filter.c 84.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/if_arp.h>
34
#include <linux/gfp.h>
L
Linus Torvalds 已提交
35 36
#include <net/ip.h>
#include <net/protocol.h>
37
#include <net/netlink.h>
L
Linus Torvalds 已提交
38 39
#include <linux/skbuff.h>
#include <net/sock.h>
40
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
44
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
45
#include <linux/filter.h>
46
#include <linux/ratelimit.h>
47
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
48
#include <linux/if_vlan.h>
49
#include <linux/bpf.h>
50
#include <net/sch_generic.h>
51
#include <net/cls_cgroup.h>
52
#include <net/dst_metadata.h>
53
#include <net/dst.h>
54
#include <net/sock_reuseport.h>
L
Linus Torvalds 已提交
55

S
Stephen Hemminger 已提交
56
/**
57
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
58 59
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
60
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
61
 *
62 63
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
64
 * than pkt_len we keep whole skb->data. This is the socket level
65
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
66 67 68
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
69
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
70 71 72 73
{
	int err;
	struct sk_filter *filter;

74 75 76 77 78 79 80 81
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

82 83 84 85
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
86 87 88 89
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

90 91
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
92
	if (filter) {
93
		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
94
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
95
	}
96
	rcu_read_unlock();
S
Stephen Hemminger 已提交
97 98 99

	return err;
}
100
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
101

102
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
103
{
104
	return skb_get_poff(skb);
105 106
}

107
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
108 109 110 111 112 113
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

114 115 116
	if (skb->len < sizeof(struct nlattr))
		return 0;

117
	if (a > skb->len - sizeof(struct nlattr))
118 119
		return 0;

120
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
121 122 123 124 125 126
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

127
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
128 129 130 131 132 133
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

134 135 136
	if (skb->len < sizeof(struct nlattr))
		return 0;

137
	if (a > skb->len - sizeof(struct nlattr))
138 139
		return 0;

140 141
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
142 143
		return 0;

144
	nla = nla_find_nested(nla, x);
145 146 147 148 149 150
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

151
BPF_CALL_0(__get_raw_cpu_id)
152 153 154 155
{
	return raw_smp_processor_id();
}

156 157 158 159 160 161
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
208 209 210 211 212
	}

	return insn - insn_buf;
}

213
static bool convert_bpf_extensions(struct sock_filter *fp,
214
				   struct bpf_insn **insnp)
215
{
216
	struct bpf_insn *insn = *insnp;
217
	u32 cnt;
218 219 220

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
221 222 223 224 225 226 227
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
228 229 230
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
231 232
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
233 234 235 236 237 238
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
239

240
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
241 242 243 244 245 246 247 248 249 250 251
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
252 253 254
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
255 256
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
257 258 259 260 261
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

262 263
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
264 265 266
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
267 268
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
269 270 271
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
272 273 274 275
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
276

277 278 279 280
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
281 282
		break;

283 284 285 286 287 288 289 290 291 292
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

293 294 295 296
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
297
	case SKF_AD_OFF + SKF_AD_RANDOM:
298
		/* arg1 = CTX */
299
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
300
		/* arg2 = A */
301
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
302
		/* arg3 = X */
303
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
304
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
305 306
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
307
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
308 309
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
310
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
311 312
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
313
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
314 315
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
316
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
317
			break;
C
Chema Gonzalez 已提交
318
		case SKF_AD_OFF + SKF_AD_RANDOM:
319 320
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
321
			break;
322 323 324 325
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
326 327
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
344
 *	bpf_convert_filter - convert filter program
345 346 347 348 349 350 351 352 353
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
354
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
355 356 357
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
358
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
359
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
360
 */
361 362
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
363 364
{
	int new_flen = 0, pass = 0, target, i;
365
	struct bpf_insn *new_insn;
366 367 368 369 370
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
371
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
372

373
	if (len <= 0 || len > BPF_MAXINSNS)
374 375 376
		return -EINVAL;

	if (new_prog) {
377 378
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
379 380 381 382 383 384 385 386
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/* Classic BPF related prologue emission. */
	if (new_insn) {
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
403 404

	for (i = 0; i < len; fp++, i++) {
405 406
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

449
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
450 451
			break;

452 453 454 455 456 457 458
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
459 460 461 462 463 464 465 466
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

467 468 469 470
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
486
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
487

488 489
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
490 491
				bpf_src = BPF_X;
			} else {
492
				insn->dst_reg = BPF_REG_A;
493 494
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
495
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
496
			}
497 498 499 500 501

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
502
				BPF_EMIT_JMP;
503
				break;
L
Linus Torvalds 已提交
504
			}
505 506 507 508 509

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
510
				BPF_EMIT_JMP;
511
				break;
512
			}
513 514 515 516

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
517
			BPF_EMIT_JMP;
518 519 520 521
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
522
			BPF_EMIT_JMP;
523 524 525 526
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
527
			/* tmp = A */
528
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
529
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
530
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
531
			/* A &= 0xf */
532
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
533
			/* A <<= 2 */
534
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
535
			/* X = A */
536
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
537
			/* A = tmp */
538
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
539 540
			break;

541 542 543
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
544 545
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
546 547 548
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
549
			*insn = BPF_EXIT_INSN();
550 551 552 553 554
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
555 556 557
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
558 559 560 561 562
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
563 564 565
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
566 567 568 569 570
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
571 572
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
573 574 575 576
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
577
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
578 579 580 581
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
582
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
583 584 585 586 587
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
588 589 590
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
591 592
			break;

593
		/* Access seccomp_data fields. */
594
		case BPF_LDX | BPF_ABS | BPF_W:
595 596
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
597 598
			break;

S
Stephen Hemminger 已提交
599
		/* Unknown instruction. */
L
Linus Torvalds 已提交
600
		default:
601
			goto err;
L
Linus Torvalds 已提交
602
		}
603 604 605 606 607 608

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
609 610
	}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
627
	return 0;
628 629 630
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
631 632
}

633 634
/* Security:
 *
635
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
636
 * __bpf_prog_run(), we check that filter loaded by user never try to read
637
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
638
 * a malicious user doesn't try to abuse us.
639
 */
640
static int check_load_and_stores(const struct sock_filter *filter, int flen)
641
{
642
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
643 644 645
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
646

647
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
648 649
	if (!masks)
		return -ENOMEM;
650

651 652 653 654 655 656
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
657 658
		case BPF_ST:
		case BPF_STX:
659 660
			memvalid |= (1 << filter[pc].k);
			break;
661 662
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
663 664 665 666 667
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
668 669
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
670 671 672
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
673 674 675 676 677 678 679 680 681
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
682 683 684 685 686 687 688 689 690 691 692
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

759 760 761 762 763 764 765 766 767 768 769
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
770
/**
771
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
772 773 774 775 776
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
777 778
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
779
 *
780 781 782
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
783
 */
784 785
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
786
{
787
	bool anc_found;
788
	int pc;
L
Linus Torvalds 已提交
789

790
	/* Check the filter code now */
L
Linus Torvalds 已提交
791
	for (pc = 0; pc < flen; pc++) {
792
		const struct sock_filter *ftest = &filter[pc];
793

794 795
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
796
			return -EINVAL;
797

798
		/* Some instructions need special checks */
799 800 801 802
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
803 804 805
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
806 807 808 809 810
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
811 812 813 814 815
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
816 817 818
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
819 820
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
821 822 823
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
824
			if (ftest->k >= (unsigned int)(flen - pc - 1))
825
				return -EINVAL;
826
			break;
827 828 829 830 831 832 833 834 835
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
836
			if (pc + ftest->jt + 1 >= flen ||
837 838
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
839
			break;
840 841 842
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
843
			anc_found = false;
844 845 846
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
847 848
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
849 850
		}
	}
851

852
	/* Last instruction must be a RET code */
853
	switch (filter[flen - 1].code) {
854 855
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
856
		return check_load_and_stores(filter, flen);
857
	}
858

859
	return -EINVAL;
L
Linus Torvalds 已提交
860 861
}

862 863
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
864
{
865
	unsigned int fsize = bpf_classic_proglen(fprog);
866 867 868 869 870 871 872 873
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
874 875 876

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
877 878 879 880 881 882 883 884
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

885
static void bpf_release_orig_filter(struct bpf_prog *fp)
886 887 888 889 890 891 892 893 894
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

895 896
static void __bpf_prog_release(struct bpf_prog *prog)
{
897
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
898 899 900 901 902
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
903 904
}

905 906
static void __sk_filter_release(struct sk_filter *fp)
{
907 908
	__bpf_prog_release(fp->prog);
	kfree(fp);
909 910
}

911
/**
E
Eric Dumazet 已提交
912
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
913 914
 *	@rcu: rcu_head that contains the sk_filter to free
 */
915
static void sk_filter_release_rcu(struct rcu_head *rcu)
916 917 918
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

919
	__sk_filter_release(fp);
920
}
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
936
	u32 filter_size = bpf_prog_size(fp->prog->len);
937

938 939
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
940
}
941

942 943 944 945
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
946
{
947
	u32 filter_size = bpf_prog_size(fp->prog->len);
948 949 950 951 952 953 954

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
955
	}
956
	return false;
957 958
}

959
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
960 961
{
	struct sock_filter *old_prog;
962
	struct bpf_prog *old_fp;
963
	int err, new_len, old_len = fp->len;
964 965 966 967 968 969 970

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
971
		     sizeof(struct bpf_insn));
972 973 974 975 976 977

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
978
			   GFP_KERNEL | __GFP_NOWARN);
979 980 981 982 983 984
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
985
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
986 987 988 989 990
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
991
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
992 993 994 995 996 997 998 999 1000 1001 1002
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1003
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1004
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1005
	if (err)
1006
		/* 2nd bpf_convert_filter() can fail only if it fails
1007 1008
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1009
		 * by krealloc().
1010 1011 1012
		 */
		goto out_err_free;

1013 1014 1015 1016 1017
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1018

1019 1020 1021 1022 1023 1024
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1025
	__bpf_prog_release(fp);
1026 1027 1028
	return ERR_PTR(err);
}

1029 1030
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1031 1032 1033
{
	int err;

1034
	fp->bpf_func = NULL;
1035
	fp->jited = 0;
1036

1037
	err = bpf_check_classic(fp->insns, fp->len);
1038
	if (err) {
1039
		__bpf_prog_release(fp);
1040
		return ERR_PTR(err);
1041
	}
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1054 1055 1056
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1057
	bpf_jit_compile(fp);
1058 1059 1060 1061

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1062
	if (!fp->jited)
1063
		fp = bpf_migrate_filter(fp);
1064 1065

	return fp;
1066 1067 1068
}

/**
1069
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1070
 *	@pfp: the unattached filter that is created
1071
 *	@fprog: the filter program
1072
 *
R
Randy Dunlap 已提交
1073
 * Create a filter independent of any socket. We first run some
1074 1075 1076 1077
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1078
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1079
{
1080
	unsigned int fsize = bpf_classic_proglen(fprog);
1081
	struct bpf_prog *fp;
1082 1083

	/* Make sure new filter is there and in the right amounts. */
1084
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1085 1086
		return -EINVAL;

1087
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1088 1089
	if (!fp)
		return -ENOMEM;
1090

1091 1092 1093
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1094 1095 1096 1097 1098
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1099

1100
	/* bpf_prepare_filter() already takes care of freeing
1101 1102
	 * memory in case something goes wrong.
	 */
1103
	fp = bpf_prepare_filter(fp, NULL);
1104 1105
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1106 1107 1108 1109

	*pfp = fp;
	return 0;
}
1110
EXPORT_SYMBOL_GPL(bpf_prog_create);
1111

1112 1113 1114 1115 1116
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1117
 *	@save_orig: save classic BPF program
1118 1119 1120 1121 1122 1123
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1124
			      bpf_aux_classic_check_t trans, bool save_orig)
1125 1126 1127
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1128
	int err;
1129 1130

	/* Make sure new filter is there and in the right amounts. */
1131
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1146 1147 1148 1149 1150 1151 1152 1153
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1164
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1165

1166
void bpf_prog_destroy(struct bpf_prog *fp)
1167
{
1168
	__bpf_prog_release(fp);
1169
}
1170
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1171

1172
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

1188 1189
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1190
	rcu_assign_pointer(sk->sk_filter, fp);
1191

1192 1193 1194 1195 1196 1197
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1198 1199 1200 1201 1202 1203 1204 1205
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1206
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1224
{
1225
	unsigned int fsize = bpf_classic_proglen(fprog);
1226
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1227 1228
	int err;

1229
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1230
		return ERR_PTR(-EPERM);
1231

L
Linus Torvalds 已提交
1232
	/* Make sure new filter is there and in the right amounts. */
1233
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1234
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1235

1236
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1237
	if (!prog)
1238
		return ERR_PTR(-ENOMEM);
1239

1240
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1241
		__bpf_prog_free(prog);
1242
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1243 1244
	}

1245
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1246

1247
	err = bpf_prog_store_orig_filter(prog, fprog);
1248
	if (err) {
1249
		__bpf_prog_free(prog);
1250
		return ERR_PTR(-ENOMEM);
1251 1252
	}

1253
	/* bpf_prepare_filter() already takes care of freeing
1254 1255
	 * memory in case something goes wrong.
	 */
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1269
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1270 1271 1272 1273
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1274 1275 1276
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1277
	err = __sk_attach_prog(prog, sk);
1278
	if (err < 0) {
1279
		__bpf_prog_release(prog);
1280
		return err;
1281 1282
	}

1283
	return 0;
L
Linus Torvalds 已提交
1284
}
1285
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1286

1287
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1288
{
1289
	struct bpf_prog *prog = __get_filter(fprog, sk);
1290
	int err;
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1306
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1307
		return ERR_PTR(-EPERM);
1308

1309
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1320
	err = __sk_attach_prog(prog, sk);
1321
	if (err < 0) {
1322
		bpf_prog_put(prog);
1323
		return err;
1324 1325 1326 1327 1328
	}

	return 0;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1354

1355 1356 1357 1358 1359 1360
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1361 1362 1363
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1364
	int err = __bpf_try_make_writable(skb, write_len);
1365

1366
	bpf_compute_data_end(skb);
1367 1368 1369
	return err;
}

1370 1371 1372 1373 1374
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1375 1376 1377 1378 1379 1380
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1381 1382 1383 1384 1385 1386
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1387 1388
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1389 1390 1391
{
	void *ptr;

1392
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1393
		return -EINVAL;
1394
	if (unlikely(offset > 0xffff))
1395
		return -EFAULT;
1396
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1397 1398
		return -EFAULT;

1399
	ptr = skb->data + offset;
1400
	if (flags & BPF_F_RECOMPUTE_CSUM)
1401
		__skb_postpull_rcsum(skb, ptr, len, offset);
1402 1403 1404

	memcpy(ptr, from, len);

1405
	if (flags & BPF_F_RECOMPUTE_CSUM)
1406
		__skb_postpush_rcsum(skb, ptr, len, offset);
1407 1408
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1409

1410 1411 1412
	return 0;
}

1413
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1414 1415 1416 1417 1418 1419 1420
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1421 1422 1423
	.arg5_type	= ARG_ANYTHING,
};

1424 1425
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1426 1427 1428
{
	void *ptr;

1429
	if (unlikely(offset > 0xffff))
1430
		goto err_clear;
1431 1432 1433

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1434
		goto err_clear;
1435 1436 1437 1438
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1439 1440 1441
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1442 1443
}

1444
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1445 1446 1447 1448 1449
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1450
	.arg3_type	= ARG_PTR_TO_RAW_STACK,
1451 1452 1453
	.arg4_type	= ARG_CONST_STACK_SIZE,
};

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1476 1477
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1478
{
1479
	__sum16 *ptr;
1480

1481 1482
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1483
	if (unlikely(offset > 0xffff || offset & 1))
1484
		return -EFAULT;
1485
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1486 1487
		return -EFAULT;

1488
	ptr = (__sum16 *)(skb->data + offset);
1489
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1490 1491 1492 1493 1494 1495
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1509
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1520 1521
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1522
{
1523
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1524
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1525
	__sum16 *ptr;
1526

1527 1528
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
			       BPF_F_HDR_FIELD_MASK)))
1529
		return -EINVAL;
1530
	if (unlikely(offset > 0xffff || offset & 1))
1531
		return -EFAULT;
1532
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1533 1534
		return -EFAULT;

1535
	ptr = (__sum16 *)(skb->data + offset);
1536 1537
	if (is_mmzero && !*ptr)
		return 0;
1538

1539
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1540 1541 1542 1543 1544 1545
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1556 1557
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1558 1559 1560
	return 0;
}

1561
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1562 1563 1564 1565 1566 1567 1568 1569
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1570 1571
};

1572 1573
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1574
{
1575
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1576
	u32 diff_size = from_size + to_size;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1599
static const struct bpf_func_proto bpf_csum_diff_proto = {
1600 1601
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1602
	.pkt_access	= true,
1603 1604 1605 1606 1607 1608 1609 1610
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_STACK,
	.arg2_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg5_type	= ARG_ANYTHING,
};

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1631 1632 1633 1634 1635
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1692 1693 1694 1695 1696 1697
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1698 1699 1700 1701 1702 1703 1704 1705
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1706
	if (dev_is_mac_header_xmit(dev))
1707
		return __bpf_redirect_common(skb, dev, flags);
1708 1709
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1710 1711
}

1712
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1713 1714
{
	struct net_device *dev;
1715 1716
	struct sk_buff *clone;
	int ret;
1717

1718 1719 1720
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1721 1722 1723 1724
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1725 1726
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1727 1728
		return -ENOMEM;

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1740
	return __bpf_redirect(clone, dev, flags);
1741 1742
}

1743
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1744 1745 1746 1747 1748 1749 1750 1751
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1752 1753 1754 1755 1756 1757
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1758

1759
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1760 1761 1762
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1763 1764 1765
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1766 1767
	ri->ifindex = ifindex;
	ri->flags = flags;
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1784
	return __bpf_redirect(skb, dev, ri->flags);
1785 1786
}

1787
static const struct bpf_func_proto bpf_redirect_proto = {
1788 1789 1790 1791 1792 1793 1794
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1795
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1796
{
1797
	return task_get_classid(skb);
1798 1799 1800 1801 1802 1803 1804 1805 1806
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1807
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1808
{
1809
	return dst_tclassid(skb);
1810 1811 1812 1813 1814 1815 1816 1817 1818
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1819
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1820 1821 1822 1823 1824 1825
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
1826
	return skb_get_hash(skb);
1827 1828 1829 1830 1831 1832 1833 1834 1835
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1852 1853
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
1854
{
1855
	int ret;
1856 1857 1858 1859 1860

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1861
	bpf_push_mac_rcsum(skb);
1862
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1863 1864
	bpf_pull_mac_rcsum(skb);

1865 1866
	bpf_compute_data_end(skb);
	return ret;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1877
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1878

1879
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1880
{
1881
	int ret;
1882

1883
	bpf_push_mac_rcsum(skb);
1884
	ret = skb_vlan_pop(skb);
1885 1886
	bpf_pull_mac_rcsum(skb);

1887 1888
	bpf_compute_data_end(skb);
	return ret;
1889 1890 1891 1892 1893 1894 1895 1896
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1897
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2055 2056
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2094
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2095 2096
{
	/* We only allow a restricted subset to be changed for now. */
2097 2098
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
D
Daniel Borkmann 已提交
2127
	return skb->dev->mtu + skb->dev->hard_header_len;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2146 2147
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

	bpf_compute_data_end(skb);
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2237 2238
bool bpf_helper_changes_skb_data(void *func)
{
2239 2240 2241 2242
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
2243
	    func == bpf_skb_change_head ||
2244 2245 2246 2247
	    func == bpf_skb_change_tail ||
	    func == bpf_skb_pull_data ||
	    func == bpf_l3_csum_replace ||
	    func == bpf_l4_csum_replace)
2248 2249
		return true;

2250 2251 2252
	return false;
}

2253
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2254
				  unsigned long off, unsigned long len)
2255
{
2256
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2257 2258 2259 2260 2261 2262 2263 2264 2265

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

2266 2267
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_STACK,
	.arg5_type	= ARG_CONST_STACK_SIZE,
};

2291 2292 2293 2294 2295
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2296 2297
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
2298
{
2299 2300
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2301 2302
	void *to_orig = to;
	int err;
2303

2304 2305 2306 2307 2308 2309 2310 2311
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2312
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2313
		err = -EINVAL;
2314
		switch (size) {
2315
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2316
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2317
			goto set_compat;
2318 2319 2320 2321 2322
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2323
				goto err_clear;
2324
set_compat:
2325 2326 2327
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2328
			goto err_clear;
2329 2330
		}
	}
2331 2332

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2333 2334 2335
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2336
	if (flags & BPF_F_TUNINFO_IPV6) {
2337 2338
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2339 2340
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2341
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2342
	}
2343 2344

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2345
		memcpy(to_orig, to, size);
2346 2347

	return 0;
2348 2349 2350
err_clear:
	memset(to_orig, 0, size);
	return err;
2351 2352
}

2353
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2354 2355 2356 2357
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2358
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2359 2360 2361 2362
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2363
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2364 2365
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2366
	int err;
2367 2368

	if (unlikely(!info ||
2369 2370 2371 2372 2373 2374 2375 2376
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2377 2378

	ip_tunnel_info_opts_get(to, info);
2379 2380
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2381 2382

	return info->options_len;
2383 2384 2385
err_clear:
	memset(to, 0, size);
	return err;
2386 2387 2388 2389 2390 2391 2392
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2393
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2394 2395 2396
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

2397 2398
static struct metadata_dst __percpu *md_dst;

2399 2400
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2401 2402
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2403
	u8 compat[sizeof(struct bpf_tunnel_key)];
2404 2405
	struct ip_tunnel_info *info;

2406 2407
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2408
		return -EINVAL;
2409 2410
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2411
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2412
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2413 2414 2415 2416 2417 2418
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
2419
			from = (const struct bpf_tunnel_key *) compat;
2420 2421 2422 2423 2424
			break;
		default:
			return -EINVAL;
		}
	}
2425 2426
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2427
		return -EINVAL;
2428 2429 2430 2431 2432 2433 2434

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2435

2436
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2437 2438 2439
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2440
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2441 2442 2443 2444 2445 2446 2447
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2448 2449
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2450 2451
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2452 2453
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2454
	}
2455 2456 2457 2458

	return 0;
}

2459
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2460 2461 2462 2463 2464 2465 2466 2467 2468
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2469 2470
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
2471 2472 2473 2474 2475 2476
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2477
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2496 2497
{
	if (!md_dst) {
2498 2499
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2500
		 */
2501
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2502
						   GFP_KERNEL);
2503 2504 2505
		if (!md_dst)
			return NULL;
	}
2506 2507 2508 2509 2510 2511 2512 2513 2514

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2515 2516
}

2517 2518
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
2519 2520 2521 2522 2523
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

2524
	sk = skb_to_full_sk(skb);
2525 2526
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
2527
	if (unlikely(idx >= array->map.max_entries))
2528 2529
		return -E2BIG;

2530
	cgrp = READ_ONCE(array->ptrs[idx]);
2531 2532 2533
	if (unlikely(!cgrp))
		return -EAGAIN;

2534
	return sk_under_cgroup_hierarchy(sk, cgrp);
2535 2536
}

2537 2538
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2539 2540 2541 2542 2543 2544 2545
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

2546 2547 2548 2549 2550 2551 2552
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

2553 2554
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, xdp, xdp_size,
				bpf_xdp_copy);
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_STACK,
	.arg5_type	= ARG_CONST_STACK_SIZE,
};

2578 2579
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
2580 2581 2582 2583 2584 2585 2586 2587
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
2588 2589
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
2590
	case BPF_FUNC_get_smp_processor_id:
2591
		return &bpf_get_raw_smp_processor_id_proto;
2592 2593
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
2594 2595
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
2596 2597
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
2598
	case BPF_FUNC_trace_printk:
2599 2600
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
2601 2602 2603 2604 2605
	default:
		return NULL;
	}
}

2606 2607 2608 2609 2610 2611
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
2612 2613
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2614 2615
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
2616 2617
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
2618 2619
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
2620 2621 2622 2623
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
2624 2625
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
2626 2627
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
2628 2629 2630 2631
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
2632 2633
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
2634 2635
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
2636 2637
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
2638 2639 2640
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
2641 2642 2643 2644 2645
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
2646 2647
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
2648 2649
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
2650 2651
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
2652 2653
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
2654
	case BPF_FUNC_perf_event_output:
2655
		return &bpf_skb_event_output_proto;
2656 2657
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2658 2659
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
2660 2661 2662 2663 2664
	default:
		return sk_filter_func_proto(func_id);
	}
}

2665 2666 2667
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
2668 2669 2670
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
2671 2672
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2673 2674 2675
	default:
		return sk_filter_func_proto(func_id);
	}
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	default:
		return sk_filter_func_proto(func_id);
	}
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
		return sk_filter_func_proto(func_id);
	}
}

static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
		return lwt_inout_func_proto(func_id);
	}
}

2751
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
2752
{
2753 2754
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
2755
	/* The verifier guarantees that size > 0. */
2756 2757
	if (off % size != 0)
		return false;
2758
	if (size != sizeof(__u32))
2759 2760 2761 2762 2763
		return false;

	return true;
}

2764
static bool sk_filter_is_valid_access(int off, int size,
2765 2766
				      enum bpf_access_type type,
				      enum bpf_reg_type *reg_type)
2767
{
2768 2769 2770 2771
	switch (off) {
	case offsetof(struct __sk_buff, tc_classid):
	case offsetof(struct __sk_buff, data):
	case offsetof(struct __sk_buff, data_end):
2772
		return false;
2773
	}
2774

2775 2776 2777
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
2778
		     offsetof(struct __sk_buff, cb[4]):
2779 2780 2781 2782 2783 2784 2785 2786 2787
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
				enum bpf_reg_type *reg_type)
{
	switch (off) {
	case offsetof(struct __sk_buff, tc_classid):
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, priority):
		case offsetof(struct __sk_buff, cb[0]) ...
		     offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}

	switch (off) {
	case offsetof(struct __sk_buff, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct __sk_buff, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

	return __is_valid_access(off, size, type);
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

2860
static bool tc_cls_act_is_valid_access(int off, int size,
2861 2862
				       enum bpf_access_type type,
				       enum bpf_reg_type *reg_type)
2863 2864 2865 2866 2867
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
2868
		case offsetof(struct __sk_buff, priority):
2869
		case offsetof(struct __sk_buff, cb[0]) ...
2870 2871
		     offsetof(struct __sk_buff, cb[4]):
		case offsetof(struct __sk_buff, tc_classid):
2872 2873 2874 2875 2876
			break;
		default:
			return false;
		}
	}
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

	switch (off) {
	case offsetof(struct __sk_buff, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct __sk_buff, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

2887 2888 2889
	return __is_valid_access(off, size, type);
}

2890 2891 2892 2893 2894 2895 2896
static bool __is_valid_xdp_access(int off, int size,
				  enum bpf_access_type type)
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
2897
	if (size != sizeof(__u32))
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
				enum bpf_reg_type *reg_type)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct xdp_md, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

	return __is_valid_xdp_access(off, size, type);
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

2928 2929 2930 2931
static u32 sk_filter_convert_ctx_access(enum bpf_access_type type, int dst_reg,
					int src_reg, int ctx_off,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

2943 2944 2945 2946 2947 2948 2949
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

2950 2951 2952 2953 2954 2955 2956
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

2957 2958 2959
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

2960 2961 2962 2963 2964 2965
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
2966 2967
		break;

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

2978
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
2979 2980 2981 2982 2983 2984 2985
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

2986 2987 2988 2989 2990 2991 2992
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

2993
	case offsetof(struct __sk_buff, mark):
2994 2995 2996 2997 2998 2999 3000 3001 3002
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
3003 3004 3005 3006 3007 3008

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
3009 3010 3011 3012 3013 3014 3015 3016

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
3017 3018

	case offsetof(struct __sk_buff, cb[0]) ...
D
Daniel Borkmann 已提交
3019
	     offsetof(struct __sk_buff, cb[4]):
3020 3021
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

3022
		prog->cb_access = 1;
3023 3024 3025 3026 3027 3028 3029 3030 3031
		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

3032 3033 3034 3035
	case offsetof(struct __sk_buff, tc_classid):
		ctx_off -= offsetof(struct __sk_buff, tc_classid);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
3036 3037 3038 3039
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
3040 3041
		break;

3042
	case offsetof(struct __sk_buff, data):
3043
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3044 3045 3046 3047 3048 3049 3050 3051
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
		ctx_off -= offsetof(struct __sk_buff, data_end);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct bpf_skb_data_end, data_end);
3052 3053
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), dst_reg, src_reg,
				      ctx_off);
3054 3055
		break;

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
3074 3075 3076
	}

	return insn - insn_buf;
3077 3078
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, int dst_reg,
					 int src_reg, int ctx_off,
					 struct bpf_insn *insn_buf,
					 struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;
	default:
		return sk_filter_convert_ctx_access(type, dst_reg, src_reg,
						    ctx_off, insn_buf, prog);
	}

	return insn - insn_buf;
}

3104 3105 3106 3107 3108 3109 3110 3111 3112
static u32 xdp_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				  int src_reg, int ctx_off,
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct xdp_md, data):
3113
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3114 3115 3116 3117
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
3118
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3119 3120 3121 3122 3123 3124 3125 3126
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

3127
static const struct bpf_verifier_ops sk_filter_ops = {
3128 3129
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
3130
	.convert_ctx_access	= sk_filter_convert_ctx_access,
3131 3132
};

3133
static const struct bpf_verifier_ops tc_cls_act_ops = {
3134 3135
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
3136
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3137
	.gen_prologue		= tc_cls_act_prologue,
3138 3139
};

3140 3141 3142 3143 3144 3145
static const struct bpf_verifier_ops xdp_ops = {
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
};

3146 3147 3148 3149 3150 3151
static const struct bpf_verifier_ops cg_skb_ops = {
	.get_func_proto		= cg_skb_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
	.convert_ctx_access	= sk_filter_convert_ctx_access,
};

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
static const struct bpf_verifier_ops lwt_inout_ops = {
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
	.convert_ctx_access	= sk_filter_convert_ctx_access,
};

static const struct bpf_verifier_ops lwt_xmit_ops = {
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
	.convert_ctx_access	= sk_filter_convert_ctx_access,
	.gen_prologue		= tc_cls_act_prologue,
};

3165
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
3166 3167
	.ops	= &sk_filter_ops,
	.type	= BPF_PROG_TYPE_SOCKET_FILTER,
3168 3169
};

3170
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
3171 3172
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_CLS,
3173 3174
};

3175
static struct bpf_prog_type_list sched_act_type __read_mostly = {
3176 3177
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_ACT,
3178 3179
};

3180 3181 3182 3183 3184
static struct bpf_prog_type_list xdp_type __read_mostly = {
	.ops	= &xdp_ops,
	.type	= BPF_PROG_TYPE_XDP,
};

3185 3186 3187 3188 3189
static struct bpf_prog_type_list cg_skb_type __read_mostly = {
	.ops	= &cg_skb_ops,
	.type	= BPF_PROG_TYPE_CGROUP_SKB,
};

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
static struct bpf_prog_type_list lwt_in_type __read_mostly = {
	.ops	= &lwt_inout_ops,
	.type	= BPF_PROG_TYPE_LWT_IN,
};

static struct bpf_prog_type_list lwt_out_type __read_mostly = {
	.ops	= &lwt_inout_ops,
	.type	= BPF_PROG_TYPE_LWT_OUT,
};

static struct bpf_prog_type_list lwt_xmit_type __read_mostly = {
	.ops	= &lwt_xmit_ops,
	.type	= BPF_PROG_TYPE_LWT_XMIT,
};

3205
static int __init register_sk_filter_ops(void)
3206
{
3207
	bpf_register_prog_type(&sk_filter_type);
3208
	bpf_register_prog_type(&sched_cls_type);
3209
	bpf_register_prog_type(&sched_act_type);
3210
	bpf_register_prog_type(&xdp_type);
3211
	bpf_register_prog_type(&cg_skb_type);
3212 3213 3214
	bpf_register_prog_type(&lwt_in_type);
	bpf_register_prog_type(&lwt_out_type);
	bpf_register_prog_type(&lwt_xmit_type);
3215

3216 3217
	return 0;
}
3218 3219
late_initcall(register_sk_filter_ops);

3220
int sk_detach_filter(struct sock *sk)
3221 3222 3223 3224
{
	int ret = -ENOENT;
	struct sk_filter *filter;

3225 3226 3227
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

3228 3229
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
3230
	if (filter) {
3231
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
3232
		sk_filter_uncharge(sk, filter);
3233 3234
		ret = 0;
	}
3235

3236 3237
	return ret;
}
3238
EXPORT_SYMBOL_GPL(sk_detach_filter);
3239

3240 3241
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
3242
{
3243
	struct sock_fprog_kern *fprog;
3244
	struct sk_filter *filter;
3245
	int ret = 0;
3246 3247 3248

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
3249
					   lockdep_sock_is_held(sk));
3250 3251
	if (!filter)
		goto out;
3252 3253

	/* We're copying the filter that has been originally attached,
3254 3255
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
3256
	 */
3257
	ret = -EACCES;
3258
	fprog = filter->prog->orig_prog;
3259 3260
	if (!fprog)
		goto out;
3261 3262

	ret = fprog->len;
3263
	if (!len)
3264
		/* User space only enquires number of filter blocks. */
3265
		goto out;
3266

3267
	ret = -EINVAL;
3268
	if (len < fprog->len)
3269 3270 3271
		goto out;

	ret = -EFAULT;
3272
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3273
		goto out;
3274

3275 3276 3277 3278
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
3279 3280 3281 3282
out:
	release_sock(sk);
	return ret;
}