu(buffer[3]);
560
		p.header_length = 16;
561
		p.payload_length = p.header[3] >> 16;
562 563 564 565
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
566
	case OHCI_TCODE_PHY_PACKET:
567
		p.header_length = 12;
568
		p.payload_length = 0;
569
		break;
570 571 572 573 574

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
575
	}
576

577 578 579 580
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
581
	status = cond_le32_to_cpu(buffer[length]);
582
	evt    = (status >> 16) & 0x1f;
583

584
	p.ack        = evt - 16;
585 586 587
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
588

589
	log_ar_at_event('R', p.speed, p.header, evt);
590

591 592
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
593 594 595 596 597
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
598
	 * request.
599 600 601 602
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
603
	 */
604 605 606 607
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
608
		fw_core_handle_request(&ohci->card, &p);
609
	} else {
610
		fw_core_handle_response(&ohci->card, &p);
611
	}
612

613 614
	return buffer + length + 1;
}
615

616 617 618 619 620 621 622 623 624 625 626 627 628
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
629 630
		dma_addr_t start_bus;
		void *start;
631

632 633
		/*
		 * This descriptor is finished and we may have a
634
		 * packet split across this and the next buffer. We
635 636
		 * reuse the page for reassembling the split packet.
		 */
637 638

		offset = offsetof(struct ar_buffer, data);
639 640
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
641 642 643 644 645 646 647 648 649 650 651 652 653 654

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

655
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
656
				  start, start_bus);
657 658 659 660 661 662 663 664 665
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
666 667
}

668 669
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
670
{
671
	struct ar_buffer ab;
672

673 674 675
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
676 677
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

678 679 680 681 682
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

683 684 685 686 687 688 689 690 691 692
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
693
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
694 695

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
696
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
697
	flush_writes(ctx->ohci);
698
}
S
Stefan Richter 已提交
699

700
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
701 702 703 704 705 706 707 708 709 710 711 712 713
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

714 715 716 717 718 719
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
720
	struct descriptor_buffer *desc;
721

722 723 724
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
725
	while (last->branch_address != 0) {
726
		struct descriptor_buffer *old_desc = desc;
727 728
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
729 730 731 732 733 734 735 736 737
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
738
		last = find_branch_descriptor(d, z);
739 740 741 742

		if (!ctx->callback(ctx, d, last))
			break;

743 744 745 746 747 748 749 750 751 752
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
753 754 755
	}
}

756 757 758 759
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
760
static int context_add_buffer(struct context *ctx)
761 762
{
	struct descriptor_buffer *desc;
763
	dma_addr_t uninitialized_var(bus_addr);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

789 790
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
791 792 793
{
	ctx->ohci = ohci;
	ctx->regs = regs;
794 795 796 797
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
798 799
		return -ENOMEM;

800 801 802
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

803 804 805
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

806 807
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
808
	 * branch address and looks like it's been sent.  That way we
809
	 * have a descriptor to append DMA programs to.
810
	 */
811 812 813 814 815 816
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
817 818 819 820

	return 0;
}

821
static void context_release(struct context *ctx)
822 823
{
	struct fw_card *card = &ctx->ohci->card;
824
	struct descriptor_buffer *desc, *tmp;
825

826 827 828 829
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
830 831
}

832
/* Must be called with ohci->lock held */
833 834
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
835
{
836 837 838 839 840 841 842 843 844
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
845

846 847 848 849 850 851 852 853 854 855
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
856

857
	d = desc->buffer + desc->used / sizeof(*d);
858
	memset(d, 0, z * sizeof(*d));
859
	*d_bus = desc->buffer_bus + desc->used;
860 861 862 863

	return d;
}

864
static void context_run(struct context *ctx, u32 extra)
865 866 867
{
	struct fw_ohci *ohci = ctx->ohci;

868
	reg_write(ohci, COMMAND_PTR(ctx->regs),
869
		  le32_to_cpu(ctx->last->branch_address));
870 871
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
872 873 874 875 876 877 878
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
879
	struct descriptor_buffer *desc = ctx->buffer_tail;
880

881
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
882

883 884 885
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
886

887
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
888 889 890 891 892 893
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
894
	int i;
895

896
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
897
	flush_writes(ctx->ohci);
898

899
	for (i = 0; i < 10; i++) {
900
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
901
		if ((reg & CONTEXT_ACTIVE) == 0)
902
			return;
903

904
		mdelay(1);
905
	}
906
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
907
}
908

909 910 911
struct driver_data {
	struct fw_packet *packet;
};
912

913 914
/*
 * This function apppends a packet to the DMA queue for transmission.
915
 * Must always be called with the ochi->lock held to ensure proper
916 917
 * generation handling and locking around packet queue manipulation.
 */
918 919
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
920 921
{
	struct fw_ohci *ohci = ctx->ohci;
922
	dma_addr_t d_bus, uninitialized_var(payload_bus);
923 924 925
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
926
	int z, tcode;
927
	u32 reg;
928

929 930 931 932
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
933 934
	}

935
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
936 937
	d[0].res_count = cpu_to_le16(packet->timestamp);

938 939
	/*
	 * The DMA format for asyncronous link packets is different
940 941
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
942 943
	 * which we need to prepend an extra quadlet.
	 */
944 945

	header = (__le32 *) &d[1];
946 947 948
	switch (packet->header_length) {
	case 16:
	case 12:
949 950 951 952 953
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
954 955 956

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
957
			header[3] = cpu_to_le32(packet->header[3]);
958
		else
959 960 961
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
962 963 964
		break;

	case 8:
965 966 967 968 969
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
970 971 972 973 974 975 976 977 978 979 980 981 982
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
983 984
	}

985 986
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
987
	packet->driver_data = driver_data;
988

989 990 991 992
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
993
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
994 995 996
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
997
		packet->payload_bus = payload_bus;
998 999 1000 1001 1002

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1003
	} else {
1004 1005
		last = &d[0];
		z = 2;
1006 1007
	}

1008 1009 1010
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1025 1026 1027
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1028 1029 1030 1031 1032
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1033

1034
	/* If the context isn't already running, start it up. */
1035
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1036
	if ((reg & CONTEXT_RUN) == 0)
1037 1038 1039
		context_run(ctx, 0);

	return 0;
1040 1041
}

1042 1043 1044
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1045
{
1046
	struct driver_data *driver_data;
1047
	struct fw_packet *packet;
1048
	struct fw_ohci *ohci = context->ohci;
1049 1050
	int evt;

1051 1052 1053
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1054

1055 1056 1057 1058 1059
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1060

1061 1062
	if (packet->payload_bus)
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1063 1064
				 packet->payload_length, DMA_TO_DEVICE);

1065 1066
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1067

1068 1069
	log_ar_at_event('T', packet->speed, packet->header, evt);

1070 1071 1072 1073 1074
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1075

1076
	case OHCI1394_evt_flushed:
1077 1078 1079 1080
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1081 1082
		packet->ack = RCODE_GENERATION;
		break;
1083

1084
	case OHCI1394_evt_missing_ack:
1085 1086 1087 1088
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1089 1090
		packet->ack = RCODE_NO_ACK;
		break;
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1101

1102 1103 1104 1105
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1106

1107
	packet->callback(packet, &ohci->card, packet->ack);
1108

1109
	return 1;
1110 1111
}

1112 1113 1114 1115 1116
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1117

1118 1119
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1120 1121 1122 1123
{
	struct fw_packet response;
	int tcode, length, i;

1124
	tcode = HEADER_GET_TCODE(packet->header[0]);
1125
	if (TCODE_IS_BLOCK_PACKET(tcode))
1126
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1145 1146
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1147 1148 1149 1150 1151 1152
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1153 1154
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1155
	payload = packet->payload;
1156
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1182
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1183 1184 1185 1186
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1187
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1188 1189 1190 1191
{
	u64 offset;
	u32 csr;

1192 1193 1194 1195
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1196 1197 1198

	offset =
		((unsigned long long)
1199
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1220 1221 1222 1223 1224

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1225
}
1226

1227
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1228 1229
{
	unsigned long flags;
1230
	int ret;
1231 1232 1233

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1234
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1235
	    ctx->ohci->generation == packet->generation) {
1236 1237 1238
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1239
	}
1240

1241
	ret = at_context_queue_packet(ctx, packet);
1242 1243
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1244
	if (ret < 0)
1245
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1246

1247 1248 1249 1250 1251
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1252
	int self_id_count, i, j, reg;
1253 1254
	int generation, new_generation;
	unsigned long flags;
1255 1256
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1257 1258 1259

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1260
		fw_notify("node ID not valid, new bus reset in progress\n");
1261 1262
		return;
	}
1263 1264 1265 1266 1267 1268
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1269

1270 1271 1272 1273 1274
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1275 1276
	/*
	 * The count in the SelfIDCount register is the number of
1277 1278
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1279 1280
	 * bit extra to get the actual number of self IDs.
	 */
1281
	self_id_count = (reg >> 3) & 0x3ff;
1282 1283 1284 1285
	if (self_id_count == 0) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1286
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1287
	rmb();
1288 1289

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1290 1291 1292 1293
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1294 1295
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1296
	}
1297
	rmb();
1298

1299 1300
	/*
	 * Check the consistency of the self IDs we just read.  The
1301 1302 1303 1304 1305 1306 1307 1308 1309
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1310 1311
	 * of self IDs.
	 */
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1324 1325
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1326 1327
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1328 1329 1330
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1331 1332
	/*
	 * This next bit is unrelated to the AT context stuff but we
1333 1334 1335 1336
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1337 1338
	 * next_config_rom pointer so a new udpate can take place.
	 */
1339 1340

	if (ohci->next_config_rom != NULL) {
1341 1342 1343 1344
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1345 1346 1347 1348
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1349 1350
		/*
		 * Restore config_rom image and manually update
1351 1352
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1353 1354
		 * do that last.
		 */
1355 1356 1357 1358 1359 1360
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

1361 1362 1363 1364 1365
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1366 1367
	spin_unlock_irqrestore(&ohci->lock, flags);

1368 1369 1370 1371
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1372 1373
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1374

1375
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1376 1377 1378 1379 1380 1381
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1382
	u32 event, iso_event, cycle_time;
1383 1384 1385 1386
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1387
	if (!event || !~event)
1388 1389
		return IRQ_NONE;

1390 1391
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1392
	log_irqs(event);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1409
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1410 1411 1412 1413
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1414
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1415 1416 1417
		iso_event &= ~(1 << i);
	}

1418
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1419 1420 1421 1422
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1423
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1424 1425 1426
		iso_event &= ~(1 << i);
	}

1427 1428 1429 1430
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1431 1432 1433
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1434 1435 1436 1437 1438 1439 1440
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1441 1442 1443
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
1444
			atomic_inc(&ohci->bus_seconds);
1445 1446
	}

1447 1448 1449
	return IRQ_HANDLED;
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1466 1467 1468 1469
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1470 1471
	u32 lps;
	int i;
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1483 1484
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1485 1486 1487 1488 1489
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1501 1502 1503 1504

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1505
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1506 1507
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1529
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1530 1531
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1532 1533
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1534 1535 1536 1537 1538 1539

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1540 1541
	/*
	 * When the link is not yet enabled, the atomic config rom
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1559 1560 1561 1562 1563 1564 1565
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1577

1578
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1579 1580
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1581 1582
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1583 1584 1585 1586 1587
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1588
			IRQF_SHARED, ohci_driver_name, ohci)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1601 1602 1603 1604
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1605 1606 1607 1608 1609 1610

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1611 1612
static int ohci_set_config_rom(struct fw_card *card,
			       u32 *config_rom, size_t length)
1613 1614 1615
{
	struct fw_ohci *ohci;
	unsigned long flags;
1616
	int ret = -EBUSY;
1617
	__be32 *next_config_rom;
1618
	dma_addr_t uninitialized_var(next_config_rom_bus);
1619 1620 1621

	ohci = fw_ohci(card);

1622 1623
	/*
	 * When the OHCI controller is enabled, the config rom update
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1670
		ret = 0;
1671 1672 1673 1674
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1675 1676
	/*
	 * Now initiate a bus reset to have the changes take
1677 1678 1679
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1680 1681
	 * takes effect.
	 */
1682
	if (ret == 0)
1683
		fw_core_initiate_bus_reset(&ohci->card, 1);
1684 1685 1686
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1687

1688
	return ret;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1705 1706 1707
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1708 1709
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1710
	int ret = -ENOENT;
1711

1712
	tasklet_disable(&ctx->tasklet);
1713

1714 1715
	if (packet->ack != 0)
		goto out;
1716

1717 1718 1719 1720
	if (packet->payload_bus)
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1721
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1722 1723 1724
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1725
	ret = 0;
1726 1727
 out:
	tasklet_enable(&ctx->tasklet);
1728

1729
	return ret;
1730 1731
}

1732 1733
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1734
{
1735 1736 1737
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1738 1739
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1740
	int n, ret = 0;
1741

1742 1743 1744 1745
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1746 1747 1748 1749

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1750
		ret = -ESTALE;
1751 1752 1753
		goto out;
	}

1754 1755 1756 1757
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1758 1759 1760 1761 1762 1763 1764

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1765 1766
	flush_writes(ohci);
 out:
1767
	spin_unlock_irqrestore(&ohci->lock, flags);
1768 1769

	return ret;
1770
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1771
}
S
Stefan Richter 已提交
1772

1773
static u64 ohci_get_bus_time(struct fw_card *card)
1774 1775 1776 1777 1778 1779
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780
	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1781 1782 1783 1784

	return bus_time;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1807 1808 1809
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1810
{
1811 1812 1813
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1814
	__le32 *ir_header;
1815
	size_t header_length;
1816
	void *p, *end;
1817

S
Stefan Richter 已提交
1818
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1819 1820 1821 1822 1823 1824
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1825

1826 1827 1828 1829 1830
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	p = db + 1;
	end = p + header_length;
1831 1832
	while (p < end) {
		copy_iso_headers(ctx, p);
1833
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1834
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1835
		p += max(ctx->base.header_size, (size_t)8);
1836
	}
1837

1838 1839 1840
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1841
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1842 1843 1844
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1845
				   ctx->header_length, ctx->header,
1846
				   ctx->base.callback_data);
1847 1848
		ctx->header_length = 0;
	}
1849

1850
	return 1;
1851 1852
}

1853 1854 1855 1856 1857 1858
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1859
	struct descriptor *pd;
1860
	__le32 *ir_header;
1861
	void *p;
1862

1863 1864 1865 1866 1867
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1868 1869 1870
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1871 1872
	p = last + 1;
	copy_iso_headers(ctx, p);
1873

1874 1875
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1886 1887 1888
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1889
{
1890 1891
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1892

1893 1894 1895 1896
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1897
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1898 1899
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1900 1901

	return 1;
1902 1903
}

1904
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1905
				int type, int channel, size_t header_size)
1906 1907 1908
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1909
	descriptor_callback_t callback;
1910
	u64 *channels, dont_care = ~0ULL;
1911
	u32 *mask, regs;
1912
	unsigned long flags;
1913
	int index, ret = -ENOMEM;
1914 1915

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1916
		channels = &dont_care;
1917 1918
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1919
		callback = handle_it_packet;
1920
	} else {
1921
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1922 1923
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1924
		if (ohci->use_dualbuffer)
1925 1926 1927
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1928 1929 1930
	}

	spin_lock_irqsave(&ohci->lock, flags);
1931 1932 1933
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1934
		*mask &= ~(1 << index);
1935
	}
1936 1937 1938 1939 1940
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1941 1942 1943 1944 1945
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1946
	ctx = &list[index];
1947
	memset(ctx, 0, sizeof(*ctx));
1948 1949 1950 1951 1952
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1953 1954
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1955
		goto out_with_header;
1956 1957

	return &ctx->base;
1958 1959 1960 1961 1962 1963 1964 1965

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

1966
	return ERR_PTR(ret);
1967 1968
}

1969 1970
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1971
{
S
Stefan Richter 已提交
1972
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1973
	struct fw_ohci *ohci = ctx->context.ohci;
1974
	u32 control, match;
1975 1976
	int index;

1977 1978
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1979 1980 1981
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1982
				(cycle & 0x7fff) << 16;
1983

1984 1985
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1986
		context_run(&ctx->context, match);
1987 1988
	} else {
		index = ctx - ohci->ir_context_list;
1989
		control = IR_CONTEXT_ISOCH_HEADER;
1990
		if (ohci->use_dualbuffer)
1991
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1992 1993 1994 1995 1996
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1997

1998 1999
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2000
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2001
		context_run(&ctx->context, control);
2002
	}
2003 2004 2005 2006

	return 0;
}

2007 2008 2009
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2010
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2026 2027 2028
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2029
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2030 2031 2032
	unsigned long flags;
	int index;

2033 2034
	ohci_stop_iso(base);
	context_release(&ctx->context);
2035
	free_page((unsigned long)ctx->header);
2036

2037 2038 2039 2040 2041 2042 2043 2044
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2045
		ohci->ir_context_channels |= 1ULL << base->channel;
2046 2047 2048 2049 2050
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2051 2052 2053 2054
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2055
{
S
Stefan Richter 已提交
2056
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2057
	struct descriptor *d, *last, *pd;
2058 2059
	struct fw_iso_packet *p;
	__le32 *header;
2060
	dma_addr_t d_bus, page_bus;
2061 2062
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2063
	int page, end_page, i, length, offset;
2064

2065 2066 2067 2068
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2069 2070

	p = packet;
2071
	payload_index = payload;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2090
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2091

2092 2093 2094
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2095 2096

	if (!p->skip) {
2097
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2098 2099 2100
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2101 2102 2103 2104 2105
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2106
		header[1] =
2107
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2108 2109 2110 2111 2112
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2113
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2126 2127 2128

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2129 2130 2131 2132 2133

		payload_index += length;
	}

	if (p->interrupt)
2134
		irq = DESCRIPTOR_IRQ_ALWAYS;
2135
	else
2136
		irq = DESCRIPTOR_NO_IRQ;
2137

2138
	last = z == 2 ? d : d + z - 1;
2139 2140 2141
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2142
				     irq);
2143

2144
	context_append(&ctx->context, d, z, header_z);
2145 2146 2147

	return 0;
}
S
Stefan Richter 已提交
2148

2149 2150 2151 2152
static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
					     struct fw_iso_packet *packet,
					     struct fw_iso_buffer *buffer,
					     unsigned long payload)
2153 2154 2155 2156 2157 2158 2159
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2160
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2161

2162 2163 2164 2165
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2166 2167 2168 2169

	p = packet;
	z = 2;

2170
	/*
2171 2172
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2173
	 */
2174
	packet_count = p->header_length / ctx->base.header_size;
2175
	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2176

2177
	/* Get header size in number of descriptors. */
2178
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2191 2192
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2193 2194
		db->first_size =
		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2195 2196 2197 2198 2199 2200
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2201
		db->first_res_count = db->first_req_count;
2202
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2203

2204 2205 2206
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2207 2208 2209 2210
			length = rest;
		else
			length = PAGE_SIZE - offset;

2211 2212
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2213 2214 2215
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2216
		if (p->interrupt && length == rest)
2217
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2218

2219 2220 2221
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2222 2223
		if (offset == 0)
			page++;
2224 2225
	}

2226 2227
	return 0;
}
2228

2229 2230 2231 2232
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2233 2234 2235
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
2236
	struct fw_iso_packet *p = packet;
2237 2238
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2239 2240
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2241 2242

	/*
2243 2244
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2245 2246
	 */
	packet_count = p->header_length / ctx->base.header_size;
2247
	header_size  = max(ctx->base.header_size, (size_t)8);
2248 2249 2250 2251 2252

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2253
	payload_per_buffer = p->payload_length / packet_count;
2254 2255 2256

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2257
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2258
		d = context_get_descriptors(&ctx->context,
2259
				z + header_z, &d_bus);
2260 2261 2262
		if (d == NULL)
			return -ENOMEM;

2263 2264 2265 2266
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2267 2268
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2269
		d->transfer_status = 0;
2270 2271
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2294 2295 2296
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2297
		if (p->interrupt && i == packet_count - 1)
2298 2299 2300 2301 2302 2303 2304 2305
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2306 2307 2308 2309
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2310
{
2311
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2312
	unsigned long flags;
2313
	int ret;
2314

2315
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2316
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2317
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2318
	else if (ctx->context.ohci->use_dualbuffer)
2319 2320
		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
							buffer, payload);
2321
	else
2322 2323
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2324 2325
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2326
	return ret;
2327 2328
}

2329
static const struct fw_card_driver ohci_driver = {
2330 2331 2332 2333 2334
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2335
	.cancel_packet		= ohci_cancel_packet,
2336
	.enable_phys_dma	= ohci_enable_phys_dma,
2337
	.get_bus_time		= ohci_get_bus_time,
2338 2339 2340 2341

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2342
	.start_iso		= ohci_start_iso,
2343
	.stop_iso		= ohci_stop_iso,
2344 2345
};

2346
#ifdef CONFIG_PPC_PMAC
2347 2348
static void ohci_pmac_on(struct pci_dev *dev)
{
2349 2350 2351 2352 2353 2354 2355 2356
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2373 2374
#endif /* CONFIG_PPC_PMAC */

2375 2376
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2377 2378
{
	struct fw_ohci *ohci;
2379
	u32 bus_options, max_receive, link_speed, version;
2380 2381 2382 2383
	u64 guid;
	int err;
	size_t size;

2384
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2385
	if (ohci == NULL) {
2386 2387
		err = -ENOMEM;
		goto fail;
2388 2389 2390 2391
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2392 2393
	ohci_pmac_on(dev);

2394 2395
	err = pci_enable_device(dev);
	if (err) {
2396
		fw_error("Failed to enable OHCI hardware\n");
2397
		goto fail_free;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2409 2410
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2411
		fw_error("MMIO resource unavailable\n");
2412
		goto fail_disable;
2413 2414 2415 2416 2417
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2418 2419
		err = -ENXIO;
		goto fail_iomem;
2420 2421
	}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;

/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
#if !defined(CONFIG_X86_32)
	/* dual-buffer mode is broken with descriptor addresses above 2G */
	if (dev->vendor == PCI_VENDOR_ID_TI &&
	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
		ohci->use_dualbuffer = false;
#endif

#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2439 2440 2441 2442 2443 2444
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2445
	context_init(&ohci->at_request_ctx, ohci,
2446
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2447

2448
	context_init(&ohci->at_response_ctx, ohci,
2449
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2450 2451 2452 2453 2454 2455 2456 2457

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2458
	ohci->ir_context_channels = ~0ULL;
2459 2460 2461 2462 2463 2464
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2465
		err = -ENOMEM;
2466
		goto fail_contexts;
2467 2468 2469 2470 2471 2472 2473 2474
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2475
		err = -ENOMEM;
2476
		goto fail_contexts;
2477 2478 2479 2480 2481 2482 2483 2484
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2485
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2486
	if (err)
2487
		goto fail_self_id;
2488

2489
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2490
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2491

2492
	return 0;
2493 2494 2495 2496

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2497
 fail_contexts:
2498
	kfree(ohci->ir_context_list);
2499 2500 2501 2502 2503
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2504 2505 2506 2507 2508
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2509 2510
 fail_free:
	kfree(&ohci->card);
2511
	ohci_pmac_off(dev);
2512 2513 2514
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2515 2516

	return err;
2517 2518 2519 2520 2521 2522 2523
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2524 2525
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2526 2527
	fw_core_remove_card(&ohci->card);

2528 2529 2530 2531
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2532 2533 2534

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2535 2536 2537 2538 2539 2540 2541

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2542 2543
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2544 2545 2546 2547
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2548 2549 2550 2551 2552
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2553
	kfree(&ohci->card);
2554
	ohci_pmac_off(dev);
2555

2556 2557 2558
	fw_notify("Removed fw-ohci device.\n");
}

2559
#ifdef CONFIG_PM
2560
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2561
{
2562
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2563 2564 2565
	int err;

	software_reset(ohci);
2566 2567
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2568
	if (err) {
2569
		fw_error("pci_save_state failed\n");
2570 2571
		return err;
	}
2572
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2573 2574
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2575
	ohci_pmac_off(dev);
2576

2577 2578 2579
	return 0;
}

2580
static int pci_resume(struct pci_dev *dev)
2581
{
2582
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2583 2584
	int err;

2585 2586 2587 2588
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2589
	if (err) {
2590
		fw_error("pci_enable_device failed\n");
2591 2592 2593
		return err;
	}

2594
	return ohci_enable(&ohci->card, NULL, 0);
2595 2596 2597
}
#endif

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2610 2611 2612 2613
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2614 2615 2616 2617 2618 2619
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2620 2621 2622 2623 2624
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);