filter.c 193.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
A
Andrey Ignatov 已提交
36
#include <net/inet_common.h>
L
Linus Torvalds 已提交
37 38
#include <net/ip.h>
#include <net/protocol.h>
39
#include <net/netlink.h>
L
Linus Torvalds 已提交
40 41
#include <linux/skbuff.h>
#include <net/sock.h>
42
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
43 44
#include <linux/errno.h>
#include <linux/timer.h>
45
#include <linux/uaccess.h>
46
#include <asm/unaligned.h>
47
#include <asm/cmpxchg.h>
L
Linus Torvalds 已提交
48
#include <linux/filter.h>
49
#include <linux/ratelimit.h>
50
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
51
#include <linux/if_vlan.h>
52
#include <linux/bpf.h>
53
#include <net/sch_generic.h>
54
#include <net/cls_cgroup.h>
55
#include <net/dst_metadata.h>
56
#include <net/dst.h>
57
#include <net/sock_reuseport.h>
58
#include <net/busy_poll.h>
59
#include <net/tcp.h>
60
#include <net/xfrm.h>
61
#include <linux/bpf_trace.h>
62
#include <net/xdp_sock.h>
63 64 65 66
#include <linux/inetdevice.h>
#include <net/ip_fib.h>
#include <net/flow.h>
#include <net/arp.h>
67 68 69 70
#include <net/ipv6.h>
#include <linux/seg6_local.h>
#include <net/seg6.h>
#include <net/seg6_local.h>
L
Linus Torvalds 已提交
71

S
Stephen Hemminger 已提交
72
/**
73
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
74 75
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
76
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
77
 *
78 79
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
80
 * than pkt_len we keep whole skb->data. This is the socket level
81
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
82 83 84
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
85
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
86 87 88 89
{
	int err;
	struct sk_filter *filter;

90 91 92 93 94
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
95 96
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97
		return -ENOMEM;
98
	}
99 100 101 102
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
103 104 105 106
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

107 108
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
109
	if (filter) {
110 111 112 113 114 115
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
116
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
117
	}
118
	rcu_read_unlock();
S
Stephen Hemminger 已提交
119 120 121

	return err;
}
122
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
123

124
BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125
{
126
	return skb_get_poff(skb);
127 128
}

129
BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 131 132 133 134 135
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

136 137 138
	if (skb->len < sizeof(struct nlattr))
		return 0;

139
	if (a > skb->len - sizeof(struct nlattr))
140 141
		return 0;

142
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 144 145 146 147 148
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

149
BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 151 152 153 154 155
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

156 157 158
	if (skb->len < sizeof(struct nlattr))
		return 0;

159
	if (a > skb->len - sizeof(struct nlattr))
160 161
		return 0;

162 163
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
164 165
		return 0;

166
	nla = nla_find_nested(nla, x);
167 168 169 170 171 172
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u8 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return *(u8 *)(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return tmp;
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return *(u8 *)ptr;
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
					 offset);
}

BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u16 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return get_unaligned_be16(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be16_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be16(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u32 tmp, *ptr;
	const int len = sizeof(tmp);

	if (likely(offset >= 0)) {
		if (headlen - offset >= len)
			return get_unaligned_be32(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be32_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be32(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

254
BPF_CALL_0(bpf_get_raw_cpu_id)
255 256 257 258
{
	return raw_smp_processor_id();
}

259
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260
	.func		= bpf_get_raw_cpu_id,
261 262 263 264
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
311 312 313 314 315
	}

	return insn - insn_buf;
}

316
static bool convert_bpf_extensions(struct sock_filter *fp,
317
				   struct bpf_insn **insnp)
318
{
319
	struct bpf_insn *insn = *insnp;
320
	u32 cnt;
321 322 323

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 325 326 327 328 329 330
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 332 333
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 335
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
336 337 338 339 340 341
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342

343
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 345 346 347 348 349 350 351 352 353 354
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
355 356 357
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
358 359
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
360 361 362 363 364
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

365 366
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
367 368 369
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
370 371
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
372 373 374
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 376 377 378
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
379

380 381 382 383
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
384 385
		break;

386 387 388 389 390 391 392 393 394 395
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

396 397 398 399
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
400
	case SKF_AD_OFF + SKF_AD_RANDOM:
401
		/* arg1 = CTX */
402
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403
		/* arg2 = A */
404
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405
		/* arg3 = X */
406
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 409
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410
			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 412
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
413
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 415
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 418
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
419
			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420
			break;
C
Chema Gonzalez 已提交
421
		case SKF_AD_OFF + SKF_AD_RANDOM:
422 423
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
424
			break;
425 426 427 428
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 430
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
{
	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
	bool endian = BPF_SIZE(fp->code) == BPF_H ||
		      BPF_SIZE(fp->code) == BPF_W;
	bool indirect = BPF_MODE(fp->code) == BPF_IND;
	const int ip_align = NET_IP_ALIGN;
	struct bpf_insn *insn = *insnp;
	int offset = fp->k;

	if (!indirect &&
	    ((unaligned_ok && offset >= 0) ||
	     (!unaligned_ok && offset >= 0 &&
	      offset + ip_align >= 0 &&
	      offset + ip_align % size == 0))) {
462 463
		bool ldx_off_ok = offset <= S16_MAX;

464 465
		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466 467 468 469 470 471 472 473 474 475 476
		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
				      size, 2 + endian + (!ldx_off_ok * 2));
		if (ldx_off_ok) {
			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
					      BPF_REG_D, offset);
		} else {
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
					      BPF_REG_TMP, 0);
		}
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		if (endian)
			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
		*insn++ = BPF_JMP_A(8);
	}

	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
		if (fp->k)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
	}

	switch (BPF_SIZE(fp->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
		break;
	default:
		return false;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
	*insn   = BPF_EXIT_INSN();

	*insnp = insn;
	return true;
}

515
/**
516
 *	bpf_convert_filter - convert filter program
517 518
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
519
 *	@new_prog: allocated 'struct bpf_prog' or NULL
520
 *	@new_len: pointer to store length of converted program
521
 *	@seen_ld_abs: bool whether we've seen ld_abs/ind
522
 *
523 524
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
525 526 527
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
528
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529 530 531
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
532
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533
 */
534
static int bpf_convert_filter(struct sock_filter *prog, int len,
535 536
			      struct bpf_prog *new_prog, int *new_len,
			      bool *seen_ld_abs)
537
{
538 539
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
540 541 542 543 544
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546

547
	if (len <= 0 || len > BPF_MAXINSNS)
548 549 550
		return -EINVAL;

	if (new_prog) {
551
		first_insn = new_prog->insnsi;
552 553
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
554 555 556 557 558
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
559
	new_insn = first_insn;
560 561
	fp = prog;

562
	/* Classic BPF related prologue emission. */
563
	if (new_prog) {
564 565 566
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
567 568
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569 570 571 572 573 574

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		if (*seen_ld_abs) {
			/* For packet access in classic BPF, cache skb->data
			 * in callee-saved BPF R8 and skb->len - skb->data_len
			 * (headlen) in BPF R9. Since classic BPF is read-only
			 * on CTX, we only need to cache it once.
			 */
			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
						  BPF_REG_D, BPF_REG_CTX,
						  offsetof(struct sk_buff, data));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
						  offsetof(struct sk_buff, len));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
						  offsetof(struct sk_buff, data_len));
			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
		}
590 591 592
	} else {
		new_insn += 3;
	}
593 594

	for (i = 0; i < len; fp++, i++) {
595
		struct bpf_insn tmp_insns[32] = { };
596
		struct bpf_insn *insn = tmp_insns;
597 598

		if (addrs)
599
			addrs[i] = new_insn - first_insn;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;
638 639 640 641 642
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    convert_bpf_ld_abs(fp, &insn)) {
				*seen_ld_abs = true;
				break;
			}
643

644
			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645
			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646
				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647 648 649 650 651 652 653
				/* Error with exception code on div/mod by 0.
				 * For cBPF programs, this was always return 0.
				 */
				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
				*insn++ = BPF_EXIT_INSN();
			}
654

655
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656 657
			break;

658 659 660 661 662 663 664
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
665
	do {								\
666 667 668
		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
		s32 off;						\
									\
669 670
		if (target >= len || target < 0)			\
			goto err;					\
671
		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
672
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
673 674 675 676 677
		off -= insn - tmp_insns;				\
		/* Reject anything not fitting into insn->off. */	\
		if (off < off_min || off > off_max)			\
			goto err;					\
		insn->off = off;					\
678 679
	} while (0)

680 681 682 683
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
699
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700

701 702
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
703 704
				bpf_src = BPF_X;
			} else {
705
				insn->dst_reg = BPF_REG_A;
706 707
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
708
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
709
			}
710 711 712 713 714

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
715
				BPF_EMIT_JMP;
716
				break;
L
Linus Torvalds 已提交
717
			}
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
			/* Convert some jumps when 'jump_true' is next insn. */
			if (fp->jt == 0) {
				switch (BPF_OP(fp->code)) {
				case BPF_JEQ:
					insn->code = BPF_JMP | BPF_JNE | bpf_src;
					break;
				case BPF_JGT:
					insn->code = BPF_JMP | BPF_JLE | bpf_src;
					break;
				case BPF_JGE:
					insn->code = BPF_JMP | BPF_JLT | bpf_src;
					break;
				default:
					goto jmp_rest;
				}

735
				target = i + fp->jf + 1;
736
				BPF_EMIT_JMP;
737
				break;
738
			}
739
jmp_rest:
740 741 742
			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743
			BPF_EMIT_JMP;
744 745 746 747
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
748
			BPF_EMIT_JMP;
749 750 751
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752 753 754 755 756 757 758 759 760 761
		case BPF_LDX | BPF_MSH | BPF_B: {
			struct sock_filter tmp = {
				.code	= BPF_LD | BPF_ABS | BPF_B,
				.k	= fp->k,
			};

			*seen_ld_abs = true;

			/* X = A */
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
763 764
			convert_bpf_ld_abs(&tmp, &insn);
			insn++;
765
			/* A &= 0xf */
766
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767
			/* A <<= 2 */
768
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769 770
			/* tmp = X */
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771
			/* X = A */
772
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773
			/* A = tmp */
774
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775
			break;
776
		}
777 778 779
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
780 781
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
782 783 784
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
785
			*insn = BPF_EXIT_INSN();
786 787 788 789 790
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
791
			stack_off = fp->k * 4  + 4;
792 793
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
794 795 796 797 798 799 800
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
801 802 803 804 805
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
806
			stack_off = fp->k * 4  + 4;
807 808
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809
					    -stack_off);
810 811 812 813 814
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
815 816
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
817 818 819 820
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
821
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822 823 824 825
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
826
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827 828 829 830 831
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
832 833 834
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
835 836
			break;

837
		/* Access seccomp_data fields. */
838
		case BPF_LDX | BPF_ABS | BPF_W:
839 840
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841 842
			break;

S
Stephen Hemminger 已提交
843
		/* Unknown instruction. */
L
Linus Torvalds 已提交
844
		default:
845
			goto err;
L
Linus Torvalds 已提交
846
		}
847 848 849 850 851 852

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
853 854
	}

855 856
	if (!new_prog) {
		/* Only calculating new length. */
857
		*new_len = new_insn - first_insn;
858 859
		if (*seen_ld_abs)
			*new_len += 4; /* Prologue bits. */
860 861 862 863
		return 0;
	}

	pass++;
864 865
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
866 867 868 869 870 871 872
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
873
	return 0;
874 875 876
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
877 878
}

879 880
/* Security:
 *
881
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
882
 * __bpf_prog_run(), we check that filter loaded by user never try to read
883
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
884
 * a malicious user doesn't try to abuse us.
885
 */
886
static int check_load_and_stores(const struct sock_filter *filter, int flen)
887
{
888
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889 890 891
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
892

893
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894 895
	if (!masks)
		return -ENOMEM;
896

897 898 899 900 901 902
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
903 904
		case BPF_ST:
		case BPF_STX:
905 906
			memvalid |= (1 << filter[pc].k);
			break;
907 908
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
909 910 911 912 913
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
914 915
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
916 917 918
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
919 920 921 922 923 924 925 926 927
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
928 929 930 931 932 933 934 935 936 937 938
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
1016
/**
1017
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
1023 1024
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
1025
 *
1026 1027 1028
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
1029
 */
1030 1031
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
1032
{
1033
	bool anc_found;
1034
	int pc;
L
Linus Torvalds 已提交
1035

1036
	/* Check the filter code now */
L
Linus Torvalds 已提交
1037
	for (pc = 0; pc < flen; pc++) {
1038
		const struct sock_filter *ftest = &filter[pc];
1039

1040 1041
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
1042
			return -EINVAL;
1043

1044
		/* Some instructions need special checks */
1045 1046 1047 1048
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
1049 1050 1051
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
1052 1053 1054 1055 1056
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
1057 1058 1059 1060 1061
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
1062 1063 1064
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
1065 1066
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
1067 1068 1069
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
1070
			if (ftest->k >= (unsigned int)(flen - pc - 1))
1071
				return -EINVAL;
1072
			break;
1073 1074 1075 1076 1077 1078 1079 1080 1081
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
1082
			if (pc + ftest->jt + 1 >= flen ||
1083 1084
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
1085
			break;
1086 1087 1088
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
1089
			anc_found = false;
1090 1091 1092
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
1093 1094
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
1095 1096
		}
	}
1097

1098
	/* Last instruction must be a RET code */
1099
	switch (filter[flen - 1].code) {
1100 1101
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
1102
		return check_load_and_stores(filter, flen);
1103
	}
1104

1105
	return -EINVAL;
L
Linus Torvalds 已提交
1106 1107
}

1108 1109
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
1110
{
1111
	unsigned int fsize = bpf_classic_proglen(fprog);
1112 1113 1114 1115 1116 1117 1118 1119
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
1120 1121 1122

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
1123 1124 1125 1126 1127 1128 1129 1130
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

1131
static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 1133 1134 1135 1136 1137 1138 1139 1140
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

1141 1142
static void __bpf_prog_release(struct bpf_prog *prog)
{
1143
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144 1145 1146 1147 1148
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
1149 1150
}

1151 1152
static void __sk_filter_release(struct sk_filter *fp)
{
1153 1154
	__bpf_prog_release(fp->prog);
	kfree(fp);
1155 1156
}

1157
/**
E
Eric Dumazet 已提交
1158
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1159 1160
 *	@rcu: rcu_head that contains the sk_filter to free
 */
1161
static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 1163 1164
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

1165
	__sk_filter_release(fp);
1166
}
1167 1168 1169 1170 1171 1172 1173 1174 1175

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
1176
	if (refcount_dec_and_test(&fp->refcnt))
1177 1178 1179 1180 1181
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
1182
	u32 filter_size = bpf_prog_size(fp->prog->len);
1183

1184 1185
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
1186
}
1187

1188 1189 1190
/* try to charge the socket memory if there is space available
 * return true on success
 */
1191
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192
{
1193
	u32 filter_size = bpf_prog_size(fp->prog->len);
1194 1195 1196 1197 1198 1199

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
1200
	}
1201
	return false;
1202 1203
}

1204 1205
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
1206 1207 1208 1209 1210 1211 1212 1213
	if (!refcount_inc_not_zero(&fp->refcnt))
		return false;

	if (!__sk_filter_charge(sk, fp)) {
		sk_filter_release(fp);
		return false;
	}
	return true;
1214 1215
}

1216
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 1218
{
	struct sock_filter *old_prog;
1219
	struct bpf_prog *old_fp;
1220
	int err, new_len, old_len = fp->len;
1221
	bool seen_ld_abs = false;
1222 1223 1224 1225 1226 1227 1228

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229
		     sizeof(struct bpf_insn));
1230 1231 1232 1233 1234 1235

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236
			   GFP_KERNEL | __GFP_NOWARN);
1237 1238 1239 1240 1241 1242
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1243 1244
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
				 &seen_ld_abs);
1245 1246 1247 1248 1249
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1250
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1262
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263 1264
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
				 &seen_ld_abs);
1265
	if (err)
1266
		/* 2nd bpf_convert_filter() can fail only if it fails
1267 1268
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1269
		 * by krealloc().
1270 1271 1272
		 */
		goto out_err_free;

1273
	fp = bpf_prog_select_runtime(fp, &err);
1274 1275
	if (err)
		goto out_err_free;
1276

1277 1278 1279 1280 1281 1282
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1283
	__bpf_prog_release(fp);
1284 1285 1286
	return ERR_PTR(err);
}

1287 1288
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1289 1290 1291
{
	int err;

1292
	fp->bpf_func = NULL;
1293
	fp->jited = 0;
1294

1295
	err = bpf_check_classic(fp->insns, fp->len);
1296
	if (err) {
1297
		__bpf_prog_release(fp);
1298
		return ERR_PTR(err);
1299
	}
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1312 1313 1314
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1315
	bpf_jit_compile(fp);
1316 1317 1318 1319

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1320
	if (!fp->jited)
1321
		fp = bpf_migrate_filter(fp);
1322 1323

	return fp;
1324 1325 1326
}

/**
1327
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1328
 *	@pfp: the unattached filter that is created
1329
 *	@fprog: the filter program
1330
 *
R
Randy Dunlap 已提交
1331
 * Create a filter independent of any socket. We first run some
1332 1333 1334 1335
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1336
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337
{
1338
	unsigned int fsize = bpf_classic_proglen(fprog);
1339
	struct bpf_prog *fp;
1340 1341

	/* Make sure new filter is there and in the right amounts. */
1342
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343 1344
		return -EINVAL;

1345
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346 1347
	if (!fp)
		return -ENOMEM;
1348

1349 1350 1351
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1352 1353 1354 1355 1356
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1357

1358
	/* bpf_prepare_filter() already takes care of freeing
1359 1360
	 * memory in case something goes wrong.
	 */
1361
	fp = bpf_prepare_filter(fp, NULL);
1362 1363
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1364 1365 1366 1367

	*pfp = fp;
	return 0;
}
1368
EXPORT_SYMBOL_GPL(bpf_prog_create);
1369

1370 1371 1372 1373 1374
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1375
 *	@save_orig: save classic BPF program
1376 1377 1378 1379 1380 1381
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382
			      bpf_aux_classic_check_t trans, bool save_orig)
1383 1384 1385
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1386
	int err;
1387 1388

	/* Make sure new filter is there and in the right amounts. */
1389
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1404 1405 1406 1407 1408 1409 1410 1411
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1422
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423

1424
void bpf_prog_destroy(struct bpf_prog *fp)
1425
{
1426
	__bpf_prog_release(fp);
1427
}
1428
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429

1430
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1440
	if (!__sk_filter_charge(sk, fp)) {
1441 1442 1443
		kfree(fp);
		return -ENOMEM;
	}
1444
	refcount_set(&fp->refcnt, 1);
1445

1446 1447
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1448
	rcu_assign_pointer(sk->sk_filter, fp);
1449

1450 1451 1452 1453 1454 1455
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1456 1457
static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1458
{
1459
	unsigned int fsize = bpf_classic_proglen(fprog);
1460
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1461 1462
	int err;

1463
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1464
		return ERR_PTR(-EPERM);
1465

L
Linus Torvalds 已提交
1466
	/* Make sure new filter is there and in the right amounts. */
1467
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1468
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1469

1470
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1471
	if (!prog)
1472
		return ERR_PTR(-ENOMEM);
1473

1474
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1475
		__bpf_prog_free(prog);
1476
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1477 1478
	}

1479
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1480

1481
	err = bpf_prog_store_orig_filter(prog, fprog);
1482
	if (err) {
1483
		__bpf_prog_free(prog);
1484
		return ERR_PTR(-ENOMEM);
1485 1486
	}

1487
	/* bpf_prepare_filter() already takes care of freeing
1488 1489
	 * memory in case something goes wrong.
	 */
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1503
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1504 1505 1506 1507
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1508 1509 1510
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1511
	err = __sk_attach_prog(prog, sk);
1512
	if (err < 0) {
1513
		__bpf_prog_release(prog);
1514
		return err;
1515 1516
	}

1517
	return 0;
L
Linus Torvalds 已提交
1518
}
1519
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1520

1521
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1522
{
1523
	struct bpf_prog *prog = __get_filter(fprog, sk);
1524
	int err;
1525

1526 1527 1528
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1529 1530 1531 1532 1533 1534
	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		err = -ENOMEM;
	else
		err = reuseport_attach_prog(sk, prog);

	if (err)
1535 1536
		__bpf_prog_release(prog);

1537
	return err;
1538 1539 1540 1541
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1542
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1543
		return ERR_PTR(-EPERM);
1544

1545
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1556
	err = __sk_attach_prog(prog, sk);
1557
	if (err < 0) {
1558
		bpf_prog_put(prog);
1559
		return err;
1560 1561 1562 1563 1564
	}

	return 0;
}

1565 1566
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
1567
	struct bpf_prog *prog;
1568 1569
	int err;

1570 1571 1572 1573 1574 1575
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
	if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1576 1577 1578
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
		 * bpf prog (e.g. sockmap).  It depends on the
		 * limitation imposed by bpf_prog_load().
		 * Hence, sysctl_optmem_max is not checked.
		 */
		if ((sk->sk_type != SOCK_STREAM &&
		     sk->sk_type != SOCK_DGRAM) ||
		    (sk->sk_protocol != IPPROTO_UDP &&
		     sk->sk_protocol != IPPROTO_TCP) ||
		    (sk->sk_family != AF_INET &&
		     sk->sk_family != AF_INET6)) {
			err = -ENOTSUPP;
			goto err_prog_put;
		}
	} else {
		/* BPF_PROG_TYPE_SOCKET_FILTER */
		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
			err = -ENOMEM;
			goto err_prog_put;
		}
1600 1601
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	err = reuseport_attach_prog(sk, prog);
err_prog_put:
	if (err)
		bpf_prog_put(prog);

	return err;
}

void sk_reuseport_prog_free(struct bpf_prog *prog)
{
	if (!prog)
		return;

	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
		bpf_prog_put(prog);
	else
		bpf_prog_destroy(prog);
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1629

1630 1631 1632 1633 1634 1635
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1636 1637 1638
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1639
	int err = __bpf_try_make_writable(skb, write_len);
1640

1641
	bpf_compute_data_pointers(skb);
1642 1643 1644
	return err;
}

1645 1646 1647 1648 1649
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1650 1651 1652 1653 1654 1655
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1656 1657 1658 1659 1660 1661
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1662 1663
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1664 1665 1666
{
	void *ptr;

1667
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1668
		return -EINVAL;
1669
	if (unlikely(offset > 0xffff))
1670
		return -EFAULT;
1671
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1672 1673
		return -EFAULT;

1674
	ptr = skb->data + offset;
1675
	if (flags & BPF_F_RECOMPUTE_CSUM)
1676
		__skb_postpull_rcsum(skb, ptr, len, offset);
1677 1678 1679

	memcpy(ptr, from, len);

1680
	if (flags & BPF_F_RECOMPUTE_CSUM)
1681
		__skb_postpush_rcsum(skb, ptr, len, offset);
1682 1683
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1684

1685 1686 1687
	return 0;
}

1688
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1689 1690 1691 1692 1693
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1694 1695
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1696 1697 1698
	.arg5_type	= ARG_ANYTHING,
};

1699 1700
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1701 1702 1703
{
	void *ptr;

1704
	if (unlikely(offset > 0xffff))
1705
		goto err_clear;
1706 1707 1708

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1709
		goto err_clear;
1710 1711 1712 1713
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1714 1715 1716
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1717 1718
}

1719
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1720 1721 1722 1723 1724
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1725 1726
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1727 1728
};

1729 1730 1731
BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
	   u32, offset, void *, to, u32, len, u32, start_header)
{
1732 1733 1734
	u8 *end = skb_tail_pointer(skb);
	u8 *net = skb_network_header(skb);
	u8 *mac = skb_mac_header(skb);
1735 1736
	u8 *ptr;

1737
	if (unlikely(offset > 0xffff || len > (end - mac)))
1738 1739 1740 1741
		goto err_clear;

	switch (start_header) {
	case BPF_HDR_START_MAC:
1742
		ptr = mac + offset;
1743 1744
		break;
	case BPF_HDR_START_NET:
1745
		ptr = net + offset;
1746 1747 1748 1749 1750
		break;
	default:
		goto err_clear;
	}

1751
	if (likely(ptr >= mac && ptr + len <= end)) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		memcpy(to, ptr, len);
		return 0;
	}

err_clear:
	memset(to, 0, len);
	return -EFAULT;
}

static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
	.func		= bpf_skb_load_bytes_relative,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static inline int sk_skb_try_make_writable(struct sk_buff *skb,
					   unsigned int write_len)
{
	int err = __bpf_try_make_writable(skb, write_len);

	bpf_compute_data_end_sk_skb(skb);
	return err;
}

BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto sk_skb_pull_data_proto = {
	.func		= sk_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1825 1826
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1827
{
1828
	__sum16 *ptr;
1829

1830 1831
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1832
	if (unlikely(offset > 0xffff || offset & 1))
1833
		return -EFAULT;
1834
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1835 1836
		return -EFAULT;

1837
	ptr = (__sum16 *)(skb->data + offset);
1838
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1839 1840 1841 1842 1843 1844
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1858
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1869 1870
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1871
{
1872
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1873
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1874
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1875
	__sum16 *ptr;
1876

1877 1878
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1879
		return -EINVAL;
1880
	if (unlikely(offset > 0xffff || offset & 1))
1881
		return -EFAULT;
1882
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 1884
		return -EFAULT;

1885
	ptr = (__sum16 *)(skb->data + offset);
1886
	if (is_mmzero && !do_mforce && !*ptr)
1887
		return 0;
1888

1889
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1890 1891 1892 1893 1894 1895
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1906 1907
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1908 1909 1910
	return 0;
}

1911
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1912 1913 1914 1915 1916 1917 1918 1919
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1920 1921
};

1922 1923
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1924
{
1925
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1926
	u32 diff_size = from_size + to_size;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1949
static const struct bpf_func_proto bpf_csum_diff_proto = {
1950 1951
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1952
	.pkt_access	= true,
1953
	.ret_type	= RET_INTEGER,
1954
	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1955
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1956
	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1957
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1958 1959 1960
	.arg5_type	= ARG_ANYTHING,
};

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1981 1982 1983 1984 1985
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
2042 2043 2044 2045 2046 2047
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

2048 2049 2050 2051 2052 2053 2054 2055
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
2056
	if (dev_is_mac_header_xmit(dev))
2057
		return __bpf_redirect_common(skb, dev, flags);
2058 2059
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
2060 2061
}

2062
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2063 2064
{
	struct net_device *dev;
2065 2066
	struct sk_buff *clone;
	int ret;
2067

2068 2069 2070
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

2071 2072 2073 2074
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

2075 2076
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
2077 2078
		return -ENOMEM;

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

2090
	return __bpf_redirect(clone, dev, flags);
2091 2092
}

2093
static const struct bpf_func_proto bpf_clone_redirect_proto = {
2094 2095 2096 2097 2098 2099 2100 2101
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2102 2103
DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2104

2105
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2106
{
2107
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2108

2109 2110 2111
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

2112 2113
	ri->ifindex = ifindex;
	ri->flags = flags;
2114

2115 2116 2117 2118 2119
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
2120
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2121 2122 2123 2124 2125 2126 2127 2128 2129
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

2130
	return __bpf_redirect(skb, dev, ri->flags);
2131 2132
}

2133
static const struct bpf_func_proto bpf_redirect_proto = {
2134 2135 2136 2137 2138 2139 2140
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);

	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	tcb->bpf.flags = flags;
	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
	.func           = bpf_sk_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2168 2169
BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
	   struct bpf_map *, map, u32, key, u64, flags)
2170
{
2171
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2172

2173
	/* If user passes invalid input drop the packet. */
2174
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2175
		return SK_DROP;
2176

2177
	tcb->bpf.flags = flags;
2178 2179 2180
	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;
2181

2182
	return SK_PASS;
2183 2184
}

2185
struct sock *do_sk_redirect_map(struct sk_buff *skb)
2186
{
2187
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2188

2189
	return tcb->bpf.sk_redir;
2190 2191 2192 2193 2194 2195
}

static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
	.func           = bpf_sk_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
2196 2197
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
2198
	.arg3_type      = ARG_ANYTHING,
2199
	.arg4_type      = ARG_ANYTHING,
2200 2201
};

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	msg->flags = flags;
	msg->sk_redir = __sock_hash_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
	.func           = bpf_msg_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2227 2228 2229 2230
BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, u32, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
2231
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2232 2233 2234
		return SK_DROP;

	msg->flags = flags;
2235 2236 2237
	msg->sk_redir = __sock_map_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;
2238 2239 2240 2241 2242 2243

	return SK_PASS;
}

struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
{
2244
	return msg->sk_redir;
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
}

static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
	.func           = bpf_msg_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_ANYTHING,
	.arg4_type      = ARG_ANYTHING,
};

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->apply_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
	.func           = bpf_msg_apply_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->cork_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
	.func           = bpf_msg_cork_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2285 2286 2287 2288 2289 2290 2291
#define sk_msg_iter_var(var)			\
	do {					\
		var++;				\
		if (var == MAX_SKB_FRAGS)	\
			var = 0;		\
	} while (0)

2292 2293 2294 2295
BPF_CALL_4(bpf_msg_pull_data,
	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
{
	unsigned int len = 0, offset = 0, copy = 0;
2296
	int bytes = end - start, bytes_sg_total;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	struct scatterlist *sg = msg->sg_data;
	int first_sg, last_sg, i, shift;
	unsigned char *p, *to, *from;
	struct page *page;

	if (unlikely(flags || end <= start))
		return -EINVAL;

	/* First find the starting scatterlist element */
	i = msg->sg_start;
	do {
		len = sg[i].length;
		if (start < offset + len)
			break;
2311
		offset += len;
2312
		sk_msg_iter_var(i);
2313 2314 2315 2316 2317
	} while (i != msg->sg_end);

	if (unlikely(start >= offset + len))
		return -EINVAL;

2318
	first_sg = i;
2319 2320 2321 2322 2323
	/* The start may point into the sg element so we need to also
	 * account for the headroom.
	 */
	bytes_sg_total = start - offset + bytes;
	if (!msg->sg_copy[i] && bytes_sg_total <= len)
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		goto out;

	/* At this point we need to linearize multiple scatterlist
	 * elements or a single shared page. Either way we need to
	 * copy into a linear buffer exclusively owned by BPF. Then
	 * place the buffer in the scatterlist and fixup the original
	 * entries by removing the entries now in the linear buffer
	 * and shifting the remaining entries. For now we do not try
	 * to copy partial entries to avoid complexity of running out
	 * of sg_entry slots. The downside is reading a single byte
	 * will copy the entire sg entry.
	 */
	do {
		copy += sg[i].length;
2338
		sk_msg_iter_var(i);
2339
		if (bytes_sg_total <= copy)
2340 2341 2342 2343
			break;
	} while (i != msg->sg_end);
	last_sg = i;

2344
	if (unlikely(bytes_sg_total > copy))
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
		return -EINVAL;

	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
	if (unlikely(!page))
		return -ENOMEM;
	p = page_address(page);
	offset = 0;

	i = first_sg;
	do {
		from = sg_virt(&sg[i]);
		len = sg[i].length;
		to = p + offset;

		memcpy(to, from, len);
		offset += len;
		sg[i].length = 0;
		put_page(sg_page(&sg[i]));

2364
		sk_msg_iter_var(i);
2365 2366 2367 2368 2369 2370 2371 2372 2373
	} while (i != last_sg);

	sg[first_sg].length = copy;
	sg_set_page(&sg[first_sg], page, copy, 0);

	/* To repair sg ring we need to shift entries. If we only
	 * had a single entry though we can just replace it and
	 * be done. Otherwise walk the ring and shift the entries.
	 */
2374 2375 2376 2377
	WARN_ON_ONCE(last_sg == first_sg);
	shift = last_sg > first_sg ?
		last_sg - first_sg - 1 :
		MAX_SKB_FRAGS - first_sg + last_sg - 1;
2378 2379 2380
	if (!shift)
		goto out;

2381 2382
	i = first_sg;
	sk_msg_iter_var(i);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	do {
		int move_from;

		if (i + shift >= MAX_SKB_FRAGS)
			move_from = i + shift - MAX_SKB_FRAGS;
		else
			move_from = i + shift;

		if (move_from == msg->sg_end)
			break;

		sg[i] = sg[move_from];
		sg[move_from].length = 0;
		sg[move_from].page_link = 0;
		sg[move_from].offset = 0;

2399
		sk_msg_iter_var(i);
2400 2401 2402 2403 2404
	} while (1);
	msg->sg_end -= shift;
	if (msg->sg_end < 0)
		msg->sg_end += MAX_SKB_FRAGS;
out:
2405
	msg->data = sg_virt(&sg[first_sg]) + start - offset;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	msg->data_end = msg->data + bytes;

	return 0;
}

static const struct bpf_func_proto bpf_msg_pull_data_proto = {
	.func		= bpf_msg_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2421
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2422
{
2423
	return task_get_classid(skb);
2424 2425 2426 2427 2428 2429 2430 2431 2432
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2433
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2434
{
2435
	return dst_tclassid(skb);
2436 2437 2438 2439 2440 2441 2442 2443 2444
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2445
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2446 2447 2448 2449 2450 2451
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
2452
	return skb_get_hash(skb);
2453 2454 2455 2456 2457 2458 2459 2460 2461
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2496 2497
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
2498
{
2499
	int ret;
2500 2501 2502 2503 2504

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

2505
	bpf_push_mac_rcsum(skb);
2506
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2507 2508
	bpf_pull_mac_rcsum(skb);

2509
	bpf_compute_data_pointers(skb);
2510
	return ret;
2511 2512
}

2513
static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2514 2515 2516 2517 2518 2519 2520 2521
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2522
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2523
{
2524
	int ret;
2525

2526
	bpf_push_mac_rcsum(skb);
2527
	ret = skb_vlan_pop(skb);
2528 2529
	bpf_pull_mac_rcsum(skb);

2530
	bpf_compute_data_pointers(skb);
2531
	return ret;
2532 2533
}

2534
static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2535 2536 2537 2538 2539 2540
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2613
	u32 off = skb_mac_header_len(skb);
2614 2615
	int ret;

2616 2617 2618 2619
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2620 2621 2622 2623 2624 2625 2626 2627 2628
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2629 2630
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2631 2632
		/* SKB_GSO_TCPV4 needs to be changed into
		 * SKB_GSO_TCPV6.
2633
		 */
2634 2635 2636
		if (shinfo->gso_type & SKB_GSO_TCPV4) {
			shinfo->gso_type &= ~SKB_GSO_TCPV4;
			shinfo->gso_type |=  SKB_GSO_TCPV6;
2637 2638 2639
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
2640
		skb_decrease_gso_size(shinfo, len_diff);
2641
		/* Header must be checked, and gso_segs recomputed. */
2642 2643
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2655
	u32 off = skb_mac_header_len(skb);
2656 2657
	int ret;

2658 2659 2660 2661
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2662 2663 2664 2665 2666 2667 2668 2669 2670
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2671 2672
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2673 2674
		/* SKB_GSO_TCPV6 needs to be changed into
		 * SKB_GSO_TCPV4.
2675
		 */
2676 2677 2678
		if (shinfo->gso_type & SKB_GSO_TCPV6) {
			shinfo->gso_type &= ~SKB_GSO_TCPV6;
			shinfo->gso_type |=  SKB_GSO_TCPV4;
2679 2680 2681
		}

		/* Due to IPv4 header, MSS can be upgraded. */
2682
		skb_increase_gso_size(shinfo, len_diff);
2683
		/* Header must be checked, and gso_segs recomputed. */
2684 2685
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2709 2710
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
2735
	bpf_compute_data_pointers(skb);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2748
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2749 2750
{
	/* We only allow a restricted subset to be changed for now. */
2751 2752
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2784 2785 2786 2787
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2788 2789 2790 2791 2792 2793 2794 2795 2796
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2797 2798
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2799
		/* Due to header grow, MSS needs to be downgraded. */
2800
		skb_decrease_gso_size(shinfo, len_diff);
2801
		/* Header must be checked, and gso_segs recomputed. */
2802 2803
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2814 2815 2816 2817
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2818 2819 2820 2821 2822 2823 2824 2825 2826
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2827 2828
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2829
		/* Due to header shrink, MSS can be upgraded. */
2830
		skb_increase_gso_size(shinfo, len_diff);
2831
		/* Header must be checked, and gso_segs recomputed. */
2832 2833
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2834 2835 2836 2837 2838 2839 2840
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
2841 2842
	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
			  SKB_MAX_ALLOC;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

2873
	bpf_compute_data_pointers(skb);
2874
	return ret;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2926 2927
static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
					u64 flags)
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}
2963 2964 2965 2966 2967 2968 2969
	return ret;
}

BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
{
	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2970

2971
	bpf_compute_data_pointers(skb);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2984
BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2985
	   u64, flags)
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
{
	int ret = __bpf_skb_change_tail(skb, new_len, flags);

	bpf_compute_data_end_sk_skb(skb);
	return ret;
}

static const struct bpf_func_proto sk_skb_change_tail_proto = {
	.func		= sk_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
					u64 flags)
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

3029 3030 3031 3032 3033 3034 3035 3036
	return ret;
}

BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	int ret = __bpf_skb_change_head(skb, head_room, flags);

3037
	bpf_compute_data_pointers(skb);
3038
	return ret;
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	int ret = __bpf_skb_change_head(skb, head_room, flags);

	bpf_compute_data_end_sk_skb(skb);
	return ret;
}

static const struct bpf_func_proto sk_skb_change_head_proto = {
	.func		= sk_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};
3067 3068 3069 3070 3071 3072
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
{
	return xdp_data_meta_unsupported(xdp) ? 0 :
	       xdp->data - xdp->data_meta;
}

3073 3074
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
3075
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3076
	unsigned long metalen = xdp_get_metalen(xdp);
3077
	void *data_start = xdp_frame_end + metalen;
3078 3079
	void *data = xdp->data + offset;

3080
	if (unlikely(data < data_start ||
3081 3082 3083
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

3084 3085 3086 3087
	if (metalen)
		memmove(xdp->data_meta + offset,
			xdp->data_meta, metalen);
	xdp->data_meta += offset;
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
{
	void *data_end = xdp->data_end + offset;

	/* only shrinking is allowed for now. */
	if (unlikely(offset >= 0))
		return -EINVAL;

	if (unlikely(data_end < xdp->data + ETH_HLEN))
		return -EINVAL;

	xdp->data_end = data_end;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
	.func		= bpf_xdp_adjust_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3125 3126
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
{
3127
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3128 3129 3130 3131 3132
	void *meta = xdp->data_meta + offset;
	unsigned long metalen = xdp->data - meta;

	if (xdp_data_meta_unsupported(xdp))
		return -ENOTSUPP;
3133
	if (unlikely(meta < xdp_frame_end ||
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		     meta > xdp->data))
		return -EINVAL;
	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
		     (metalen > 32)))
		return -EACCES;

	xdp->data_meta = meta;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
	.func		= bpf_xdp_adjust_meta,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3153 3154 3155 3156
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
3157
{
3158
	struct xdp_frame *xdpf;
3159
	int err, sent;
3160 3161 3162

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		return -EOPNOTSUPP;
3163
	}
3164

3165 3166 3167 3168
	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
	if (unlikely(err))
		return err;

3169 3170 3171 3172
	xdpf = convert_to_xdp_frame(xdp);
	if (unlikely(!xdpf))
		return -EOVERFLOW;

3173
	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3174 3175
	if (sent <= 0)
		return sent;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	return 0;
}

static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
			    struct bpf_map *map,
			    struct xdp_buff *xdp,
			    u32 index)
{
	int err;

3186 3187
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP: {
3188
		struct bpf_dtab_netdev *dst = fwd;
3189

3190
		err = dev_map_enqueue(dst, xdp, dev_rx);
3191 3192
		if (err)
			return err;
3193
		__dev_map_insert_ctx(map, index);
3194 3195 3196
		break;
	}
	case BPF_MAP_TYPE_CPUMAP: {
3197 3198 3199 3200 3201 3202
		struct bpf_cpu_map_entry *rcpu = fwd;

		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
		if (err)
			return err;
		__cpu_map_insert_ctx(map, index);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		break;
	}
	case BPF_MAP_TYPE_XSKMAP: {
		struct xdp_sock *xs = fwd;

		err = __xsk_map_redirect(map, xdp, xs);
		return err;
	}
	default:
		break;
3213
	}
3214
	return 0;
3215 3216
}

3217 3218
void xdp_do_flush_map(void)
{
3219
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3220 3221 3222
	struct bpf_map *map = ri->map_to_flush;

	ri->map_to_flush = NULL;
3223 3224 3225 3226 3227 3228 3229 3230
	if (map) {
		switch (map->map_type) {
		case BPF_MAP_TYPE_DEVMAP:
			__dev_map_flush(map);
			break;
		case BPF_MAP_TYPE_CPUMAP:
			__cpu_map_flush(map);
			break;
3231 3232 3233
		case BPF_MAP_TYPE_XSKMAP:
			__xsk_map_flush(map);
			break;
3234 3235 3236 3237
		default:
			break;
		}
	}
3238 3239 3240
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

3241 3242 3243 3244 3245 3246 3247
static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
{
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP:
		return __dev_map_lookup_elem(map, index);
	case BPF_MAP_TYPE_CPUMAP:
		return __cpu_map_lookup_elem(map, index);
3248 3249
	case BPF_MAP_TYPE_XSKMAP:
		return __xsk_map_lookup_elem(map, index);
3250 3251 3252 3253 3254
	default:
		return NULL;
	}
}

3255
void bpf_clear_redirect_map(struct bpf_map *map)
3256
{
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	struct bpf_redirect_info *ri;
	int cpu;

	for_each_possible_cpu(cpu) {
		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
		/* Avoid polluting remote cacheline due to writes if
		 * not needed. Once we pass this test, we need the
		 * cmpxchg() to make sure it hasn't been changed in
		 * the meantime by remote CPU.
		 */
		if (unlikely(READ_ONCE(ri->map) == map))
			cmpxchg(&ri->map, map, NULL);
	}
3270 3271
}

3272
static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3273
			       struct bpf_prog *xdp_prog, struct bpf_map *map)
3274
{
3275
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3276
	u32 index = ri->ifindex;
3277
	void *fwd = NULL;
3278
	int err;
3279 3280

	ri->ifindex = 0;
3281
	WRITE_ONCE(ri->map, NULL);
3282

3283
	fwd = __xdp_map_lookup_elem(map, index);
3284 3285
	if (!fwd) {
		err = -EINVAL;
3286
		goto err;
3287
	}
3288
	if (ri->map_to_flush && ri->map_to_flush != map)
3289 3290
		xdp_do_flush_map();

3291
	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3292 3293 3294 3295
	if (unlikely(err))
		goto err;

	ri->map_to_flush = map;
3296
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3297 3298
	return 0;
err:
3299
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3300 3301 3302
	return err;
}

3303 3304
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
3305
{
3306
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3307
	struct bpf_map *map = READ_ONCE(ri->map);
3308
	struct net_device *fwd;
W
William Tu 已提交
3309
	u32 index = ri->ifindex;
3310
	int err;
3311

3312 3313
	if (map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog, map);
3314

W
William Tu 已提交
3315
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3316
	ri->ifindex = 0;
3317
	if (unlikely(!fwd)) {
3318
		err = -EINVAL;
3319
		goto err;
3320 3321
	}

3322
	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3323 3324 3325 3326 3327 3328 3329
	if (unlikely(err))
		goto err;

	_trace_xdp_redirect(dev, xdp_prog, index);
	return 0;
err:
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3330
	return err;
3331 3332 3333
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

3334 3335
static int xdp_do_generic_redirect_map(struct net_device *dev,
				       struct sk_buff *skb,
3336
				       struct xdp_buff *xdp,
3337 3338
				       struct bpf_prog *xdp_prog,
				       struct bpf_map *map)
3339
{
3340
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
W
William Tu 已提交
3341
	u32 index = ri->ifindex;
3342
	void *fwd = NULL;
3343
	int err = 0;
3344 3345

	ri->ifindex = 0;
3346
	WRITE_ONCE(ri->map, NULL);
3347

3348
	fwd = __xdp_map_lookup_elem(map, index);
3349 3350
	if (unlikely(!fwd)) {
		err = -EINVAL;
3351
		goto err;
3352 3353
	}

3354
	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3355 3356 3357 3358
		struct bpf_dtab_netdev *dst = fwd;

		err = dev_map_generic_redirect(dst, skb, xdp_prog);
		if (unlikely(err))
3359
			goto err;
3360 3361 3362 3363 3364 3365 3366
	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
		struct xdp_sock *xs = fwd;

		err = xsk_generic_rcv(xs, xdp);
		if (err)
			goto err;
		consume_skb(skb);
3367 3368 3369
	} else {
		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
		err = -EBADRQC;
3370
		goto err;
3371
	}
3372

3373 3374 3375 3376 3377 3378 3379 3380
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
	return 0;
err:
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
	return err;
}

int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3381
			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3382
{
3383
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3384
	struct bpf_map *map = READ_ONCE(ri->map);
3385 3386 3387 3388
	u32 index = ri->ifindex;
	struct net_device *fwd;
	int err = 0;

3389 3390 3391
	if (map)
		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
						   map);
3392 3393 3394 3395
	ri->ifindex = 0;
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
	if (unlikely(!fwd)) {
		err = -EINVAL;
3396
		goto err;
3397 3398
	}

3399 3400
	err = xdp_ok_fwd_dev(fwd, skb->len);
	if (unlikely(err))
3401 3402
		goto err;

3403
	skb->dev = fwd;
3404
	_trace_xdp_redirect(dev, xdp_prog, index);
3405
	generic_xdp_tx(skb, xdp_prog);
3406 3407
	return 0;
err:
3408
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3409
	return err;
3410 3411 3412
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

3413 3414
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
3415
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3416 3417 3418 3419 3420 3421

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
3422
	WRITE_ONCE(ri->map, NULL);
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

3435 3436
BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
	   u64, flags)
3437
{
3438
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3439 3440 3441 3442 3443 3444

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
3445
	WRITE_ONCE(ri->map, map);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
	.func           = bpf_xdp_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

3459
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3460
				  unsigned long off, unsigned long len)
3461
{
3462
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3463 3464 3465 3466 3467 3468 3469 3470 3471

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

3472 3473
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3493
	.arg4_type	= ARG_PTR_TO_MEM,
3494
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3495 3496
};

3497 3498 3499 3500 3501
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

3502 3503
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
3504
{
3505 3506
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
3507 3508
	void *to_orig = to;
	int err;
3509

3510 3511 3512 3513 3514 3515 3516 3517
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
3518
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3519
		err = -EINVAL;
3520
		switch (size) {
3521
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3522
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3523
			goto set_compat;
3524 3525 3526 3527 3528
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
3529
				goto err_clear;
3530
set_compat:
3531 3532 3533
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
3534
			goto err_clear;
3535 3536
		}
	}
3537 3538

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3539 3540
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;
3541
	to->tunnel_ext = 0;
3542

3543
	if (flags & BPF_F_TUNINFO_IPV6) {
3544 3545
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
3546 3547
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
3548
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3549 3550
		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
		to->tunnel_label = 0;
3551
	}
3552 3553

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3554
		memcpy(to_orig, to, size);
3555 3556

	return 0;
3557 3558 3559
err_clear:
	memset(to_orig, 0, size);
	return err;
3560 3561
}

3562
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3563 3564 3565 3566
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3567 3568
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3569 3570 3571
	.arg4_type	= ARG_ANYTHING,
};

3572
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3573 3574
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3575
	int err;
3576 3577

	if (unlikely(!info ||
3578 3579 3580 3581 3582 3583 3584 3585
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
3586 3587

	ip_tunnel_info_opts_get(to, info);
3588 3589
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
3590 3591

	return info->options_len;
3592 3593 3594
err_clear:
	memset(to, 0, size);
	return err;
3595 3596 3597 3598 3599 3600 3601
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3602 3603
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3604 3605
};

3606 3607
static struct metadata_dst __percpu *md_dst;

3608 3609
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3610 3611
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
3612
	u8 compat[sizeof(struct bpf_tunnel_key)];
3613 3614
	struct ip_tunnel_info *info;

3615
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3616
			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3617
		return -EINVAL;
3618 3619
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
3620
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3621
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3622 3623 3624 3625 3626 3627
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
3628
			from = (const struct bpf_tunnel_key *) compat;
3629 3630 3631 3632 3633
			break;
		default:
			return -EINVAL;
		}
	}
3634 3635
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
3636
		return -EINVAL;
3637 3638 3639 3640 3641 3642

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
W
William Tu 已提交
3643
	memset(info, 0, sizeof(*info));
3644
	info->mode = IP_TUNNEL_INFO_TX;
3645

3646
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3647 3648
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
W
William Tu 已提交
3649 3650
	if (flags & BPF_F_ZERO_CSUM_TX)
		info->key.tun_flags &= ~TUNNEL_CSUM;
3651 3652
	if (flags & BPF_F_SEQ_NUMBER)
		info->key.tun_flags |= TUNNEL_SEQ;
3653

3654
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3655 3656 3657 3658 3659 3660 3661
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
3662 3663
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
3664 3665 3666
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
3667 3668 3669 3670

	return 0;
}

3671
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3672 3673 3674 3675
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3676 3677
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3678 3679 3680
	.arg4_type	= ARG_ANYTHING,
};

3681 3682
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
3683 3684 3685 3686 3687 3688
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
3689
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3690 3691
		return -ENOMEM;

3692
	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3693 3694 3695 3696 3697 3698 3699 3700 3701

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3702 3703
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3704 3705 3706 3707
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3708 3709
{
	if (!md_dst) {
3710 3711 3712 3713 3714 3715
		struct metadata_dst __percpu *tmp;

		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
						METADATA_IP_TUNNEL,
						GFP_KERNEL);
		if (!tmp)
3716
			return NULL;
3717 3718
		if (cmpxchg(&md_dst, NULL, tmp))
			metadata_dst_free_percpu(tmp);
3719
	}
3720 3721 3722 3723 3724 3725 3726 3727 3728

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
3729 3730
}

3731 3732
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
3733 3734 3735 3736 3737
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

3738
	sk = skb_to_full_sk(skb);
3739 3740
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
3741
	if (unlikely(idx >= array->map.max_entries))
3742 3743
		return -E2BIG;

3744
	cgrp = READ_ONCE(array->ptrs[idx]);
3745 3746 3747
	if (unlikely(!cgrp))
		return -EAGAIN;

3748
	return sk_under_cgroup_hierarchy(sk, cgrp);
3749 3750
}

3751 3752
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
3753 3754 3755 3756 3757 3758 3759
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
#ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
{
	struct sock *sk = skb_to_full_sk(skb);
	struct cgroup *cgrp;

	if (!sk || !sk_fullsock(sk))
		return 0;

	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
	return cgrp->kn->id.id;
}

static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
	.func           = bpf_skb_cgroup_id,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
	   ancestor_level)
{
	struct sock *sk = skb_to_full_sk(skb);
	struct cgroup *ancestor;
	struct cgroup *cgrp;

	if (!sk || !sk_fullsock(sk))
		return 0;

	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
	ancestor = cgroup_ancestor(cgrp, ancestor_level);
	if (!ancestor)
		return 0;

	return ancestor->kn->id.id;
}

static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
	.func           = bpf_skb_ancestor_cgroup_id,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};
3805 3806
#endif

3807 3808 3809 3810 3811 3812 3813
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

3814 3815
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3816 3817 3818 3819 3820 3821 3822 3823
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
3824 3825
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
3826 3827 3828 3829 3830 3831 3832 3833 3834
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3835
	.arg4_type	= ARG_PTR_TO_MEM,
3836
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3837 3838
};

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
{
	return sock_gen_cookie(ctx->sk);
}

static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
	.func		= bpf_get_socket_cookie_sock_addr,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
{
	return sock_gen_cookie(ctx->sk);
}

static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
	.func		= bpf_get_socket_cookie_sock_ops,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
3937
#ifdef CONFIG_INET
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	} else if (level == SOL_IP) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct inet_sock *inet = inet_sk(sk);

				if (val == -1)
					val = 0;
				inet->tos = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct ipv6_pinfo *np = inet6_sk(sk);

				if (val == -1)
					val = 0;
				np->tclass = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
#endif
3982 3983
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3984 3985
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];
3986
			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3987 3988 3989 3990

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
3991 3992
			ret = tcp_set_congestion_control(sk, name, false,
							 reinit);
3993
		} else {
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
4008 4009 4010 4011 4012 4013 4014
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
4015
				break;
4016 4017 4018
			default:
				ret = -EINVAL;
			}
4019 4020
		}
#endif
4021 4022 4023 4024 4025 4026 4027 4028
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
4029
	.gpl_only	= false,
4030 4031 4032 4033 4034 4035 4036 4037
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;

	if (!sk_fullsock(sk))
		goto err_clear;

#ifdef CONFIG_INET
	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
		if (optname == TCP_CONGESTION) {
			struct inet_connection_sock *icsk = inet_csk(sk);

			if (!icsk->icsk_ca_ops || optlen <= 1)
				goto err_clear;
			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
			optval[optlen - 1] = 0;
		} else {
			goto err_clear;
		}
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	} else if (level == SOL_IP) {
		struct inet_sock *inet = inet_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			*((int *)optval) = (int)inet->tos;
			break;
		default:
			goto err_clear;
		}
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		struct ipv6_pinfo *np = inet6_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			*((int *)optval) = (int)np->tclass;
			break;
		default:
			goto err_clear;
		}
#endif
4088 4089 4090
	} else {
		goto err_clear;
	}
4091
	return 0;
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
#endif
err_clear:
	memset(optval, 0, optlen);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_getsockopt_proto = {
	.func		= bpf_getsockopt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

4109 4110 4111 4112 4113 4114
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
	   int, argval)
{
	struct sock *sk = bpf_sock->sk;
	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;

4115
	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		return -EINVAL;

	if (val)
		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;

	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
}

static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
	.func		= bpf_sock_ops_cb_flags_set,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

A
Andrey Ignatov 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
EXPORT_SYMBOL_GPL(ipv6_bpf_stub);

BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
	   int, addr_len)
{
#ifdef CONFIG_INET
	struct sock *sk = ctx->sk;
	int err;

	/* Binding to port can be expensive so it's prohibited in the helper.
	 * Only binding to IP is supported.
	 */
	err = -EINVAL;
	if (addr->sa_family == AF_INET) {
		if (addr_len < sizeof(struct sockaddr_in))
			return err;
		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
			return err;
		return __inet_bind(sk, addr, addr_len, true, false);
#if IS_ENABLED(CONFIG_IPV6)
	} else if (addr->sa_family == AF_INET6) {
		if (addr_len < SIN6_LEN_RFC2133)
			return err;
		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
			return err;
		/* ipv6_bpf_stub cannot be NULL, since it's called from
		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
		 */
		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
#endif /* CONFIG_IPV6 */
	}
#endif /* CONFIG_INET */

	return -EAFNOSUPPORT;
}

static const struct bpf_func_proto bpf_bind_proto = {
	.func		= bpf_bind,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
};

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
#ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
{
	const struct sec_path *sp = skb_sec_path(skb);
	const struct xfrm_state *x;

	if (!sp || unlikely(index >= sp->len || flags))
		goto err_clear;

	x = sp->xvec[index];

	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
		goto err_clear;

	to->reqid = x->props.reqid;
	to->spi = x->id.spi;
	to->family = x->props.family;
4196 4197
	to->ext = 0;

4198 4199 4200 4201 4202
	if (to->family == AF_INET6) {
		memcpy(to->remote_ipv6, x->props.saddr.a6,
		       sizeof(to->remote_ipv6));
	} else {
		to->remote_ipv4 = x->props.saddr.a4;
4203
		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	}

	return 0;
err_clear:
	memset(to, 0, size);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
	.func		= bpf_skb_get_xfrm_state,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};
#endif

4224 4225 4226 4227 4228 4229 4230 4231 4232
#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
				  const struct neighbour *neigh,
				  const struct net_device *dev)
{
	memcpy(params->dmac, neigh->ha, ETH_ALEN);
	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
	params->h_vlan_TCI = 0;
	params->h_vlan_proto = 0;
4233
	params->ifindex = dev->ifindex;
4234

4235
	return 0;
4236 4237 4238 4239 4240
}
#endif

#if IS_ENABLED(CONFIG_INET)
static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4241
			       u32 flags, bool check_mtu)
4242 4243 4244 4245 4246 4247 4248 4249
{
	struct in_device *in_dev;
	struct neighbour *neigh;
	struct net_device *dev;
	struct fib_result res;
	struct fib_nh *nh;
	struct flowi4 fl4;
	int err;
4250
	u32 mtu;
4251 4252 4253 4254 4255 4256 4257 4258

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	/* verify forwarding is enabled on this interface */
	in_dev = __in_dev_get_rcu(dev);
	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4259
		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl4.flowi4_iif = 1;
		fl4.flowi4_oif = params->ifindex;
	} else {
		fl4.flowi4_iif = params->ifindex;
		fl4.flowi4_oif = 0;
	}
	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
	fl4.flowi4_flags = 0;

	fl4.flowi4_proto = params->l4_protocol;
	fl4.daddr = params->ipv4_dst;
	fl4.saddr = params->ipv4_src;
	fl4.fl4_sport = params->sport;
	fl4.fl4_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib_table *tb;

		tb = fib_get_table(net, tbid);
		if (unlikely(!tb))
4284
			return BPF_FIB_LKUP_RET_NOT_FWDED;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
	} else {
		fl4.flowi4_mark = 0;
		fl4.flowi4_secid = 0;
		fl4.flowi4_tun_key.tun_id = 0;
		fl4.flowi4_uid = sock_net_uid(net, NULL);

		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
	}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	if (err) {
		/* map fib lookup errors to RTN_ type */
		if (err == -EINVAL)
			return BPF_FIB_LKUP_RET_BLACKHOLE;
		if (err == -EHOSTUNREACH)
			return BPF_FIB_LKUP_RET_UNREACHABLE;
		if (err == -EACCES)
			return BPF_FIB_LKUP_RET_PROHIBIT;

		return BPF_FIB_LKUP_RET_NOT_FWDED;
	}

	if (res.type != RTN_UNICAST)
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4310 4311 4312 4313

	if (res.fi->fib_nhs > 1)
		fib_select_path(net, &res, &fl4, NULL);

4314 4315 4316
	if (check_mtu) {
		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
		if (params->tot_len > mtu)
4317
			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4318 4319
	}

4320 4321 4322 4323
	nh = &res.fi->fib_nh[res.nh_sel];

	/* do not handle lwt encaps right now */
	if (nh->nh_lwtstate)
4324
		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	dev = nh->nh_dev;
	if (nh->nh_gw)
		params->ipv4_dst = nh->nh_gw;

	params->rt_metric = res.fi->fib_priority;

	/* xdp and cls_bpf programs are run in RCU-bh so
	 * rcu_read_lock_bh is not needed here
	 */
	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4336 4337
	if (!neigh)
		return BPF_FIB_LKUP_RET_NO_NEIGH;
4338

4339
	return bpf_fib_set_fwd_params(params, neigh, dev);
4340 4341 4342 4343 4344
}
#endif

#if IS_ENABLED(CONFIG_IPV6)
static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4345
			       u32 flags, bool check_mtu)
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
{
	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
	struct neighbour *neigh;
	struct net_device *dev;
	struct inet6_dev *idev;
	struct fib6_info *f6i;
	struct flowi6 fl6;
	int strict = 0;
	int oif;
4356
	u32 mtu;
4357 4358 4359

	/* link local addresses are never forwarded */
	if (rt6_need_strict(dst) || rt6_need_strict(src))
4360
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4361 4362 4363 4364 4365 4366 4367

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	idev = __in6_dev_get_safely(dev);
	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4368
		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4369 4370 4371 4372 4373 4374 4375 4376 4377

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl6.flowi6_iif = 1;
		oif = fl6.flowi6_oif = params->ifindex;
	} else {
		oif = fl6.flowi6_iif = params->ifindex;
		fl6.flowi6_oif = 0;
		strict = RT6_LOOKUP_F_HAS_SADDR;
	}
4378
	fl6.flowlabel = params->flowinfo;
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	fl6.flowi6_scope = 0;
	fl6.flowi6_flags = 0;
	fl6.mp_hash = 0;

	fl6.flowi6_proto = params->l4_protocol;
	fl6.daddr = *dst;
	fl6.saddr = *src;
	fl6.fl6_sport = params->sport;
	fl6.fl6_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib6_table *tb;

		tb = ipv6_stub->fib6_get_table(net, tbid);
		if (unlikely(!tb))
4395
			return BPF_FIB_LKUP_RET_NOT_FWDED;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
	} else {
		fl6.flowi6_mark = 0;
		fl6.flowi6_secid = 0;
		fl6.flowi6_tun_key.tun_id = 0;
		fl6.flowi6_uid = sock_net_uid(net, NULL);

		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
	}

	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
		return BPF_FIB_LKUP_RET_NOT_FWDED;

	if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
		switch (f6i->fib6_type) {
		case RTN_BLACKHOLE:
			return BPF_FIB_LKUP_RET_BLACKHOLE;
		case RTN_UNREACHABLE:
			return BPF_FIB_LKUP_RET_UNREACHABLE;
		case RTN_PROHIBIT:
			return BPF_FIB_LKUP_RET_PROHIBIT;
		default:
			return BPF_FIB_LKUP_RET_NOT_FWDED;
		}
	}
4422

4423 4424
	if (f6i->fib6_type != RTN_UNICAST)
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4425 4426 4427 4428 4429 4430

	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
						       fl6.flowi6_oif, NULL,
						       strict);

4431 4432 4433
	if (check_mtu) {
		mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
		if (params->tot_len > mtu)
4434
			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4435 4436
	}

4437
	if (f6i->fib6_nh.nh_lwtstate)
4438
		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

	if (f6i->fib6_flags & RTF_GATEWAY)
		*dst = f6i->fib6_nh.nh_gw;

	dev = f6i->fib6_nh.nh_dev;
	params->rt_metric = f6i->fib6_metric;

	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
	 * because we need to get nd_tbl via the stub
	 */
	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
				      ndisc_hashfn, dst, dev);
4452 4453
	if (!neigh)
		return BPF_FIB_LKUP_RET_NO_NEIGH;
4454

4455
	return bpf_fib_set_fwd_params(params, neigh, dev);
4456 4457 4458 4459 4460 4461 4462 4463 4464
}
#endif

BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
	if (plen < sizeof(*params))
		return -EINVAL;

4465 4466 4467
	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
		return -EINVAL;

4468 4469 4470 4471
	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4472
					   flags, true);
4473 4474 4475 4476
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4477
					   flags, true);
4478 4479
#endif
	}
4480
	return -EAFNOSUPPORT;
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
}

static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
	.func		= bpf_xdp_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
4496
	struct net *net = dev_net(skb->dev);
4497
	int rc = -EAFNOSUPPORT;
4498

4499 4500 4501
	if (plen < sizeof(*params))
		return -EINVAL;

4502 4503 4504
	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
		return -EINVAL;

4505 4506 4507
	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
4508
		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4509
		break;
4510 4511 4512
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
4513
		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4514
		break;
4515 4516
#endif
	}
4517

4518
	if (!rc) {
4519 4520
		struct net_device *dev;

4521
		dev = dev_get_by_index_rcu(net, params->ifindex);
4522
		if (!is_skb_forwardable(dev, skb))
4523
			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4524 4525
	}

4526
	return rc;
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
}

static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
	.func		= bpf_skb_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
{
	int err;
	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;

	if (!seg6_validate_srh(srh, len))
		return -EINVAL;

	switch (type) {
	case BPF_LWT_ENCAP_SEG6_INLINE:
		if (skb->protocol != htons(ETH_P_IPV6))
			return -EBADMSG;

		err = seg6_do_srh_inline(skb, srh);
		break;
	case BPF_LWT_ENCAP_SEG6:
		skb_reset_inner_headers(skb);
		skb->encapsulation = 1;
		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
		break;
	default:
		return -EINVAL;
	}

	bpf_compute_data_pointers(skb);
	if (err)
		return err;

	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
	skb_set_transport_header(skb, sizeof(struct ipv6hdr));

	return seg6_lookup_nexthop(skb, NULL, 0);
}
#endif /* CONFIG_IPV6_SEG6_BPF */

BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
	   u32, len)
{
	switch (type) {
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
	case BPF_LWT_ENCAP_SEG6:
	case BPF_LWT_ENCAP_SEG6_INLINE:
		return bpf_push_seg6_encap(skb, type, hdr, len);
#endif
	default:
		return -EINVAL;
	}
}

static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
	.func		= bpf_lwt_push_encap,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

4599
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4600 4601 4602 4603 4604
BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
4605
	struct ipv6_sr_hdr *srh = srh_state->srh;
4606 4607 4608
	void *srh_tlvs, *srh_end, *ptr;
	int srhoff = 0;

4609
	if (srh == NULL)
4610 4611 4612 4613 4614 4615 4616
		return -EINVAL;

	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);

	ptr = skb->data + offset;
	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4617
		srh_state->valid = false;
4618 4619 4620 4621 4622 4623
	else if (ptr < (void *)&srh->flags ||
		 ptr + len > (void *)&srh->segments)
		return -EFAULT;

	if (unlikely(bpf_try_make_writable(skb, offset + len)))
		return -EFAULT;
4624 4625 4626
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
		return -EINVAL;
	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

	memcpy(skb->data + offset, from, len);
	return 0;
}

static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
	.func		= bpf_lwt_seg6_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

4642
static void bpf_update_srh_state(struct sk_buff *skb)
4643 4644 4645 4646 4647
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
	int srhoff = 0;

4648 4649 4650 4651 4652 4653
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
		srh_state->srh = NULL;
	} else {
		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
		srh_state->valid = true;
4654
	}
4655 4656 4657 4658 4659 4660 4661 4662 4663
}

BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
	   u32, action, void *, param, u32, param_len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
	int hdroff = 0;
	int err;
4664 4665 4666

	switch (action) {
	case SEG6_LOCAL_ACTION_END_X:
4667 4668
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4669 4670 4671 4672
		if (param_len != sizeof(struct in6_addr))
			return -EINVAL;
		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
	case SEG6_LOCAL_ACTION_END_T:
4673 4674
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4675 4676 4677
		if (param_len != sizeof(int))
			return -EINVAL;
		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4678 4679 4680
	case SEG6_LOCAL_ACTION_END_DT6:
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4681 4682
		if (param_len != sizeof(int))
			return -EINVAL;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
			return -EBADMSG;
		if (!pskb_pull(skb, hdroff))
			return -EBADMSG;

		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
		skb_reset_network_header(skb);
		skb_reset_transport_header(skb);
		skb->encapsulation = 0;

		bpf_compute_data_pointers(skb);
		bpf_update_srh_state(skb);
4696 4697
		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
	case SEG6_LOCAL_ACTION_END_B6:
4698 4699
		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4700 4701 4702
		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
					  param, param_len);
		if (!err)
4703 4704
			bpf_update_srh_state(skb);

4705 4706
		return err;
	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4707 4708
		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4709 4710 4711
		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
					  param, param_len);
		if (!err)
4712 4713
			bpf_update_srh_state(skb);

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
		return err;
	default:
		return -EINVAL;
	}
}

static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
	.func		= bpf_lwt_seg6_action,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
	   s32, len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
4735
	struct ipv6_sr_hdr *srh = srh_state->srh;
4736 4737 4738 4739 4740
	void *srh_end, *srh_tlvs, *ptr;
	struct ipv6hdr *hdr;
	int srhoff = 0;
	int ret;

4741
	if (unlikely(srh == NULL))
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		return -EINVAL;

	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
			((srh->first_segment + 1) << 4));
	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
			srh_state->hdrlen);
	ptr = skb->data + offset;

	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
		return -EFAULT;
	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
		return -EFAULT;

	if (len > 0) {
		ret = skb_cow_head(skb, len);
		if (unlikely(ret < 0))
			return ret;

		ret = bpf_skb_net_hdr_push(skb, offset, len);
	} else {
		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
	}

	bpf_compute_data_pointers(skb);
	if (unlikely(ret < 0))
		return ret;

	hdr = (struct ipv6hdr *)skb->data;
	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));

4772 4773 4774
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
		return -EINVAL;
	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4775
	srh_state->hdrlen += len;
4776
	srh_state->valid = false;
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	return 0;
}

static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
	.func		= bpf_lwt_seg6_adjust_srh,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};
4788
#endif /* CONFIG_IPV6_SEG6_BPF */
4789 4790 4791 4792 4793 4794 4795 4796

bool bpf_helper_changes_pkt_data(void *func)
{
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
	    func == bpf_skb_change_head ||
4797
	    func == sk_skb_change_head ||
4798
	    func == bpf_skb_change_tail ||
4799
	    func == sk_skb_change_tail ||
4800 4801
	    func == bpf_skb_adjust_room ||
	    func == bpf_skb_pull_data ||
4802
	    func == sk_skb_pull_data ||
4803 4804 4805 4806 4807 4808 4809
	    func == bpf_clone_redirect ||
	    func == bpf_l3_csum_replace ||
	    func == bpf_l4_csum_replace ||
	    func == bpf_xdp_adjust_head ||
	    func == bpf_xdp_adjust_meta ||
	    func == bpf_msg_pull_data ||
	    func == bpf_xdp_adjust_tail ||
4810
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4811 4812
	    func == bpf_lwt_seg6_store_bytes ||
	    func == bpf_lwt_seg6_adjust_srh ||
4813 4814 4815
	    func == bpf_lwt_seg6_action ||
#endif
	    func == bpf_lwt_push_encap)
4816 4817 4818 4819 4820
		return true;

	return false;
}

4821
static const struct bpf_func_proto *
4822
bpf_base_func_proto(enum bpf_func_id func_id)
4823 4824 4825 4826 4827 4828 4829 4830
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
4831 4832
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
4833
	case BPF_FUNC_get_smp_processor_id:
4834
		return &bpf_get_raw_smp_processor_id_proto;
4835 4836
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
4837 4838
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
4839 4840
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
4841
	case BPF_FUNC_trace_printk:
4842 4843
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
4844
		/* else: fall through */
4845 4846 4847 4848 4849
	default:
		return NULL;
	}
}

4850
static const struct bpf_func_proto *
4851
sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4852 4853 4854 4855 4856 4857 4858
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
4859 4860
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
4861 4862 4863 4864 4865
	default:
		return bpf_base_func_proto(func_id);
	}
}

A
Andrey Ignatov 已提交
4866 4867 4868 4869 4870 4871 4872 4873 4874
static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
A
Andrey Ignatov 已提交
4875 4876 4877 4878 4879 4880 4881 4882
	case BPF_FUNC_bind:
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_CONNECT:
		case BPF_CGROUP_INET6_CONNECT:
			return &bpf_bind_proto;
		default:
			return NULL;
		}
4883 4884
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_sock_addr_proto;
4885 4886
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
A
Andrey Ignatov 已提交
4887 4888 4889 4890 4891
	default:
		return bpf_base_func_proto(func_id);
	}
}

4892
static const struct bpf_func_proto *
4893
sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4894 4895 4896 4897
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4898 4899
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4900 4901
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4902 4903
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4904 4905 4906 4907 4908
	default:
		return bpf_base_func_proto(func_id);
	}
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
	default:
		return sk_filter_func_proto(func_id, prog);
	}
}

4920
static const struct bpf_func_proto *
4921
tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4922 4923 4924 4925
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
4926 4927
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4928 4929
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4930 4931
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
4932 4933
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
4934 4935
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
4936 4937 4938 4939
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
4940 4941
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
4942 4943
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
4944 4945 4946 4947
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
4948 4949
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
4950 4951
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
4952 4953
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
4954 4955
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
4956 4957 4958
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
4959 4960 4961 4962 4963
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
4964 4965
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
4966 4967
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
4968 4969
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
4970 4971
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
4972 4973
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
4974
	case BPF_FUNC_perf_event_output:
4975
		return &bpf_skb_event_output_proto;
4976 4977
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
4978 4979
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
4980 4981
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4982 4983
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4984 4985
	case BPF_FUNC_fib_lookup:
		return &bpf_skb_fib_lookup_proto;
4986 4987 4988 4989
#ifdef CONFIG_XFRM
	case BPF_FUNC_skb_get_xfrm_state:
		return &bpf_skb_get_xfrm_state_proto;
#endif
4990 4991 4992
#ifdef CONFIG_SOCK_CGROUP_DATA
	case BPF_FUNC_skb_cgroup_id:
		return &bpf_skb_cgroup_id_proto;
4993 4994
	case BPF_FUNC_skb_ancestor_cgroup_id:
		return &bpf_skb_ancestor_cgroup_id_proto;
4995
#endif
4996
	default:
4997
		return bpf_base_func_proto(func_id);
4998 4999 5000
	}
}

5001
static const struct bpf_func_proto *
5002
xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5003
{
5004 5005 5006
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
5007 5008
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
5009 5010
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
5011 5012
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
5013 5014
	case BPF_FUNC_xdp_adjust_meta:
		return &bpf_xdp_adjust_meta_proto;
5015 5016
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
5017
	case BPF_FUNC_redirect_map:
5018
		return &bpf_xdp_redirect_map_proto;
5019 5020
	case BPF_FUNC_xdp_adjust_tail:
		return &bpf_xdp_adjust_tail_proto;
5021 5022
	case BPF_FUNC_fib_lookup:
		return &bpf_xdp_fib_lookup_proto;
5023
	default:
5024
		return bpf_base_func_proto(func_id);
5025
	}
5026 5027
}

5028
static const struct bpf_func_proto *
5029
sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5030 5031 5032 5033
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
5034 5035
	case BPF_FUNC_getsockopt:
		return &bpf_getsockopt_proto;
5036 5037
	case BPF_FUNC_sock_ops_cb_flags_set:
		return &bpf_sock_ops_cb_flags_set_proto;
5038 5039
	case BPF_FUNC_sock_map_update:
		return &bpf_sock_map_update_proto;
5040 5041
	case BPF_FUNC_sock_hash_update:
		return &bpf_sock_hash_update_proto;
5042 5043
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_sock_ops_proto;
5044 5045
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5046 5047 5048 5049 5050
	default:
		return bpf_base_func_proto(func_id);
	}
}

5051 5052
static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5053 5054 5055 5056
{
	switch (func_id) {
	case BPF_FUNC_msg_redirect_map:
		return &bpf_msg_redirect_map_proto;
5057 5058
	case BPF_FUNC_msg_redirect_hash:
		return &bpf_msg_redirect_hash_proto;
5059 5060
	case BPF_FUNC_msg_apply_bytes:
		return &bpf_msg_apply_bytes_proto;
5061 5062
	case BPF_FUNC_msg_cork_bytes:
		return &bpf_msg_cork_bytes_proto;
5063 5064
	case BPF_FUNC_msg_pull_data:
		return &bpf_msg_pull_data_proto;
5065 5066
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5067 5068 5069 5070 5071
	default:
		return bpf_base_func_proto(func_id);
	}
}

5072 5073
static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5074 5075
{
	switch (func_id) {
5076 5077
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
5078 5079
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
5080
	case BPF_FUNC_skb_pull_data:
5081
		return &sk_skb_pull_data_proto;
5082
	case BPF_FUNC_skb_change_tail:
5083
		return &sk_skb_change_tail_proto;
5084
	case BPF_FUNC_skb_change_head:
5085
		return &sk_skb_change_head_proto;
5086 5087 5088 5089
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
5090 5091
	case BPF_FUNC_sk_redirect_map:
		return &bpf_sk_redirect_map_proto;
5092 5093
	case BPF_FUNC_sk_redirect_hash:
		return &bpf_sk_redirect_hash_proto;
5094 5095
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5096 5097 5098 5099 5100
	default:
		return bpf_base_func_proto(func_id);
	}
}

5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_lwt_push_encap:
		return &bpf_lwt_push_encap_proto;
	default:
		return lwt_out_func_proto(func_id, prog);
	}
}

5139
static const struct bpf_func_proto *
5140
lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
5170
		return lwt_out_func_proto(func_id, prog);
5171 5172 5173
	}
}

5174 5175 5176 5177
static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
5178
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5179 5180 5181 5182 5183 5184
	case BPF_FUNC_lwt_seg6_store_bytes:
		return &bpf_lwt_seg6_store_bytes_proto;
	case BPF_FUNC_lwt_seg6_action:
		return &bpf_lwt_seg6_action_proto;
	case BPF_FUNC_lwt_seg6_adjust_srh:
		return &bpf_lwt_seg6_adjust_srh_proto;
5185
#endif
5186 5187
	default:
		return lwt_out_func_proto(func_id, prog);
5188 5189 5190
	}
}

5191
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5192
				    const struct bpf_prog *prog,
5193
				    struct bpf_insn_access_aux *info)
5194
{
5195
	const int size_default = sizeof(__u32);
5196

5197 5198
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
5199

5200
	/* The verifier guarantees that size > 0. */
5201 5202
	if (off % size != 0)
		return false;
5203 5204

	switch (off) {
5205 5206
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
5207 5208
			return false;
		break;
5209 5210 5211 5212
	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5213
	case bpf_ctx_range(struct __sk_buff, data):
5214
	case bpf_ctx_range(struct __sk_buff, data_meta):
5215 5216
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
5217
			return false;
5218 5219
		break;
	default:
5220
		/* Only narrow read access allowed for now. */
5221
		if (type == BPF_WRITE) {
5222
			if (size != size_default)
5223 5224
				return false;
		} else {
5225 5226
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5227
				return false;
5228
		}
5229
	}
5230 5231 5232 5233

	return true;
}

5234
static bool sk_filter_is_valid_access(int off, int size,
5235
				      enum bpf_access_type type,
5236
				      const struct bpf_prog *prog,
5237
				      struct bpf_insn_access_aux *info)
5238
{
5239
	switch (off) {
5240 5241
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
5242
	case bpf_ctx_range(struct __sk_buff, data_meta):
5243
	case bpf_ctx_range(struct __sk_buff, data_end):
5244
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5245
		return false;
5246
	}
5247

5248 5249
	if (type == BPF_WRITE) {
		switch (off) {
5250
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5251 5252 5253 5254 5255 5256
			break;
		default:
			return false;
		}
	}

5257
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5258 5259
}

5260 5261
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
5262
				const struct bpf_prog *prog,
5263
				struct bpf_insn_access_aux *info)
5264 5265
{
	switch (off) {
5266
	case bpf_ctx_range(struct __sk_buff, tc_classid):
5267
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5268
	case bpf_ctx_range(struct __sk_buff, data_meta):
5269 5270 5271 5272 5273
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
5274 5275 5276
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5277 5278 5279 5280 5281 5282
			break;
		default:
			return false;
		}
	}

5283 5284 5285 5286 5287 5288 5289 5290 5291
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

5292
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5293 5294
}

A
Andrey Ignatov 已提交
5295 5296 5297 5298
/* Attach type specific accesses */
static bool __sock_filter_check_attach_type(int off,
					    enum bpf_access_type access_type,
					    enum bpf_attach_type attach_type)
5299
{
A
Andrey Ignatov 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	switch (off) {
	case offsetof(struct bpf_sock, bound_dev_if):
	case offsetof(struct bpf_sock, mark):
	case offsetof(struct bpf_sock, priority):
		switch (attach_type) {
		case BPF_CGROUP_INET_SOCK_CREATE:
			goto full_access;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_ip4):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		switch (attach_type) {
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_port):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
5329 5330 5331 5332
		default:
			return false;
		}
	}
A
Andrey Ignatov 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
read_only:
	return access_type == BPF_READ;
full_access:
	return true;
}

static bool __sock_filter_check_size(int off, int size,
				     struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);
5343

A
Andrey Ignatov 已提交
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	switch (off) {
	case bpf_ctx_range(struct bpf_sock, src_ip4):
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		bpf_ctx_record_field_size(info, size_default);
		return bpf_ctx_narrow_access_ok(off, size, size_default);
	}

	return size == size_default;
}

static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
					const struct bpf_prog *prog,
					struct bpf_insn_access_aux *info)
{
	if (off < 0 || off >= sizeof(struct bpf_sock))
5360 5361 5362
		return false;
	if (off % size != 0)
		return false;
A
Andrey Ignatov 已提交
5363 5364 5365 5366
	if (!__sock_filter_check_attach_type(off, type,
					     prog->expected_attach_type))
		return false;
	if (!__sock_filter_check_size(off, size, info))
5367 5368 5369 5370
		return false;
	return true;
}

5371 5372
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
				const struct bpf_prog *prog, int drop_verdict)
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5399
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
static int bpf_gen_ld_abs(const struct bpf_insn *orig,
			  struct bpf_insn *insn_buf)
{
	bool indirect = BPF_MODE(orig->code) == BPF_IND;
	struct bpf_insn *insn = insn_buf;

	/* We're guaranteed here that CTX is in R6. */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
		if (orig->imm)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
	}

	switch (BPF_SIZE(orig->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
		break;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
	*insn++ = BPF_EXIT_INSN();

	return insn - insn_buf;
}

5445 5446 5447 5448 5449 5450
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
}

5451
static bool tc_cls_act_is_valid_access(int off, int size,
5452
				       enum bpf_access_type type,
5453
				       const struct bpf_prog *prog,
5454
				       struct bpf_insn_access_aux *info)
5455 5456 5457
{
	if (type == BPF_WRITE) {
		switch (off) {
5458 5459 5460 5461 5462
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5463 5464 5465 5466 5467
			break;
		default:
			return false;
		}
	}
5468

5469 5470 5471 5472
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
5473 5474 5475
	case bpf_ctx_range(struct __sk_buff, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
5476 5477 5478
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
5479 5480
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
		return false;
5481 5482
	}

5483
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5484 5485
}

5486
static bool __is_valid_xdp_access(int off, int size)
5487 5488 5489 5490 5491
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
5492
	if (size != sizeof(__u32))
5493 5494 5495 5496 5497 5498 5499
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
5500
				const struct bpf_prog *prog,
5501
				struct bpf_insn_access_aux *info)
5502
{
5503 5504 5505 5506 5507 5508 5509
	if (type == BPF_WRITE) {
		if (bpf_prog_is_dev_bound(prog->aux)) {
			switch (off) {
			case offsetof(struct xdp_md, rx_queue_index):
				return __is_valid_xdp_access(off, size);
			}
		}
5510
		return false;
5511
	}
5512 5513 5514

	switch (off) {
	case offsetof(struct xdp_md, data):
5515
		info->reg_type = PTR_TO_PACKET;
5516
		break;
5517 5518 5519
	case offsetof(struct xdp_md, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
5520
	case offsetof(struct xdp_md, data_end):
5521
		info->reg_type = PTR_TO_PACKET_END;
5522 5523 5524
		break;
	}

5525
	return __is_valid_xdp_access(off, size);
5526 5527 5528 5529
}

void bpf_warn_invalid_xdp_action(u32 act)
{
5530 5531 5532 5533 5534
	const u32 act_max = XDP_REDIRECT;

	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
		  act > act_max ? "Illegal" : "Driver unsupported",
		  act);
5535 5536 5537
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

A
Andrey Ignatov 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
static bool sock_addr_is_valid_access(int off, int size,
				      enum bpf_access_type type,
				      const struct bpf_prog *prog,
				      struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);

	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
		return false;
	if (off % size != 0)
		return false;

	/* Disallow access to IPv6 fields from IPv4 contex and vise
	 * versa.
	 */
	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_BIND:
A
Andrey Ignatov 已提交
5557
		case BPF_CGROUP_INET4_CONNECT:
A
Andrey Ignatov 已提交
5558
		case BPF_CGROUP_UDP4_SENDMSG:
A
Andrey Ignatov 已提交
5559 5560 5561 5562 5563 5564 5565 5566
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET6_BIND:
A
Andrey Ignatov 已提交
5567
		case BPF_CGROUP_INET6_CONNECT:
A
Andrey Ignatov 已提交
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
		case BPF_CGROUP_UDP6_SENDMSG:
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_UDP4_SENDMSG:
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_UDP6_SENDMSG:
A
Andrey Ignatov 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
			break;
		default:
			return false;
		}
		break;
	}

	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
A
Andrey Ignatov 已提交
5596 5597 5598
	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
A
Andrey Ignatov 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
		/* Only narrow read access allowed for now. */
		if (type == BPF_READ) {
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
				return false;
		} else {
			if (size != size_default)
				return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, user_port):
		if (size != size_default)
			return false;
		break;
	default:
		if (type == BPF_READ) {
			if (size != size_default)
				return false;
		} else {
			return false;
		}
	}

	return true;
}

5625 5626
static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
5627
				     const struct bpf_prog *prog,
5628
				     struct bpf_insn_access_aux *info)
L
Lawrence Brakmo 已提交
5629
{
5630 5631
	const int size_default = sizeof(__u32);

L
Lawrence Brakmo 已提交
5632 5633
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
5634

L
Lawrence Brakmo 已提交
5635 5636 5637 5638 5639 5640
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;

	if (type == BPF_WRITE) {
		switch (off) {
5641
		case offsetof(struct bpf_sock_ops, reply):
5642
		case offsetof(struct bpf_sock_ops, sk_txhash):
5643 5644
			if (size != size_default)
				return false;
L
Lawrence Brakmo 已提交
5645 5646 5647 5648
			break;
		default:
			return false;
		}
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
	} else {
		switch (off) {
		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
					bytes_acked):
			if (size != sizeof(__u64))
				return false;
			break;
		default:
			if (size != size_default)
				return false;
			break;
		}
L
Lawrence Brakmo 已提交
5661 5662
	}

5663
	return true;
L
Lawrence Brakmo 已提交
5664 5665
}

5666 5667 5668
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
			   const struct bpf_prog *prog)
{
5669
	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5670 5671
}

5672 5673
static bool sk_skb_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5674
				   const struct bpf_prog *prog,
5675 5676
				   struct bpf_insn_access_aux *info)
{
5677 5678 5679 5680 5681 5682
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data_meta):
		return false;
	}

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
	if (type == BPF_WRITE) {
		switch (off) {
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
			break;
		default:
			return false;
		}
	}

5693
	switch (off) {
5694
	case bpf_ctx_range(struct __sk_buff, mark):
5695
		return false;
5696 5697 5698 5699 5700 5701 5702 5703
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

5704
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5705 5706
}

5707 5708
static bool sk_msg_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5709
				   const struct bpf_prog *prog,
5710 5711 5712 5713 5714 5715 5716 5717
				   struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct sk_msg_md, data):
		info->reg_type = PTR_TO_PACKET;
5718 5719
		if (size != sizeof(__u64))
			return false;
5720 5721 5722
		break;
	case offsetof(struct sk_msg_md, data_end):
		info->reg_type = PTR_TO_PACKET_END;
5723 5724
		if (size != sizeof(__u64))
			return false;
5725
		break;
5726 5727 5728
	default:
		if (size != sizeof(__u32))
			return false;
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	}

	if (off < 0 || off >= sizeof(struct sk_msg_md))
		return false;
	if (off % size != 0)
		return false;

	return true;
}

5739 5740 5741
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
5742
				  struct bpf_prog *prog, u32 *target_size)
5743 5744
{
	struct bpf_insn *insn = insn_buf;
5745
	int off;
5746

5747
	switch (si->off) {
5748
	case offsetof(struct __sk_buff, len):
5749
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5750 5751
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
5752 5753
		break;

5754
	case offsetof(struct __sk_buff, protocol):
5755
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5756 5757
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
5758 5759
		break;

5760
	case offsetof(struct __sk_buff, vlan_proto):
5761
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5762 5763
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
5764 5765
		break;

5766
	case offsetof(struct __sk_buff, priority):
5767
		if (type == BPF_WRITE)
5768
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5769 5770
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5771
		else
5772
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5773 5774
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5775 5776
		break;

5777
	case offsetof(struct __sk_buff, ingress_ifindex):
5778
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5779 5780
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
5781 5782 5783
		break;

	case offsetof(struct __sk_buff, ifindex):
5784
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5785
				      si->dst_reg, si->src_reg,
5786
				      offsetof(struct sk_buff, dev));
5787 5788
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5789 5790
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
5791 5792
		break;

5793
	case offsetof(struct __sk_buff, hash):
5794
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5795 5796
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
5797 5798
		break;

5799
	case offsetof(struct __sk_buff, mark):
5800
		if (type == BPF_WRITE)
5801
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5802 5803
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5804
		else
5805
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5806 5807
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5808
		break;
5809 5810

	case offsetof(struct __sk_buff, pkt_type):
5811 5812 5813 5814 5815 5816 5817 5818
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
5819 5820

	case offsetof(struct __sk_buff, queue_mapping):
5821 5822 5823 5824
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
5825 5826 5827

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
5841 5842

	case offsetof(struct __sk_buff, cb[0]) ...
5843
	     offsetofend(struct __sk_buff, cb[4]) - 1:
5844
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5845 5846 5847
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
5848

5849
		prog->cb_access = 1;
5850 5851 5852 5853
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
5854
		if (type == BPF_WRITE)
5855
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5856
					      si->src_reg, off);
5857
		else
5858
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5859
					      si->src_reg, off);
5860 5861
		break;

5862
	case offsetof(struct __sk_buff, tc_classid):
5863 5864 5865 5866 5867 5868
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
5869
		*target_size = 2;
5870
		if (type == BPF_WRITE)
5871 5872
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5873
		else
5874 5875
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5876 5877
		break;

5878
	case offsetof(struct __sk_buff, data):
5879
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5880
				      si->dst_reg, si->src_reg,
5881 5882 5883
				      offsetof(struct sk_buff, data));
		break;

5884 5885 5886 5887 5888 5889 5890 5891 5892
	case offsetof(struct __sk_buff, data_meta):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_meta);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_meta);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;

5893
	case offsetof(struct __sk_buff, data_end):
5894 5895 5896 5897 5898 5899
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
5900 5901
		break;

5902 5903 5904
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
5905
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5906 5907
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5908
		else
5909
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5910 5911
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5912
#else
5913
		*target_size = 2;
5914
		if (type == BPF_WRITE)
5915
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5916
		else
5917
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5918 5919 5920 5921 5922 5923
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5924 5925
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
5926 5927 5928
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
5929
		*target_size = 4;
5930
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5931
#endif
5932
		break;
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
	case offsetof(struct __sk_buff, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_family,
						     2, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_daddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_rcv_saddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip6[0]) ...
	     offsetof(struct __sk_buff, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, remote_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;
	case offsetof(struct __sk_buff, local_ip6[0]) ...
	     offsetof(struct __sk_buff, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, local_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct __sk_buff, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_dport,
						     2, target_size));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct __sk_buff, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_num, 2, target_size));
		break;
6033 6034 6035
	}

	return insn - insn_buf;
6036 6037
}

6038
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
6039
					  const struct bpf_insn *si,
6040
					  struct bpf_insn *insn_buf,
6041
					  struct bpf_prog *prog, u32 *target_size)
6042 6043
{
	struct bpf_insn *insn = insn_buf;
A
Andrey Ignatov 已提交
6044
	int off;
6045

6046
	switch (si->off) {
6047 6048 6049 6050
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
6051
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6052 6053
					offsetof(struct sock, sk_bound_dev_if));
		else
6054
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6055 6056
				      offsetof(struct sock, sk_bound_dev_if));
		break;
6057

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
	case offsetof(struct bpf_sock, mark):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_mark));
		break;

	case offsetof(struct bpf_sock, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_priority));
		break;

6080 6081 6082
	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

6083
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6084 6085 6086 6087
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
6088
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6089
				      offsetof(struct sock, __sk_flags_offset));
6090 6091
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6092 6093 6094
		break;

	case offsetof(struct bpf_sock, protocol):
6095
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6096
				      offsetof(struct sock, __sk_flags_offset));
6097 6098
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6099
		break;
A
Andrey Ignatov 已提交
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136

	case offsetof(struct bpf_sock, src_ip4):
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_rcv_saddr,
				       FIELD_SIZEOF(struct sock_common,
						    skc_rcv_saddr),
				       target_size));
		break;

	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		off = si->off;
		off -= offsetof(struct bpf_sock, src_ip6[0]);
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(
				struct sock_common,
				skc_v6_rcv_saddr.s6_addr32[0],
				FIELD_SIZEOF(struct sock_common,
					     skc_v6_rcv_saddr.s6_addr32[0]),
				target_size) + off);
#else
		(void)off;
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock, src_port):
		*insn++ = BPF_LDX_MEM(
			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
			si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_num,
				       FIELD_SIZEOF(struct sock_common,
						    skc_num),
				       target_size));
		break;
6137 6138 6139 6140 6141
	}

	return insn - insn_buf;
}

6142 6143
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
6144
					 struct bpf_insn *insn_buf,
6145
					 struct bpf_prog *prog, u32 *target_size)
6146 6147 6148
{
	struct bpf_insn *insn = insn_buf;

6149
	switch (si->off) {
6150 6151
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6152
				      si->dst_reg, si->src_reg,
6153
				      offsetof(struct sk_buff, dev));
6154
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6155 6156
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
6157 6158
		break;
	default:
6159 6160
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
6161 6162 6163 6164 6165
	}

	return insn - insn_buf;
}

6166 6167
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
6168
				  struct bpf_insn *insn_buf,
6169
				  struct bpf_prog *prog, u32 *target_size)
6170 6171 6172
{
	struct bpf_insn *insn = insn_buf;

6173
	switch (si->off) {
6174
	case offsetof(struct xdp_md, data):
6175
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6176
				      si->dst_reg, si->src_reg,
6177 6178
				      offsetof(struct xdp_buff, data));
		break;
6179 6180 6181 6182 6183
	case offsetof(struct xdp_md, data_meta):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, data_meta));
		break;
6184
	case offsetof(struct xdp_md, data_end):
6185
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6186
				      si->dst_reg, si->src_reg,
6187 6188
				      offsetof(struct xdp_buff, data_end));
		break;
6189 6190 6191 6192 6193 6194 6195 6196
	case offsetof(struct xdp_md, ingress_ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
				      si->dst_reg, si->dst_reg,
				      offsetof(struct xdp_rxq_info, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6197
				      offsetof(struct net_device, ifindex));
6198 6199 6200 6201 6202 6203
		break;
	case offsetof(struct xdp_md, rx_queue_index):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6204 6205
				      offsetof(struct xdp_rxq_info,
					       queue_index));
6206
		break;
6207 6208 6209 6210 6211
	}

	return insn - insn_buf;
}

A
Andrey Ignatov 已提交
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
 * context Structure, F is Field in context structure that contains a pointer
 * to Nested Structure of type NS that has the field NF.
 *
 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
 * sure that SIZE is not greater than actual size of S.F.NF.
 *
 * If offset OFF is provided, the load happens from that offset relative to
 * offset of NF.
 */
#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
	do {								       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
				      si->src_reg, offsetof(S, F));	       \
		*insn++ = BPF_LDX_MEM(					       \
			SIZE, si->dst_reg, si->dst_reg,			       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
	} while (0)

#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
					     BPF_FIELD_SIZEOF(NS, NF), 0)

/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
 *
 * It doesn't support SIZE argument though since narrow stores are not
 * supported for now.
 *
 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
 * "register" since two registers available in convert_ctx_access are not
 * enough: we can't override neither SRC, since it contains value to store, nor
 * DST since it contains pointer to context that may be used by later
 * instructions. But we need a temporary place to save pointer to nested
 * structure whose field we want to store to.
 */
#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
	do {								       \
		int tmp_reg = BPF_REG_9;				       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
				      offsetof(S, TF));			       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
				      si->dst_reg, offsetof(S, F));	       \
		*insn++ = BPF_STX_MEM(					       \
			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
				      offsetof(S, TF));			       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
						      TF)		       \
	do {								       \
		if (type == BPF_WRITE) {				       \
			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
							 TF);		       \
		} else {						       \
			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
				S, NS, F, NF, SIZE, OFF);  \
		}							       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)

static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
					const struct bpf_insn *si,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_addr, user_family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sockaddr, uaddr, sa_family);
		break;

	case offsetof(struct bpf_sock_addr, user_ip4):
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
			tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, user_port):
		/* To get port we need to know sa_family first and then treat
		 * sockaddr as either sockaddr_in or sockaddr_in6.
		 * Though we can simplify since port field has same offset and
		 * size in both structures.
		 * Here we check this invariant and use just one of the
		 * structures if it's true.
		 */
		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
			     offsetof(struct sockaddr_in6, sin6_port));
		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
						     struct sockaddr_in6, uaddr,
						     sin6_port, tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sock, sk, sk_family);
		break;

	case offsetof(struct bpf_sock_addr, type):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
		break;

	case offsetof(struct bpf_sock_addr, protocol):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
					SK_FL_PROTO_SHIFT);
		break;
A
Andrey Ignatov 已提交
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369

	case offsetof(struct bpf_sock_addr, msg_src_ip4):
		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
		break;
A
Andrey Ignatov 已提交
6370 6371 6372 6373 6374
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
6375 6376 6377
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
6378 6379
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
6427 6428
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);
L
Lawrence Brakmo 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514

	case offsetof(struct bpf_sock_ops, is_fullsock):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern,
						is_fullsock),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern,
					       is_fullsock));
		break;

6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
	case offsetof(struct bpf_sock_ops, state):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_state));
		break;

	case offsetof(struct bpf_sock_ops, rtt_min):
		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
			     sizeof(struct minmax));
		BUILD_BUG_ON(sizeof(struct minmax) <
			     sizeof(struct minmax_sample));

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct tcp_sock, rtt_min) +
				      FIELD_SIZEOF(struct minmax_sample, t));
		break;

6541 6542
/* Helper macro for adding read access to tcp_sock or sock fields. */
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6543
	do {								      \
6544 6545
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
6557 6558 6559 6560
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
						       OBJ_FIELD),	      \
				      si->dst_reg, si->dst_reg,		      \
				      offsetof(OBJ, OBJ_FIELD));	      \
6561 6562
	} while (0)

6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
/* Helper macro for adding write access to tcp_sock or sock fields.
 * The macro is called with two registers, dst_reg which contains a pointer
 * to ctx (context) and src_reg which contains the value that should be
 * stored. However, we need an additional register since we cannot overwrite
 * dst_reg because it may be used later in the program.
 * Instead we "borrow" one of the other register. We first save its value
 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
 * it at the end of the macro.
 */
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
	do {								      \
		int reg = BPF_REG_9;					      \
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
				      reg, si->src_reg,			      \
				      offsetof(OBJ, OBJ_FIELD));	      \
		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
	} while (0)

#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
	do {								      \
		if (TYPE == BPF_WRITE)					      \
			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
		else							      \
			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
	} while (0)

6611
	case offsetof(struct bpf_sock_ops, snd_cwnd):
6612
		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6613 6614 6615
		break;

	case offsetof(struct bpf_sock_ops, srtt_us):
6616
		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6617
		break;
6618 6619 6620 6621 6622

	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
				   struct tcp_sock);
		break;
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696

	case offsetof(struct bpf_sock_ops, snd_ssthresh):
		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rcv_nxt):
		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_nxt):
		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_una):
		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, mss_cache):
		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, ecn_flags):
		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_delivered):
		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_interval_us):
		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, packets_out):
		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, retrans_out):
		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, total_retrans):
		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_in):
		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_in):
		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_out):
		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_out):
		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, lost_out):
		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sacked_out):
		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sk_txhash):
6697 6698
		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
					  struct sock, type);
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
		break;

	case offsetof(struct bpf_sock_ops, bytes_received):
		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, bytes_acked):
		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
		break;
6709

L
Lawrence Brakmo 已提交
6710 6711 6712 6713
	}
	return insn - insn_buf;
}

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct __sk_buff, data_end):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct tcp_skb_cb, bpf.data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;
	default:
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
	}

	return insn - insn_buf;
}

6739 6740 6741 6742 6743 6744
static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
Y
YueHaibing 已提交
6745
#if IS_ENABLED(CONFIG_IPV6)
6746
	int off;
Y
YueHaibing 已提交
6747
#endif
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

	switch (si->off) {
	case offsetof(struct sk_msg_md, data):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data));
		break;
	case offsetof(struct sk_msg_md, data_end):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data_end));
		break;
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
	case offsetof(struct sk_msg_md, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct sk_msg_md, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct sk_msg_md, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
	     offsetof(struct sk_msg_md, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, local_ip6[0]) ...
	     offsetof(struct sk_msg_md, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct sk_msg_md, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
6861 6862 6863 6864 6865
	}

	return insn - insn_buf;
}

6866
const struct bpf_verifier_ops sk_filter_verifier_ops = {
6867 6868
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
6869
	.convert_ctx_access	= bpf_convert_ctx_access,
6870
	.gen_ld_abs		= bpf_gen_ld_abs,
6871 6872
};

6873
const struct bpf_prog_ops sk_filter_prog_ops = {
6874
	.test_run		= bpf_prog_test_run_skb,
6875 6876 6877
};

const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6878 6879
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
6880
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6881
	.gen_prologue		= tc_cls_act_prologue,
6882
	.gen_ld_abs		= bpf_gen_ld_abs,
6883 6884 6885
};

const struct bpf_prog_ops tc_cls_act_prog_ops = {
6886
	.test_run		= bpf_prog_test_run_skb,
6887 6888
};

6889
const struct bpf_verifier_ops xdp_verifier_ops = {
6890 6891 6892
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
6893 6894 6895
};

const struct bpf_prog_ops xdp_prog_ops = {
6896
	.test_run		= bpf_prog_test_run_xdp,
6897 6898
};

6899
const struct bpf_verifier_ops cg_skb_verifier_ops = {
6900
	.get_func_proto		= cg_skb_func_proto,
6901
	.is_valid_access	= sk_filter_is_valid_access,
6902
	.convert_ctx_access	= bpf_convert_ctx_access,
6903 6904 6905
};

const struct bpf_prog_ops cg_skb_prog_ops = {
6906
	.test_run		= bpf_prog_test_run_skb,
6907 6908
};

6909 6910
const struct bpf_verifier_ops lwt_in_verifier_ops = {
	.get_func_proto		= lwt_in_func_proto,
6911
	.is_valid_access	= lwt_is_valid_access,
6912
	.convert_ctx_access	= bpf_convert_ctx_access,
6913 6914
};

6915 6916 6917 6918 6919 6920
const struct bpf_prog_ops lwt_in_prog_ops = {
	.test_run		= bpf_prog_test_run_skb,
};

const struct bpf_verifier_ops lwt_out_verifier_ops = {
	.get_func_proto		= lwt_out_func_proto,
6921
	.is_valid_access	= lwt_is_valid_access,
6922
	.convert_ctx_access	= bpf_convert_ctx_access,
6923 6924
};

6925
const struct bpf_prog_ops lwt_out_prog_ops = {
6926
	.test_run		= bpf_prog_test_run_skb,
6927 6928
};

6929
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6930 6931
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
6932
	.convert_ctx_access	= bpf_convert_ctx_access,
6933
	.gen_prologue		= tc_cls_act_prologue,
6934 6935 6936
};

const struct bpf_prog_ops lwt_xmit_prog_ops = {
6937
	.test_run		= bpf_prog_test_run_skb,
6938 6939
};

6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
	.get_func_proto		= lwt_seg6local_func_proto,
	.is_valid_access	= lwt_is_valid_access,
	.convert_ctx_access	= bpf_convert_ctx_access,
};

const struct bpf_prog_ops lwt_seg6local_prog_ops = {
	.test_run		= bpf_prog_test_run_skb,
};

6950
const struct bpf_verifier_ops cg_sock_verifier_ops = {
6951
	.get_func_proto		= sock_filter_func_proto,
6952 6953 6954 6955
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

6956 6957 6958
const struct bpf_prog_ops cg_sock_prog_ops = {
};

A
Andrey Ignatov 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967
const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
	.get_func_proto		= sock_addr_func_proto,
	.is_valid_access	= sock_addr_is_valid_access,
	.convert_ctx_access	= sock_addr_convert_ctx_access,
};

const struct bpf_prog_ops cg_sock_addr_prog_ops = {
};

6968
const struct bpf_verifier_ops sock_ops_verifier_ops = {
6969
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
6970 6971 6972 6973
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

6974 6975 6976 6977
const struct bpf_prog_ops sock_ops_prog_ops = {
};

const struct bpf_verifier_ops sk_skb_verifier_ops = {
6978 6979
	.get_func_proto		= sk_skb_func_proto,
	.is_valid_access	= sk_skb_is_valid_access,
6980
	.convert_ctx_access	= sk_skb_convert_ctx_access,
6981
	.gen_prologue		= sk_skb_prologue,
6982 6983
};

6984 6985 6986
const struct bpf_prog_ops sk_skb_prog_ops = {
};

6987 6988 6989 6990 6991 6992 6993 6994 6995
const struct bpf_verifier_ops sk_msg_verifier_ops = {
	.get_func_proto		= sk_msg_func_proto,
	.is_valid_access	= sk_msg_is_valid_access,
	.convert_ctx_access	= sk_msg_convert_ctx_access,
};

const struct bpf_prog_ops sk_msg_prog_ops = {
};

6996
int sk_detach_filter(struct sock *sk)
6997 6998 6999 7000
{
	int ret = -ENOENT;
	struct sk_filter *filter;

7001 7002 7003
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

7004 7005
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
7006
	if (filter) {
7007
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
7008
		sk_filter_uncharge(sk, filter);
7009 7010
		ret = 0;
	}
7011

7012 7013
	return ret;
}
7014
EXPORT_SYMBOL_GPL(sk_detach_filter);
7015

7016 7017
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
7018
{
7019
	struct sock_fprog_kern *fprog;
7020
	struct sk_filter *filter;
7021
	int ret = 0;
7022 7023 7024

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
7025
					   lockdep_sock_is_held(sk));
7026 7027
	if (!filter)
		goto out;
7028 7029

	/* We're copying the filter that has been originally attached,
7030 7031
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
7032
	 */
7033
	ret = -EACCES;
7034
	fprog = filter->prog->orig_prog;
7035 7036
	if (!fprog)
		goto out;
7037 7038

	ret = fprog->len;
7039
	if (!len)
7040
		/* User space only enquires number of filter blocks. */
7041
		goto out;
7042

7043
	ret = -EINVAL;
7044
	if (len < fprog->len)
7045 7046 7047
		goto out;

	ret = -EFAULT;
7048
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7049
		goto out;
7050

7051 7052 7053 7054
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
7055 7056 7057 7058
out:
	release_sock(sk);
	return ret;
}
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235

#ifdef CONFIG_INET
struct sk_reuseport_kern {
	struct sk_buff *skb;
	struct sock *sk;
	struct sock *selected_sk;
	void *data_end;
	u32 hash;
	u32 reuseport_id;
	bool bind_inany;
};

static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
				    struct sock_reuseport *reuse,
				    struct sock *sk, struct sk_buff *skb,
				    u32 hash)
{
	reuse_kern->skb = skb;
	reuse_kern->sk = sk;
	reuse_kern->selected_sk = NULL;
	reuse_kern->data_end = skb->data + skb_headlen(skb);
	reuse_kern->hash = hash;
	reuse_kern->reuseport_id = reuse->reuseport_id;
	reuse_kern->bind_inany = reuse->bind_inany;
}

struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
				  struct bpf_prog *prog, struct sk_buff *skb,
				  u32 hash)
{
	struct sk_reuseport_kern reuse_kern;
	enum sk_action action;

	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
	action = BPF_PROG_RUN(prog, &reuse_kern);

	if (action == SK_PASS)
		return reuse_kern.selected_sk;
	else
		return ERR_PTR(-ECONNREFUSED);
}

BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
	   struct bpf_map *, map, void *, key, u32, flags)
{
	struct sock_reuseport *reuse;
	struct sock *selected_sk;

	selected_sk = map->ops->map_lookup_elem(map, key);
	if (!selected_sk)
		return -ENOENT;

	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
	if (!reuse)
		/* selected_sk is unhashed (e.g. by close()) after the
		 * above map_lookup_elem().  Treat selected_sk has already
		 * been removed from the map.
		 */
		return -ENOENT;

	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
		struct sock *sk;

		if (unlikely(!reuse_kern->reuseport_id))
			/* There is a small race between adding the
			 * sk to the map and setting the
			 * reuse_kern->reuseport_id.
			 * Treat it as the sk has not been added to
			 * the bpf map yet.
			 */
			return -ENOENT;

		sk = reuse_kern->sk;
		if (sk->sk_protocol != selected_sk->sk_protocol)
			return -EPROTOTYPE;
		else if (sk->sk_family != selected_sk->sk_family)
			return -EAFNOSUPPORT;

		/* Catch all. Likely bound to a different sockaddr. */
		return -EBADFD;
	}

	reuse_kern->selected_sk = selected_sk;

	return 0;
}

static const struct bpf_func_proto sk_select_reuseport_proto = {
	.func           = sk_select_reuseport,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_4(sk_reuseport_load_bytes,
	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
	   void *, to, u32, len)
{
	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
}

static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
	.func		= sk_reuseport_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
};

BPF_CALL_5(sk_reuseport_load_bytes_relative,
	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
	   void *, to, u32, len, u32, start_header)
{
	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
					       len, start_header);
}

static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
	.func		= sk_reuseport_load_bytes_relative,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};

static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,
			const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_sk_select_reuseport:
		return &sk_select_reuseport_proto;
	case BPF_FUNC_skb_load_bytes:
		return &sk_reuseport_load_bytes_proto;
	case BPF_FUNC_skb_load_bytes_relative:
		return &sk_reuseport_load_bytes_relative_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

static bool
sk_reuseport_is_valid_access(int off, int size,
			     enum bpf_access_type type,
			     const struct bpf_prog *prog,
			     struct bpf_insn_access_aux *info)
{
	const u32 size_default = sizeof(__u32);

	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
	    off % size || type != BPF_READ)
		return false;

	switch (off) {
	case offsetof(struct sk_reuseport_md, data):
		info->reg_type = PTR_TO_PACKET;
		return size == sizeof(__u64);

	case offsetof(struct sk_reuseport_md, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		return size == sizeof(__u64);

	case offsetof(struct sk_reuseport_md, hash):
		return size == size_default;

	/* Fields that allow narrowing */
	case offsetof(struct sk_reuseport_md, eth_protocol):
		if (size < FIELD_SIZEOF(struct sk_buff, protocol))
			return false;
7236
		/* fall through */
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
	case offsetof(struct sk_reuseport_md, ip_protocol):
	case offsetof(struct sk_reuseport_md, bind_inany):
	case offsetof(struct sk_reuseport_md, len):
		bpf_ctx_record_field_size(info, size_default);
		return bpf_ctx_narrow_access_ok(off, size, size_default);

	default:
		return false;
	}
}

#define SK_REUSEPORT_LOAD_FIELD(F) ({					\
	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
			      si->dst_reg, si->src_reg,			\
			      bpf_target_off(struct sk_reuseport_kern, F, \
					     FIELD_SIZEOF(struct sk_reuseport_kern, F), \
					     target_size));		\
	})

#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
				    struct sk_buff,			\
				    skb,				\
				    SKB_FIELD)

#define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,	\
					     struct sock,		\
					     sk,			\
					     SK_FIELD, BPF_SIZE, EXTRA_OFF)

static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
					   const struct bpf_insn *si,
					   struct bpf_insn *insn_buf,
					   struct bpf_prog *prog,
					   u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;

	switch (si->off) {
	case offsetof(struct sk_reuseport_md, data):
		SK_REUSEPORT_LOAD_SKB_FIELD(data);
		break;

	case offsetof(struct sk_reuseport_md, len):
		SK_REUSEPORT_LOAD_SKB_FIELD(len);
		break;

	case offsetof(struct sk_reuseport_md, eth_protocol):
		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
		break;

	case offsetof(struct sk_reuseport_md, ip_protocol):
S
Stefan Agner 已提交
7290
		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
		SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
						    BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
					SK_FL_PROTO_SHIFT);
		/* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
		 * aware.  No further narrowing or masking is needed.
		 */
		*target_size = 1;
		break;

	case offsetof(struct sk_reuseport_md, data_end):
		SK_REUSEPORT_LOAD_FIELD(data_end);
		break;

	case offsetof(struct sk_reuseport_md, hash):
		SK_REUSEPORT_LOAD_FIELD(hash);
		break;

	case offsetof(struct sk_reuseport_md, bind_inany):
		SK_REUSEPORT_LOAD_FIELD(bind_inany);
		break;
	}

	return insn - insn_buf;
}

const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
	.get_func_proto		= sk_reuseport_func_proto,
	.is_valid_access	= sk_reuseport_is_valid_access,
	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
};

const struct bpf_prog_ops sk_reuseport_prog_ops = {
};
#endif /* CONFIG_INET */