filter.c 169.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
A
Andrey Ignatov 已提交
36
#include <net/inet_common.h>
L
Linus Torvalds 已提交
37 38
#include <net/ip.h>
#include <net/protocol.h>
39
#include <net/netlink.h>
L
Linus Torvalds 已提交
40 41
#include <linux/skbuff.h>
#include <net/sock.h>
42
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
43 44
#include <linux/errno.h>
#include <linux/timer.h>
45
#include <linux/uaccess.h>
46
#include <asm/unaligned.h>
47
#include <asm/cmpxchg.h>
L
Linus Torvalds 已提交
48
#include <linux/filter.h>
49
#include <linux/ratelimit.h>
50
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
51
#include <linux/if_vlan.h>
52
#include <linux/bpf.h>
53
#include <net/sch_generic.h>
54
#include <net/cls_cgroup.h>
55
#include <net/dst_metadata.h>
56
#include <net/dst.h>
57
#include <net/sock_reuseport.h>
58
#include <net/busy_poll.h>
59
#include <net/tcp.h>
60
#include <net/xfrm.h>
61
#include <linux/bpf_trace.h>
62
#include <net/xdp_sock.h>
63 64 65 66
#include <linux/inetdevice.h>
#include <net/ip_fib.h>
#include <net/flow.h>
#include <net/arp.h>
L
Linus Torvalds 已提交
67

S
Stephen Hemminger 已提交
68
/**
69
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
70 71
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
72
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
73
 *
74 75
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
76
 * than pkt_len we keep whole skb->data. This is the socket level
77
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
78 79 80
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
81
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
82 83 84 85
{
	int err;
	struct sk_filter *filter;

86 87 88 89 90
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
91 92
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
93
		return -ENOMEM;
94
	}
95 96 97 98
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
99 100 101 102
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

103 104
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
105
	if (filter) {
106 107 108 109 110 111
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
112
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
113
	}
114
	rcu_read_unlock();
S
Stephen Hemminger 已提交
115 116 117

	return err;
}
118
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
119

120
BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
121
{
122
	return skb_get_poff(skb);
123 124
}

125
BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
126 127 128 129 130 131
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

132 133 134
	if (skb->len < sizeof(struct nlattr))
		return 0;

135
	if (a > skb->len - sizeof(struct nlattr))
136 137
		return 0;

138
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
139 140 141 142 143 144
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

145
BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
146 147 148 149 150 151
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

152 153 154
	if (skb->len < sizeof(struct nlattr))
		return 0;

155
	if (a > skb->len - sizeof(struct nlattr))
156 157
		return 0;

158 159
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
160 161
		return 0;

162
	nla = nla_find_nested(nla, x);
163 164 165 166 167 168
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u8 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return *(u8 *)(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return tmp;
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return *(u8 *)ptr;
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
					 offset);
}

BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u16 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return get_unaligned_be16(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be16_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be16(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u32 tmp, *ptr;
	const int len = sizeof(tmp);

	if (likely(offset >= 0)) {
		if (headlen - offset >= len)
			return get_unaligned_be32(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be32_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be32(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

250
BPF_CALL_0(bpf_get_raw_cpu_id)
251 252 253 254
{
	return raw_smp_processor_id();
}

255
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
256
	.func		= bpf_get_raw_cpu_id,
257 258 259 260
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
307 308 309 310 311
	}

	return insn - insn_buf;
}

312
static bool convert_bpf_extensions(struct sock_filter *fp,
313
				   struct bpf_insn **insnp)
314
{
315
	struct bpf_insn *insn = *insnp;
316
	u32 cnt;
317 318 319

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
320 321 322 323 324 325 326
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
327 328 329
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
330 331
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
332 333 334 335 336 337
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
338

339
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
340 341 342 343 344 345 346 347 348 349 350
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
351 352 353
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
354 355
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
356 357 358 359 360
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

361 362
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
363 364 365
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
366 367
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
368 369 370
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
371 372 373 374
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
375

376 377 378 379
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
380 381
		break;

382 383 384 385 386 387 388 389 390 391
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

392 393 394 395
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
396
	case SKF_AD_OFF + SKF_AD_RANDOM:
397
		/* arg1 = CTX */
398
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
399
		/* arg2 = A */
400
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
401
		/* arg3 = X */
402
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
403
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
404 405
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
406
			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
407 408
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
409
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
410 411
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
412
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
413 414
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
415
			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
416
			break;
C
Chema Gonzalez 已提交
417
		case SKF_AD_OFF + SKF_AD_RANDOM:
418 419
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
420
			break;
421 422 423 424
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
425 426
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
{
	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
	bool endian = BPF_SIZE(fp->code) == BPF_H ||
		      BPF_SIZE(fp->code) == BPF_W;
	bool indirect = BPF_MODE(fp->code) == BPF_IND;
	const int ip_align = NET_IP_ALIGN;
	struct bpf_insn *insn = *insnp;
	int offset = fp->k;

	if (!indirect &&
	    ((unaligned_ok && offset >= 0) ||
	     (!unaligned_ok && offset >= 0 &&
	      offset + ip_align >= 0 &&
	      offset + ip_align % size == 0))) {
		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian);
		*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D,
				      offset);
		if (endian)
			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
		*insn++ = BPF_JMP_A(8);
	}

	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
		if (fp->k)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
	}

	switch (BPF_SIZE(fp->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
		break;
	default:
		return false;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
	*insn   = BPF_EXIT_INSN();

	*insnp = insn;
	return true;
}

501
/**
502
 *	bpf_convert_filter - convert filter program
503 504
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
505
 *	@new_prog: allocated 'struct bpf_prog' or NULL
506
 *	@new_len: pointer to store length of converted program
507
 *	@seen_ld_abs: bool whether we've seen ld_abs/ind
508
 *
509 510
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
511 512 513
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
514
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
515 516 517
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
518
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
519
 */
520
static int bpf_convert_filter(struct sock_filter *prog, int len,
521 522
			      struct bpf_prog *new_prog, int *new_len,
			      bool *seen_ld_abs)
523
{
524 525
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
526 527 528 529 530
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
531
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
532

533
	if (len <= 0 || len > BPF_MAXINSNS)
534 535 536
		return -EINVAL;

	if (new_prog) {
537
		first_insn = new_prog->insnsi;
538 539
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
540 541 542 543 544
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
545
	new_insn = first_insn;
546 547
	fp = prog;

548
	/* Classic BPF related prologue emission. */
549
	if (new_prog) {
550 551 552
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
553 554
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
555 556 557 558 559 560

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
		if (*seen_ld_abs) {
			/* For packet access in classic BPF, cache skb->data
			 * in callee-saved BPF R8 and skb->len - skb->data_len
			 * (headlen) in BPF R9. Since classic BPF is read-only
			 * on CTX, we only need to cache it once.
			 */
			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
						  BPF_REG_D, BPF_REG_CTX,
						  offsetof(struct sk_buff, data));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
						  offsetof(struct sk_buff, len));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
						  offsetof(struct sk_buff, data_len));
			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
		}
576 577 578
	} else {
		new_insn += 3;
	}
579 580

	for (i = 0; i < len; fp++, i++) {
581
		struct bpf_insn tmp_insns[32] = { };
582
		struct bpf_insn *insn = tmp_insns;
583 584

		if (addrs)
585
			addrs[i] = new_insn - first_insn;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;
624 625 626 627 628
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    convert_bpf_ld_abs(fp, &insn)) {
				*seen_ld_abs = true;
				break;
			}
629

630
			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
631
			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
632
				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
633 634 635 636 637 638 639
				/* Error with exception code on div/mod by 0.
				 * For cBPF programs, this was always return 0.
				 */
				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
				*insn++ = BPF_EXIT_INSN();
			}
640

641
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
642 643
			break;

644 645 646 647 648 649 650
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
651 652 653 654 655 656 657 658
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

659 660 661 662
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
678
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
679

680 681
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
682 683
				bpf_src = BPF_X;
			} else {
684
				insn->dst_reg = BPF_REG_A;
685 686
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
687
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
688
			}
689 690 691 692 693

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
694
				BPF_EMIT_JMP;
695
				break;
L
Linus Torvalds 已提交
696
			}
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
			/* Convert some jumps when 'jump_true' is next insn. */
			if (fp->jt == 0) {
				switch (BPF_OP(fp->code)) {
				case BPF_JEQ:
					insn->code = BPF_JMP | BPF_JNE | bpf_src;
					break;
				case BPF_JGT:
					insn->code = BPF_JMP | BPF_JLE | bpf_src;
					break;
				case BPF_JGE:
					insn->code = BPF_JMP | BPF_JLT | bpf_src;
					break;
				default:
					goto jmp_rest;
				}

714
				target = i + fp->jf + 1;
715
				BPF_EMIT_JMP;
716
				break;
717
			}
718
jmp_rest:
719 720 721
			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
722
			BPF_EMIT_JMP;
723 724 725 726
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
727
			BPF_EMIT_JMP;
728 729 730
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
731 732 733 734 735 736 737 738 739 740
		case BPF_LDX | BPF_MSH | BPF_B: {
			struct sock_filter tmp = {
				.code	= BPF_LD | BPF_ABS | BPF_B,
				.k	= fp->k,
			};

			*seen_ld_abs = true;

			/* X = A */
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
741
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
742 743
			convert_bpf_ld_abs(&tmp, &insn);
			insn++;
744
			/* A &= 0xf */
745
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
746
			/* A <<= 2 */
747
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
748 749
			/* tmp = X */
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
750
			/* X = A */
751
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
752
			/* A = tmp */
753
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
754
			break;
755
		}
756 757 758
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
759 760
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
761 762 763
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
764
			*insn = BPF_EXIT_INSN();
765 766 767 768 769
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
770
			stack_off = fp->k * 4  + 4;
771 772
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
773 774 775 776 777 778 779
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
780 781 782 783 784
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
785
			stack_off = fp->k * 4  + 4;
786 787
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
788
					    -stack_off);
789 790 791 792 793
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
794 795
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
796 797 798 799
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
800
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
801 802 803 804
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
805
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
806 807 808 809 810
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
811 812 813
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
814 815
			break;

816
		/* Access seccomp_data fields. */
817
		case BPF_LDX | BPF_ABS | BPF_W:
818 819
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
820 821
			break;

S
Stephen Hemminger 已提交
822
		/* Unknown instruction. */
L
Linus Torvalds 已提交
823
		default:
824
			goto err;
L
Linus Torvalds 已提交
825
		}
826 827 828 829 830 831

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
832 833
	}

834 835
	if (!new_prog) {
		/* Only calculating new length. */
836
		*new_len = new_insn - first_insn;
837 838
		if (*seen_ld_abs)
			*new_len += 4; /* Prologue bits. */
839 840 841 842
		return 0;
	}

	pass++;
843 844
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
845 846 847 848 849 850 851
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
852
	return 0;
853 854 855
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
856 857
}

858 859
/* Security:
 *
860
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
861
 * __bpf_prog_run(), we check that filter loaded by user never try to read
862
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
863
 * a malicious user doesn't try to abuse us.
864
 */
865
static int check_load_and_stores(const struct sock_filter *filter, int flen)
866
{
867
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
868 869 870
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
871

872
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
873 874
	if (!masks)
		return -ENOMEM;
875

876 877 878 879 880 881
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
882 883
		case BPF_ST:
		case BPF_STX:
884 885
			memvalid |= (1 << filter[pc].k);
			break;
886 887
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
888 889 890 891 892
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
893 894
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
895 896 897
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
898 899 900 901 902 903 904 905 906
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
907 908 909 910 911 912 913 914 915 916 917
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

984 985 986 987 988 989 990 991 992 993 994
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
995
/**
996
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
997 998 999 1000 1001
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
1002 1003
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
1004
 *
1005 1006 1007
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
1008
 */
1009 1010
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
1011
{
1012
	bool anc_found;
1013
	int pc;
L
Linus Torvalds 已提交
1014

1015
	/* Check the filter code now */
L
Linus Torvalds 已提交
1016
	for (pc = 0; pc < flen; pc++) {
1017
		const struct sock_filter *ftest = &filter[pc];
1018

1019 1020
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
1021
			return -EINVAL;
1022

1023
		/* Some instructions need special checks */
1024 1025 1026 1027
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
1028 1029 1030
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
1031 1032 1033 1034 1035
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
1036 1037 1038 1039 1040
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
1041 1042 1043
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
1044 1045
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
1046 1047 1048
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
1049
			if (ftest->k >= (unsigned int)(flen - pc - 1))
1050
				return -EINVAL;
1051
			break;
1052 1053 1054 1055 1056 1057 1058 1059 1060
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
1061
			if (pc + ftest->jt + 1 >= flen ||
1062 1063
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
1064
			break;
1065 1066 1067
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
1068
			anc_found = false;
1069 1070 1071
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
1072 1073
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
1074 1075
		}
	}
1076

1077
	/* Last instruction must be a RET code */
1078
	switch (filter[flen - 1].code) {
1079 1080
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
1081
		return check_load_and_stores(filter, flen);
1082
	}
1083

1084
	return -EINVAL;
L
Linus Torvalds 已提交
1085 1086
}

1087 1088
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
1089
{
1090
	unsigned int fsize = bpf_classic_proglen(fprog);
1091 1092 1093 1094 1095 1096 1097 1098
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
1099 1100 1101

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
1102 1103 1104 1105 1106 1107 1108 1109
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

1110
static void bpf_release_orig_filter(struct bpf_prog *fp)
1111 1112 1113 1114 1115 1116 1117 1118 1119
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

1120 1121
static void __bpf_prog_release(struct bpf_prog *prog)
{
1122
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1123 1124 1125 1126 1127
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
1128 1129
}

1130 1131
static void __sk_filter_release(struct sk_filter *fp)
{
1132 1133
	__bpf_prog_release(fp->prog);
	kfree(fp);
1134 1135
}

1136
/**
E
Eric Dumazet 已提交
1137
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1138 1139
 *	@rcu: rcu_head that contains the sk_filter to free
 */
1140
static void sk_filter_release_rcu(struct rcu_head *rcu)
1141 1142 1143
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

1144
	__sk_filter_release(fp);
1145
}
1146 1147 1148 1149 1150 1151 1152 1153 1154

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
1155
	if (refcount_dec_and_test(&fp->refcnt))
1156 1157 1158 1159 1160
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
1161
	u32 filter_size = bpf_prog_size(fp->prog->len);
1162

1163 1164
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
1165
}
1166

1167 1168 1169
/* try to charge the socket memory if there is space available
 * return true on success
 */
1170
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1171
{
1172
	u32 filter_size = bpf_prog_size(fp->prog->len);
1173 1174 1175 1176 1177 1178

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
1179
	}
1180
	return false;
1181 1182
}

1183 1184
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
1185 1186 1187 1188 1189 1190 1191 1192
	if (!refcount_inc_not_zero(&fp->refcnt))
		return false;

	if (!__sk_filter_charge(sk, fp)) {
		sk_filter_release(fp);
		return false;
	}
	return true;
1193 1194
}

1195
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1196 1197
{
	struct sock_filter *old_prog;
1198
	struct bpf_prog *old_fp;
1199
	int err, new_len, old_len = fp->len;
1200
	bool seen_ld_abs = false;
1201 1202 1203 1204 1205 1206 1207

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1208
		     sizeof(struct bpf_insn));
1209 1210 1211 1212 1213 1214

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1215
			   GFP_KERNEL | __GFP_NOWARN);
1216 1217 1218 1219 1220 1221
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1222 1223
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
				 &seen_ld_abs);
1224 1225 1226 1227 1228
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1229
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1241
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1242 1243
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
				 &seen_ld_abs);
1244
	if (err)
1245
		/* 2nd bpf_convert_filter() can fail only if it fails
1246 1247
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1248
		 * by krealloc().
1249 1250 1251
		 */
		goto out_err_free;

1252
	fp = bpf_prog_select_runtime(fp, &err);
1253 1254
	if (err)
		goto out_err_free;
1255

1256 1257 1258 1259 1260 1261
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1262
	__bpf_prog_release(fp);
1263 1264 1265
	return ERR_PTR(err);
}

1266 1267
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1268 1269 1270
{
	int err;

1271
	fp->bpf_func = NULL;
1272
	fp->jited = 0;
1273

1274
	err = bpf_check_classic(fp->insns, fp->len);
1275
	if (err) {
1276
		__bpf_prog_release(fp);
1277
		return ERR_PTR(err);
1278
	}
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1291 1292 1293
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1294
	bpf_jit_compile(fp);
1295 1296 1297 1298

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1299
	if (!fp->jited)
1300
		fp = bpf_migrate_filter(fp);
1301 1302

	return fp;
1303 1304 1305
}

/**
1306
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1307
 *	@pfp: the unattached filter that is created
1308
 *	@fprog: the filter program
1309
 *
R
Randy Dunlap 已提交
1310
 * Create a filter independent of any socket. We first run some
1311 1312 1313 1314
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1315
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1316
{
1317
	unsigned int fsize = bpf_classic_proglen(fprog);
1318
	struct bpf_prog *fp;
1319 1320

	/* Make sure new filter is there and in the right amounts. */
1321
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1322 1323
		return -EINVAL;

1324
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1325 1326
	if (!fp)
		return -ENOMEM;
1327

1328 1329 1330
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1331 1332 1333 1334 1335
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1336

1337
	/* bpf_prepare_filter() already takes care of freeing
1338 1339
	 * memory in case something goes wrong.
	 */
1340
	fp = bpf_prepare_filter(fp, NULL);
1341 1342
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1343 1344 1345 1346

	*pfp = fp;
	return 0;
}
1347
EXPORT_SYMBOL_GPL(bpf_prog_create);
1348

1349 1350 1351 1352 1353
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1354
 *	@save_orig: save classic BPF program
1355 1356 1357 1358 1359 1360
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1361
			      bpf_aux_classic_check_t trans, bool save_orig)
1362 1363 1364
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1365
	int err;
1366 1367

	/* Make sure new filter is there and in the right amounts. */
1368
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1383 1384 1385 1386 1387 1388 1389 1390
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1401
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1402

1403
void bpf_prog_destroy(struct bpf_prog *fp)
1404
{
1405
	__bpf_prog_release(fp);
1406
}
1407
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1408

1409
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1419
	if (!__sk_filter_charge(sk, fp)) {
1420 1421 1422
		kfree(fp);
		return -ENOMEM;
	}
1423
	refcount_set(&fp->refcnt, 1);
1424

1425 1426
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1427
	rcu_assign_pointer(sk->sk_filter, fp);
1428

1429 1430 1431 1432 1433 1434
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1435 1436 1437 1438 1439 1440 1441 1442
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1443
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1461
{
1462
	unsigned int fsize = bpf_classic_proglen(fprog);
1463
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1464 1465
	int err;

1466
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1467
		return ERR_PTR(-EPERM);
1468

L
Linus Torvalds 已提交
1469
	/* Make sure new filter is there and in the right amounts. */
1470
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1471
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1472

1473
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1474
	if (!prog)
1475
		return ERR_PTR(-ENOMEM);
1476

1477
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1478
		__bpf_prog_free(prog);
1479
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1480 1481
	}

1482
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1483

1484
	err = bpf_prog_store_orig_filter(prog, fprog);
1485
	if (err) {
1486
		__bpf_prog_free(prog);
1487
		return ERR_PTR(-ENOMEM);
1488 1489
	}

1490
	/* bpf_prepare_filter() already takes care of freeing
1491 1492
	 * memory in case something goes wrong.
	 */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1506
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1507 1508 1509 1510
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1511 1512 1513
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1514
	err = __sk_attach_prog(prog, sk);
1515
	if (err < 0) {
1516
		__bpf_prog_release(prog);
1517
		return err;
1518 1519
	}

1520
	return 0;
L
Linus Torvalds 已提交
1521
}
1522
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1523

1524
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525
{
1526
	struct bpf_prog *prog = __get_filter(fprog, sk);
1527
	int err;
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1543
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1544
		return ERR_PTR(-EPERM);
1545

1546
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1557
	err = __sk_attach_prog(prog, sk);
1558
	if (err < 0) {
1559
		bpf_prog_put(prog);
1560
		return err;
1561 1562 1563 1564 1565
	}

	return 0;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1583 1584 1585 1586 1587 1588 1589 1590
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1591

1592 1593 1594 1595 1596 1597
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1598 1599 1600
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1601
	int err = __bpf_try_make_writable(skb, write_len);
1602

1603
	bpf_compute_data_pointers(skb);
1604 1605 1606
	return err;
}

1607 1608 1609 1610 1611
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1612 1613 1614 1615 1616 1617
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1618 1619 1620 1621 1622 1623
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1624 1625
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1626 1627 1628
{
	void *ptr;

1629
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1630
		return -EINVAL;
1631
	if (unlikely(offset > 0xffff))
1632
		return -EFAULT;
1633
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1634 1635
		return -EFAULT;

1636
	ptr = skb->data + offset;
1637
	if (flags & BPF_F_RECOMPUTE_CSUM)
1638
		__skb_postpull_rcsum(skb, ptr, len, offset);
1639 1640 1641

	memcpy(ptr, from, len);

1642
	if (flags & BPF_F_RECOMPUTE_CSUM)
1643
		__skb_postpush_rcsum(skb, ptr, len, offset);
1644 1645
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1646

1647 1648 1649
	return 0;
}

1650
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1651 1652 1653 1654 1655
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1656 1657
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1658 1659 1660
	.arg5_type	= ARG_ANYTHING,
};

1661 1662
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1663 1664 1665
{
	void *ptr;

1666
	if (unlikely(offset > 0xffff))
1667
		goto err_clear;
1668 1669 1670

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1671
		goto err_clear;
1672 1673 1674 1675
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1676 1677 1678
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1679 1680
}

1681
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1682 1683 1684 1685 1686
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1687 1688
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1689 1690
};

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
	   u32, offset, void *, to, u32, len, u32, start_header)
{
	u8 *ptr;

	if (unlikely(offset > 0xffff || len > skb_headlen(skb)))
		goto err_clear;

	switch (start_header) {
	case BPF_HDR_START_MAC:
		ptr = skb_mac_header(skb) + offset;
		break;
	case BPF_HDR_START_NET:
		ptr = skb_network_header(skb) + offset;
		break;
	default:
		goto err_clear;
	}

	if (likely(ptr >= skb_mac_header(skb) &&
		   ptr + len <= skb_tail_pointer(skb))) {
		memcpy(to, ptr, len);
		return 0;
	}

err_clear:
	memset(to, 0, len);
	return -EFAULT;
}

static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
	.func		= bpf_skb_load_bytes_relative,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1754 1755
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1756
{
1757
	__sum16 *ptr;
1758

1759 1760
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1761
	if (unlikely(offset > 0xffff || offset & 1))
1762
		return -EFAULT;
1763
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1764 1765
		return -EFAULT;

1766
	ptr = (__sum16 *)(skb->data + offset);
1767
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1768 1769 1770 1771 1772 1773
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1787
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1798 1799
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1800
{
1801
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1802
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1803
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1804
	__sum16 *ptr;
1805

1806 1807
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1808
		return -EINVAL;
1809
	if (unlikely(offset > 0xffff || offset & 1))
1810
		return -EFAULT;
1811
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1812 1813
		return -EFAULT;

1814
	ptr = (__sum16 *)(skb->data + offset);
1815
	if (is_mmzero && !do_mforce && !*ptr)
1816
		return 0;
1817

1818
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1819 1820 1821 1822 1823 1824
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1835 1836
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1837 1838 1839
	return 0;
}

1840
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1841 1842 1843 1844 1845 1846 1847 1848
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1849 1850
};

1851 1852
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1853
{
1854
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1855
	u32 diff_size = from_size + to_size;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1878
static const struct bpf_func_proto bpf_csum_diff_proto = {
1879 1880
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1881
	.pkt_access	= true,
1882
	.ret_type	= RET_INTEGER,
1883
	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1884
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1885
	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1886
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1887 1888 1889
	.arg5_type	= ARG_ANYTHING,
};

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1910 1911 1912 1913 1914
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1971 1972 1973 1974 1975 1976
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1977 1978 1979 1980 1981 1982 1983 1984
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1985
	if (dev_is_mac_header_xmit(dev))
1986
		return __bpf_redirect_common(skb, dev, flags);
1987 1988
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1989 1990
}

1991
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1992 1993
{
	struct net_device *dev;
1994 1995
	struct sk_buff *clone;
	int ret;
1996

1997 1998 1999
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

2000 2001 2002 2003
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

2004 2005
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
2006 2007
		return -ENOMEM;

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

2019
	return __bpf_redirect(clone, dev, flags);
2020 2021
}

2022
static const struct bpf_func_proto bpf_clone_redirect_proto = {
2023 2024 2025 2026 2027 2028 2029 2030
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2031 2032 2033
struct redirect_info {
	u32 ifindex;
	u32 flags;
2034
	struct bpf_map *map;
2035
	struct bpf_map *map_to_flush;
2036
	unsigned long   map_owner;
2037 2038 2039
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
2040

2041
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2042 2043 2044
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

2045 2046 2047
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

2048 2049
	ri->ifindex = ifindex;
	ri->flags = flags;
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

2066
	return __bpf_redirect(skb, dev, ri->flags);
2067 2068
}

2069
static const struct bpf_func_proto bpf_redirect_proto = {
2070 2071 2072 2073 2074 2075 2076
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);

	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	tcb->bpf.flags = flags;
	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
	.func           = bpf_sk_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2104 2105
BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
	   struct bpf_map *, map, u32, key, u64, flags)
2106
{
2107
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2108

2109
	/* If user passes invalid input drop the packet. */
2110
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2111
		return SK_DROP;
2112

2113
	tcb->bpf.flags = flags;
2114 2115 2116
	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;
2117

2118
	return SK_PASS;
2119 2120
}

2121
struct sock *do_sk_redirect_map(struct sk_buff *skb)
2122
{
2123
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2124

2125
	return tcb->bpf.sk_redir;
2126 2127 2128 2129 2130 2131
}

static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
	.func           = bpf_sk_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
2132 2133
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
2134
	.arg3_type      = ARG_ANYTHING,
2135
	.arg4_type      = ARG_ANYTHING,
2136 2137
};

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	msg->flags = flags;
	msg->sk_redir = __sock_hash_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
	.func           = bpf_msg_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2163 2164 2165 2166
BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, u32, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
2167
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2168 2169 2170
		return SK_DROP;

	msg->flags = flags;
2171 2172 2173
	msg->sk_redir = __sock_map_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;
2174 2175 2176 2177 2178 2179

	return SK_PASS;
}

struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
{
2180
	return msg->sk_redir;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
}

static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
	.func           = bpf_msg_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_ANYTHING,
	.arg4_type      = ARG_ANYTHING,
};

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->apply_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
	.func           = bpf_msg_apply_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->cork_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
	.func           = bpf_msg_cork_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
BPF_CALL_4(bpf_msg_pull_data,
	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
{
	unsigned int len = 0, offset = 0, copy = 0;
	struct scatterlist *sg = msg->sg_data;
	int first_sg, last_sg, i, shift;
	unsigned char *p, *to, *from;
	int bytes = end - start;
	struct page *page;

	if (unlikely(flags || end <= start))
		return -EINVAL;

	/* First find the starting scatterlist element */
	i = msg->sg_start;
	do {
		len = sg[i].length;
		offset += len;
		if (start < offset + len)
			break;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != msg->sg_end);

	if (unlikely(start >= offset + len))
		return -EINVAL;

	if (!msg->sg_copy[i] && bytes <= len)
		goto out;

	first_sg = i;

	/* At this point we need to linearize multiple scatterlist
	 * elements or a single shared page. Either way we need to
	 * copy into a linear buffer exclusively owned by BPF. Then
	 * place the buffer in the scatterlist and fixup the original
	 * entries by removing the entries now in the linear buffer
	 * and shifting the remaining entries. For now we do not try
	 * to copy partial entries to avoid complexity of running out
	 * of sg_entry slots. The downside is reading a single byte
	 * will copy the entire sg entry.
	 */
	do {
		copy += sg[i].length;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
		if (bytes < copy)
			break;
	} while (i != msg->sg_end);
	last_sg = i;

	if (unlikely(copy < end - start))
		return -EINVAL;

	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
	if (unlikely(!page))
		return -ENOMEM;
	p = page_address(page);
	offset = 0;

	i = first_sg;
	do {
		from = sg_virt(&sg[i]);
		len = sg[i].length;
		to = p + offset;

		memcpy(to, from, len);
		offset += len;
		sg[i].length = 0;
		put_page(sg_page(&sg[i]));

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != last_sg);

	sg[first_sg].length = copy;
	sg_set_page(&sg[first_sg], page, copy, 0);

	/* To repair sg ring we need to shift entries. If we only
	 * had a single entry though we can just replace it and
	 * be done. Otherwise walk the ring and shift the entries.
	 */
	shift = last_sg - first_sg - 1;
	if (!shift)
		goto out;

	i = first_sg + 1;
	do {
		int move_from;

		if (i + shift >= MAX_SKB_FRAGS)
			move_from = i + shift - MAX_SKB_FRAGS;
		else
			move_from = i + shift;

		if (move_from == msg->sg_end)
			break;

		sg[i] = sg[move_from];
		sg[move_from].length = 0;
		sg[move_from].page_link = 0;
		sg[move_from].offset = 0;

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (1);
	msg->sg_end -= shift;
	if (msg->sg_end < 0)
		msg->sg_end += MAX_SKB_FRAGS;
out:
	msg->data = sg_virt(&sg[i]) + start - offset;
	msg->data_end = msg->data + bytes;

	return 0;
}

static const struct bpf_func_proto bpf_msg_pull_data_proto = {
	.func		= bpf_msg_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2351
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2352
{
2353
	return task_get_classid(skb);
2354 2355 2356 2357 2358 2359 2360 2361 2362
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2363
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2364
{
2365
	return dst_tclassid(skb);
2366 2367 2368 2369 2370 2371 2372 2373 2374
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2375
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2376 2377 2378 2379 2380 2381
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
2382
	return skb_get_hash(skb);
2383 2384 2385 2386 2387 2388 2389 2390 2391
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2426 2427
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
2428
{
2429
	int ret;
2430 2431 2432 2433 2434

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

2435
	bpf_push_mac_rcsum(skb);
2436
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2437 2438
	bpf_pull_mac_rcsum(skb);

2439
	bpf_compute_data_pointers(skb);
2440
	return ret;
2441 2442
}

2443
static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2444 2445 2446 2447 2448 2449 2450 2451
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2452
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2453
{
2454
	int ret;
2455

2456
	bpf_push_mac_rcsum(skb);
2457
	ret = skb_vlan_pop(skb);
2458 2459
	bpf_pull_mac_rcsum(skb);

2460
	bpf_compute_data_pointers(skb);
2461
	return ret;
2462 2463
}

2464
static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2465 2466 2467 2468 2469 2470
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2543
	u32 off = skb_mac_header_len(skb);
2544 2545
	int ret;

2546 2547 2548 2549
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2550 2551 2552 2553 2554 2555 2556 2557 2558
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2559 2560
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2561 2562
		/* SKB_GSO_TCPV4 needs to be changed into
		 * SKB_GSO_TCPV6.
2563
		 */
2564 2565 2566
		if (shinfo->gso_type & SKB_GSO_TCPV4) {
			shinfo->gso_type &= ~SKB_GSO_TCPV4;
			shinfo->gso_type |=  SKB_GSO_TCPV6;
2567 2568 2569
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
2570
		skb_decrease_gso_size(shinfo, len_diff);
2571
		/* Header must be checked, and gso_segs recomputed. */
2572 2573
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2585
	u32 off = skb_mac_header_len(skb);
2586 2587
	int ret;

2588 2589 2590 2591
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2592 2593 2594 2595 2596 2597 2598 2599 2600
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2601 2602
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2603 2604
		/* SKB_GSO_TCPV6 needs to be changed into
		 * SKB_GSO_TCPV4.
2605
		 */
2606 2607 2608
		if (shinfo->gso_type & SKB_GSO_TCPV6) {
			shinfo->gso_type &= ~SKB_GSO_TCPV6;
			shinfo->gso_type |=  SKB_GSO_TCPV4;
2609 2610 2611
		}

		/* Due to IPv4 header, MSS can be upgraded. */
2612
		skb_increase_gso_size(shinfo, len_diff);
2613
		/* Header must be checked, and gso_segs recomputed. */
2614 2615
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2639 2640
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
2665
	bpf_compute_data_pointers(skb);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2678
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2679 2680
{
	/* We only allow a restricted subset to be changed for now. */
2681 2682
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2714 2715 2716 2717
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2718 2719 2720 2721 2722 2723 2724 2725 2726
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2727 2728
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2729
		/* Due to header grow, MSS needs to be downgraded. */
2730
		skb_decrease_gso_size(shinfo, len_diff);
2731
		/* Header must be checked, and gso_segs recomputed. */
2732 2733
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2744 2745 2746 2747
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2748 2749 2750 2751 2752 2753 2754 2755 2756
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2757 2758
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2759
		/* Due to header shrink, MSS can be upgraded. */
2760
		skb_increase_gso_size(shinfo, len_diff);
2761
		/* Header must be checked, and gso_segs recomputed. */
2762 2763
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
	return skb->dev->mtu + skb->dev->hard_header_len;
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

2802
	bpf_compute_data_pointers(skb);
2803
	return ret;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2855 2856
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

2893
	bpf_compute_data_pointers(skb);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

2933
	bpf_compute_data_pointers(skb);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2946 2947 2948 2949 2950 2951
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
{
	return xdp_data_meta_unsupported(xdp) ? 0 :
	       xdp->data - xdp->data_meta;
}

2952 2953
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
2954
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2955
	unsigned long metalen = xdp_get_metalen(xdp);
2956
	void *data_start = xdp_frame_end + metalen;
2957 2958
	void *data = xdp->data + offset;

2959
	if (unlikely(data < data_start ||
2960 2961 2962
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

2963 2964 2965 2966
	if (metalen)
		memmove(xdp->data_meta + offset,
			xdp->data_meta, metalen);
	xdp->data_meta += offset;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
{
	void *data_end = xdp->data_end + offset;

	/* only shrinking is allowed for now. */
	if (unlikely(offset >= 0))
		return -EINVAL;

	if (unlikely(data_end < xdp->data + ETH_HLEN))
		return -EINVAL;

	xdp->data_end = data_end;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
	.func		= bpf_xdp_adjust_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3004 3005
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
{
3006
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3007 3008 3009 3010 3011
	void *meta = xdp->data_meta + offset;
	unsigned long metalen = xdp->data - meta;

	if (xdp_data_meta_unsupported(xdp))
		return -ENOTSUPP;
3012
	if (unlikely(meta < xdp_frame_end ||
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		     meta > xdp->data))
		return -EINVAL;
	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
		     (metalen > 32)))
		return -EACCES;

	xdp->data_meta = meta;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
	.func		= bpf_xdp_adjust_meta,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3032 3033 3034 3035
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
3036
{
3037
	struct xdp_frame *xdpf;
3038 3039 3040 3041
	int err;

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		return -EOPNOTSUPP;
3042
	}
3043

3044 3045 3046 3047 3048
	xdpf = convert_to_xdp_frame(xdp);
	if (unlikely(!xdpf))
		return -EOVERFLOW;

	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
3049 3050
	if (err)
		return err;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	dev->netdev_ops->ndo_xdp_flush(dev);
	return 0;
}

static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
			    struct bpf_map *map,
			    struct xdp_buff *xdp,
			    u32 index)
{
	int err;

3062 3063
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP: {
3064
		struct net_device *dev = fwd;
3065
		struct xdp_frame *xdpf;
3066 3067 3068 3069

		if (!dev->netdev_ops->ndo_xdp_xmit)
			return -EOPNOTSUPP;

3070 3071 3072 3073 3074 3075 3076 3077
		xdpf = convert_to_xdp_frame(xdp);
		if (unlikely(!xdpf))
			return -EOVERFLOW;

		/* TODO: move to inside map code instead, for bulk support
		 * err = dev_map_enqueue(dev, xdp);
		 */
		err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
3078 3079
		if (err)
			return err;
3080
		__dev_map_insert_ctx(map, index);
3081 3082 3083
		break;
	}
	case BPF_MAP_TYPE_CPUMAP: {
3084 3085 3086 3087 3088 3089
		struct bpf_cpu_map_entry *rcpu = fwd;

		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
		if (err)
			return err;
		__cpu_map_insert_ctx(map, index);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
		break;
	}
	case BPF_MAP_TYPE_XSKMAP: {
		struct xdp_sock *xs = fwd;

		err = __xsk_map_redirect(map, xdp, xs);
		return err;
	}
	default:
		break;
3100
	}
3101
	return 0;
3102 3103
}

3104 3105 3106 3107 3108 3109
void xdp_do_flush_map(void)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct bpf_map *map = ri->map_to_flush;

	ri->map_to_flush = NULL;
3110 3111 3112 3113 3114 3115 3116 3117
	if (map) {
		switch (map->map_type) {
		case BPF_MAP_TYPE_DEVMAP:
			__dev_map_flush(map);
			break;
		case BPF_MAP_TYPE_CPUMAP:
			__cpu_map_flush(map);
			break;
3118 3119 3120
		case BPF_MAP_TYPE_XSKMAP:
			__xsk_map_flush(map);
			break;
3121 3122 3123 3124
		default:
			break;
		}
	}
3125 3126 3127
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

3128 3129 3130 3131 3132 3133 3134
static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
{
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP:
		return __dev_map_lookup_elem(map, index);
	case BPF_MAP_TYPE_CPUMAP:
		return __cpu_map_lookup_elem(map, index);
3135 3136
	case BPF_MAP_TYPE_XSKMAP:
		return __xsk_map_lookup_elem(map, index);
3137 3138 3139 3140 3141
	default:
		return NULL;
	}
}

3142 3143 3144 3145 3146 3147
static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
				   unsigned long aux)
{
	return (unsigned long)xdp_prog->aux != aux;
}

3148 3149
static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
			       struct bpf_prog *xdp_prog)
3150 3151
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3152
	unsigned long map_owner = ri->map_owner;
3153
	struct bpf_map *map = ri->map;
3154
	u32 index = ri->ifindex;
3155
	void *fwd = NULL;
3156
	int err;
3157 3158 3159

	ri->ifindex = 0;
	ri->map = NULL;
3160
	ri->map_owner = 0;
3161

3162
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3163 3164 3165 3166
		err = -EFAULT;
		map = NULL;
		goto err;
	}
3167

3168
	fwd = __xdp_map_lookup_elem(map, index);
3169 3170
	if (!fwd) {
		err = -EINVAL;
3171
		goto err;
3172
	}
3173
	if (ri->map_to_flush && ri->map_to_flush != map)
3174 3175
		xdp_do_flush_map();

3176
	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3177 3178 3179 3180
	if (unlikely(err))
		goto err;

	ri->map_to_flush = map;
3181
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3182 3183
	return 0;
err:
3184
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3185 3186 3187
	return err;
}

3188 3189
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
3190 3191
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3192
	struct net_device *fwd;
W
William Tu 已提交
3193
	u32 index = ri->ifindex;
3194
	int err;
3195

3196 3197 3198
	if (ri->map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog);

W
William Tu 已提交
3199
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3200
	ri->ifindex = 0;
3201
	if (unlikely(!fwd)) {
3202
		err = -EINVAL;
3203
		goto err;
3204 3205
	}

3206
	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3207 3208 3209 3210 3211 3212 3213
	if (unlikely(err))
		goto err;

	_trace_xdp_redirect(dev, xdp_prog, index);
	return 0;
err:
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3214
	return err;
3215 3216 3217
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
{
	unsigned int len;

	if (unlikely(!(fwd->flags & IFF_UP)))
		return -ENETDOWN;

	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
	if (skb->len > len)
		return -EMSGSIZE;

	return 0;
}

3232 3233
static int xdp_do_generic_redirect_map(struct net_device *dev,
				       struct sk_buff *skb,
3234
				       struct xdp_buff *xdp,
3235
				       struct bpf_prog *xdp_prog)
3236 3237
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3238
	unsigned long map_owner = ri->map_owner;
3239
	struct bpf_map *map = ri->map;
W
William Tu 已提交
3240
	u32 index = ri->ifindex;
3241
	void *fwd = NULL;
3242
	int err = 0;
3243 3244

	ri->ifindex = 0;
3245
	ri->map = NULL;
3246
	ri->map_owner = 0;
3247

3248 3249 3250 3251
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
		err = -EFAULT;
		map = NULL;
		goto err;
3252
	}
3253
	fwd = __xdp_map_lookup_elem(map, index);
3254 3255
	if (unlikely(!fwd)) {
		err = -EINVAL;
3256
		goto err;
3257 3258
	}

3259 3260 3261 3262
	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
		if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
			goto err;
		skb->dev = fwd;
3263 3264 3265 3266 3267 3268 3269 3270
		generic_xdp_tx(skb, xdp_prog);
	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
		struct xdp_sock *xs = fwd;

		err = xsk_generic_rcv(xs, xdp);
		if (err)
			goto err;
		consume_skb(skb);
3271 3272 3273
	} else {
		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
		err = -EBADRQC;
3274
		goto err;
3275
	}
3276

3277 3278 3279 3280 3281 3282 3283 3284
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
	return 0;
err:
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
	return err;
}

int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3285
			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3286 3287 3288 3289 3290 3291 3292
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	u32 index = ri->ifindex;
	struct net_device *fwd;
	int err = 0;

	if (ri->map)
3293
		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3294 3295 3296 3297 3298

	ri->ifindex = 0;
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
	if (unlikely(!fwd)) {
		err = -EINVAL;
3299
		goto err;
3300 3301
	}

3302 3303 3304
	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
		goto err;

3305
	skb->dev = fwd;
3306
	_trace_xdp_redirect(dev, xdp_prog, index);
3307
	generic_xdp_tx(skb, xdp_prog);
3308 3309
	return 0;
err:
3310
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3311
	return err;
3312 3313 3314
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

3315 3316 3317 3318 3319 3320 3321 3322 3323
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
3324
	ri->map = NULL;
3325
	ri->map_owner = 0;
3326

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

3338
BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3339
	   unsigned long, map_owner)
3340 3341 3342 3343 3344 3345 3346 3347 3348
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	ri->map = map;
3349
	ri->map_owner = map_owner;
3350 3351 3352 3353

	return XDP_REDIRECT;
}

3354 3355 3356
/* Note, arg4 is hidden from users and populated by the verifier
 * with the right pointer.
 */
3357 3358 3359 3360 3361 3362 3363 3364 3365
static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
	.func           = bpf_xdp_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

3366
bool bpf_helper_changes_pkt_data(void *func)
3367
{
3368 3369 3370 3371
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
3372
	    func == bpf_skb_change_head ||
3373
	    func == bpf_skb_change_tail ||
3374
	    func == bpf_skb_adjust_room ||
3375
	    func == bpf_skb_pull_data ||
3376
	    func == bpf_clone_redirect ||
3377
	    func == bpf_l3_csum_replace ||
3378
	    func == bpf_l4_csum_replace ||
3379
	    func == bpf_xdp_adjust_head ||
3380
	    func == bpf_xdp_adjust_meta ||
3381 3382
	    func == bpf_msg_pull_data ||
	    func == bpf_xdp_adjust_tail)
3383 3384
		return true;

3385 3386 3387
	return false;
}

3388
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3389
				  unsigned long off, unsigned long len)
3390
{
3391
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3392 3393 3394 3395 3396 3397 3398 3399 3400

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

3401 3402
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3422
	.arg4_type	= ARG_PTR_TO_MEM,
3423
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3424 3425
};

3426 3427 3428 3429 3430
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

3431 3432
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
3433
{
3434 3435
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
3436 3437
	void *to_orig = to;
	int err;
3438

3439 3440 3441 3442 3443 3444 3445 3446
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
3447
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3448
		err = -EINVAL;
3449
		switch (size) {
3450
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3451
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3452
			goto set_compat;
3453 3454 3455 3456 3457
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
3458
				goto err_clear;
3459
set_compat:
3460 3461 3462
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
3463
			goto err_clear;
3464 3465
		}
	}
3466 3467

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3468 3469 3470
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

3471
	if (flags & BPF_F_TUNINFO_IPV6) {
3472 3473
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
3474 3475
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
3476
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3477
	}
3478 3479

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3480
		memcpy(to_orig, to, size);
3481 3482

	return 0;
3483 3484 3485
err_clear:
	memset(to_orig, 0, size);
	return err;
3486 3487
}

3488
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3489 3490 3491 3492
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3493 3494
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3495 3496 3497
	.arg4_type	= ARG_ANYTHING,
};

3498
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3499 3500
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3501
	int err;
3502 3503

	if (unlikely(!info ||
3504 3505 3506 3507 3508 3509 3510 3511
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
3512 3513

	ip_tunnel_info_opts_get(to, info);
3514 3515
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
3516 3517

	return info->options_len;
3518 3519 3520
err_clear:
	memset(to, 0, size);
	return err;
3521 3522 3523 3524 3525 3526 3527
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3528 3529
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3530 3531
};

3532 3533
static struct metadata_dst __percpu *md_dst;

3534 3535
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3536 3537
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
3538
	u8 compat[sizeof(struct bpf_tunnel_key)];
3539 3540
	struct ip_tunnel_info *info;

3541
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3542
			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3543
		return -EINVAL;
3544 3545
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
3546
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3547
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3548 3549 3550 3551 3552 3553
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
3554
			from = (const struct bpf_tunnel_key *) compat;
3555 3556 3557 3558 3559
			break;
		default:
			return -EINVAL;
		}
	}
3560 3561
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
3562
		return -EINVAL;
3563 3564 3565 3566 3567 3568

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
W
William Tu 已提交
3569
	memset(info, 0, sizeof(*info));
3570
	info->mode = IP_TUNNEL_INFO_TX;
3571

3572
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3573 3574
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
W
William Tu 已提交
3575 3576
	if (flags & BPF_F_ZERO_CSUM_TX)
		info->key.tun_flags &= ~TUNNEL_CSUM;
3577 3578
	if (flags & BPF_F_SEQ_NUMBER)
		info->key.tun_flags |= TUNNEL_SEQ;
3579

3580
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3581 3582 3583 3584 3585 3586 3587
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
3588 3589
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
3590 3591 3592
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
3593 3594 3595 3596

	return 0;
}

3597
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3598 3599 3600 3601
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3602 3603
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3604 3605 3606
	.arg4_type	= ARG_ANYTHING,
};

3607 3608
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
3609 3610 3611 3612 3613 3614
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
3615
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3628 3629
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3630 3631 3632 3633
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3634 3635
{
	if (!md_dst) {
3636 3637 3638 3639 3640 3641
		struct metadata_dst __percpu *tmp;

		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
						METADATA_IP_TUNNEL,
						GFP_KERNEL);
		if (!tmp)
3642
			return NULL;
3643 3644
		if (cmpxchg(&md_dst, NULL, tmp))
			metadata_dst_free_percpu(tmp);
3645
	}
3646 3647 3648 3649 3650 3651 3652 3653 3654

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
3655 3656
}

3657 3658
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
3659 3660 3661 3662 3663
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

3664
	sk = skb_to_full_sk(skb);
3665 3666
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
3667
	if (unlikely(idx >= array->map.max_entries))
3668 3669
		return -E2BIG;

3670
	cgrp = READ_ONCE(array->ptrs[idx]);
3671 3672 3673
	if (unlikely(!cgrp))
		return -EAGAIN;

3674
	return sk_under_cgroup_hierarchy(sk, cgrp);
3675 3676
}

3677 3678
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
3679 3680 3681 3682 3683 3684 3685
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

3686 3687 3688 3689 3690 3691 3692
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

3693 3694
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3695 3696 3697 3698 3699 3700 3701 3702
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
3703 3704
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
3705 3706 3707 3708 3709 3710 3711 3712 3713
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3714
	.arg4_type	= ARG_PTR_TO_MEM,
3715
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3716 3717
};

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
3792
#ifdef CONFIG_INET
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	} else if (level == SOL_IP) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct inet_sock *inet = inet_sk(sk);

				if (val == -1)
					val = 0;
				inet->tos = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct ipv6_pinfo *np = inet6_sk(sk);

				if (val == -1)
					val = 0;
				np->tclass = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
#endif
3837 3838
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3839 3840
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];
3841
			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3842 3843 3844 3845

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
3846 3847
			ret = tcp_set_congestion_control(sk, name, false,
							 reinit);
3848
		} else {
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
3863 3864 3865 3866 3867 3868 3869
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
3870
				break;
3871 3872 3873
			default:
				ret = -EINVAL;
			}
3874 3875
		}
#endif
3876 3877 3878 3879 3880 3881 3882 3883
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
3884
	.gpl_only	= false,
3885 3886 3887 3888 3889 3890 3891 3892
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;

	if (!sk_fullsock(sk))
		goto err_clear;

#ifdef CONFIG_INET
	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
		if (optname == TCP_CONGESTION) {
			struct inet_connection_sock *icsk = inet_csk(sk);

			if (!icsk->icsk_ca_ops || optlen <= 1)
				goto err_clear;
			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
			optval[optlen - 1] = 0;
		} else {
			goto err_clear;
		}
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	} else if (level == SOL_IP) {
		struct inet_sock *inet = inet_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			*((int *)optval) = (int)inet->tos;
			break;
		default:
			goto err_clear;
		}
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		struct ipv6_pinfo *np = inet6_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			*((int *)optval) = (int)np->tclass;
			break;
		default:
			goto err_clear;
		}
#endif
3943 3944 3945
	} else {
		goto err_clear;
	}
3946
	return 0;
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
#endif
err_clear:
	memset(optval, 0, optlen);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_getsockopt_proto = {
	.func		= bpf_getsockopt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3964 3965 3966 3967 3968 3969
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
	   int, argval)
{
	struct sock *sk = bpf_sock->sk;
	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;

3970
	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		return -EINVAL;

	if (val)
		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;

	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
}

static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
	.func		= bpf_sock_ops_cb_flags_set,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

A
Andrey Ignatov 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
EXPORT_SYMBOL_GPL(ipv6_bpf_stub);

BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
	   int, addr_len)
{
#ifdef CONFIG_INET
	struct sock *sk = ctx->sk;
	int err;

	/* Binding to port can be expensive so it's prohibited in the helper.
	 * Only binding to IP is supported.
	 */
	err = -EINVAL;
	if (addr->sa_family == AF_INET) {
		if (addr_len < sizeof(struct sockaddr_in))
			return err;
		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
			return err;
		return __inet_bind(sk, addr, addr_len, true, false);
#if IS_ENABLED(CONFIG_IPV6)
	} else if (addr->sa_family == AF_INET6) {
		if (addr_len < SIN6_LEN_RFC2133)
			return err;
		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
			return err;
		/* ipv6_bpf_stub cannot be NULL, since it's called from
		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
		 */
		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
#endif /* CONFIG_IPV6 */
	}
#endif /* CONFIG_INET */

	return -EAFNOSUPPORT;
}

static const struct bpf_func_proto bpf_bind_proto = {
	.func		= bpf_bind,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
};

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
#ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
{
	const struct sec_path *sp = skb_sec_path(skb);
	const struct xfrm_state *x;

	if (!sp || unlikely(index >= sp->len || flags))
		goto err_clear;

	x = sp->xvec[index];

	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
		goto err_clear;

	to->reqid = x->props.reqid;
	to->spi = x->id.spi;
	to->family = x->props.family;
	if (to->family == AF_INET6) {
		memcpy(to->remote_ipv6, x->props.saddr.a6,
		       sizeof(to->remote_ipv6));
	} else {
		to->remote_ipv4 = x->props.saddr.a4;
	}

	return 0;
err_clear:
	memset(to, 0, size);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
	.func		= bpf_skb_get_xfrm_state,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};
#endif

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
				  const struct neighbour *neigh,
				  const struct net_device *dev)
{
	memcpy(params->dmac, neigh->ha, ETH_ALEN);
	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
	params->h_vlan_TCI = 0;
	params->h_vlan_proto = 0;

	return dev->ifindex;
}
#endif

#if IS_ENABLED(CONFIG_INET)
static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
			       u32 flags)
{
	struct in_device *in_dev;
	struct neighbour *neigh;
	struct net_device *dev;
	struct fib_result res;
	struct fib_nh *nh;
	struct flowi4 fl4;
	int err;

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	/* verify forwarding is enabled on this interface */
	in_dev = __in_dev_get_rcu(dev);
	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
		return 0;

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl4.flowi4_iif = 1;
		fl4.flowi4_oif = params->ifindex;
	} else {
		fl4.flowi4_iif = params->ifindex;
		fl4.flowi4_oif = 0;
	}
	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
	fl4.flowi4_flags = 0;

	fl4.flowi4_proto = params->l4_protocol;
	fl4.daddr = params->ipv4_dst;
	fl4.saddr = params->ipv4_src;
	fl4.fl4_sport = params->sport;
	fl4.fl4_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib_table *tb;

		tb = fib_get_table(net, tbid);
		if (unlikely(!tb))
			return 0;

		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
	} else {
		fl4.flowi4_mark = 0;
		fl4.flowi4_secid = 0;
		fl4.flowi4_tun_key.tun_id = 0;
		fl4.flowi4_uid = sock_net_uid(net, NULL);

		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
	}

	if (err || res.type != RTN_UNICAST)
		return 0;

	if (res.fi->fib_nhs > 1)
		fib_select_path(net, &res, &fl4, NULL);

	nh = &res.fi->fib_nh[res.nh_sel];

	/* do not handle lwt encaps right now */
	if (nh->nh_lwtstate)
		return 0;

	dev = nh->nh_dev;
	if (unlikely(!dev))
		return 0;

	if (nh->nh_gw)
		params->ipv4_dst = nh->nh_gw;

	params->rt_metric = res.fi->fib_priority;

	/* xdp and cls_bpf programs are run in RCU-bh so
	 * rcu_read_lock_bh is not needed here
	 */
	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
	if (neigh)
		return bpf_fib_set_fwd_params(params, neigh, dev);

	return 0;
}
#endif

#if IS_ENABLED(CONFIG_IPV6)
static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
			       u32 flags)
{
	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
	struct neighbour *neigh;
	struct net_device *dev;
	struct inet6_dev *idev;
	struct fib6_info *f6i;
	struct flowi6 fl6;
	int strict = 0;
	int oif;

	/* link local addresses are never forwarded */
	if (rt6_need_strict(dst) || rt6_need_strict(src))
		return 0;

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	idev = __in6_dev_get_safely(dev);
	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
		return 0;

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl6.flowi6_iif = 1;
		oif = fl6.flowi6_oif = params->ifindex;
	} else {
		oif = fl6.flowi6_iif = params->ifindex;
		fl6.flowi6_oif = 0;
		strict = RT6_LOOKUP_F_HAS_SADDR;
	}
	fl6.flowlabel = params->flowlabel;
	fl6.flowi6_scope = 0;
	fl6.flowi6_flags = 0;
	fl6.mp_hash = 0;

	fl6.flowi6_proto = params->l4_protocol;
	fl6.daddr = *dst;
	fl6.saddr = *src;
	fl6.fl6_sport = params->sport;
	fl6.fl6_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib6_table *tb;

		tb = ipv6_stub->fib6_get_table(net, tbid);
		if (unlikely(!tb))
			return 0;

		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
	} else {
		fl6.flowi6_mark = 0;
		fl6.flowi6_secid = 0;
		fl6.flowi6_tun_key.tun_id = 0;
		fl6.flowi6_uid = sock_net_uid(net, NULL);

		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
	}

	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
		return 0;

	if (unlikely(f6i->fib6_flags & RTF_REJECT ||
	    f6i->fib6_type != RTN_UNICAST))
		return 0;

	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
						       fl6.flowi6_oif, NULL,
						       strict);

	if (f6i->fib6_nh.nh_lwtstate)
		return 0;

	if (f6i->fib6_flags & RTF_GATEWAY)
		*dst = f6i->fib6_nh.nh_gw;

	dev = f6i->fib6_nh.nh_dev;
	params->rt_metric = f6i->fib6_metric;

	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
	 * because we need to get nd_tbl via the stub
	 */
	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
				      ndisc_hashfn, dst, dev);
	if (neigh)
		return bpf_fib_set_fwd_params(params, neigh, dev);

	return 0;
}
#endif

BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
	if (plen < sizeof(*params))
		return -EINVAL;

	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
					   flags);
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
					   flags);
#endif
	}
	return 0;
}

static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
	.func		= bpf_xdp_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
	if (plen < sizeof(*params))
		return -EINVAL;

	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
		return bpf_ipv4_fib_lookup(dev_net(skb->dev), params, flags);
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
		return bpf_ipv6_fib_lookup(dev_net(skb->dev), params, flags);
#endif
	}
	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
	.func		= bpf_skb_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

4335
static const struct bpf_func_proto *
4336
bpf_base_func_proto(enum bpf_func_id func_id)
4337 4338 4339 4340 4341 4342 4343 4344
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
4345 4346
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
4347
	case BPF_FUNC_get_smp_processor_id:
4348
		return &bpf_get_raw_smp_processor_id_proto;
4349 4350
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
4351 4352
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
4353 4354
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
4355
	case BPF_FUNC_trace_printk:
4356 4357
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
4358 4359 4360 4361 4362
	default:
		return NULL;
	}
}

4363
static const struct bpf_func_proto *
4364
sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

A
Andrey Ignatov 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385
static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
A
Andrey Ignatov 已提交
4386 4387 4388 4389 4390 4391 4392 4393
	case BPF_FUNC_bind:
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_CONNECT:
		case BPF_CGROUP_INET6_CONNECT:
			return &bpf_bind_proto;
		default:
			return NULL;
		}
A
Andrey Ignatov 已提交
4394 4395 4396 4397 4398
	default:
		return bpf_base_func_proto(func_id);
	}
}

4399
static const struct bpf_func_proto *
4400
sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4401 4402 4403 4404
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4405 4406
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4407 4408
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4409 4410
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4411 4412 4413 4414 4415
	default:
		return bpf_base_func_proto(func_id);
	}
}

4416
static const struct bpf_func_proto *
4417
tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4418 4419 4420 4421
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
4422 4423
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4424 4425
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4426 4427
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
4428 4429
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
4430 4431
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
4432 4433 4434 4435
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
4436 4437
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
4438 4439
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
4440 4441 4442 4443
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
4444 4445
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
4446 4447
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
4448 4449
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
4450 4451
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
4452 4453 4454
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
4455 4456 4457 4458 4459
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
4460 4461
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
4462 4463
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
4464 4465
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
4466 4467
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
4468 4469
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
4470
	case BPF_FUNC_perf_event_output:
4471
		return &bpf_skb_event_output_proto;
4472 4473
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
4474 4475
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
4476 4477
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4478 4479
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4480 4481 4482 4483
#ifdef CONFIG_XFRM
	case BPF_FUNC_skb_get_xfrm_state:
		return &bpf_skb_get_xfrm_state_proto;
#endif
4484 4485
	case BPF_FUNC_fib_lookup:
		return &bpf_skb_fib_lookup_proto;
4486
	default:
4487
		return bpf_base_func_proto(func_id);
4488 4489 4490
	}
}

4491
static const struct bpf_func_proto *
4492
xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4493
{
4494 4495 4496
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
4497 4498
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
4499 4500
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
4501 4502
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
4503 4504
	case BPF_FUNC_xdp_adjust_meta:
		return &bpf_xdp_adjust_meta_proto;
4505 4506
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
4507
	case BPF_FUNC_redirect_map:
4508
		return &bpf_xdp_redirect_map_proto;
4509 4510
	case BPF_FUNC_xdp_adjust_tail:
		return &bpf_xdp_adjust_tail_proto;
4511 4512
	case BPF_FUNC_fib_lookup:
		return &bpf_xdp_fib_lookup_proto;
4513
	default:
4514
		return bpf_base_func_proto(func_id);
4515
	}
4516 4517
}

4518
static const struct bpf_func_proto *
4519
lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
4541
		return bpf_base_func_proto(func_id);
4542 4543 4544
	}
}

4545
static const struct bpf_func_proto *
4546
sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4547 4548 4549 4550
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
4551 4552
	case BPF_FUNC_getsockopt:
		return &bpf_getsockopt_proto;
4553 4554
	case BPF_FUNC_sock_ops_cb_flags_set:
		return &bpf_sock_ops_cb_flags_set_proto;
4555 4556
	case BPF_FUNC_sock_map_update:
		return &bpf_sock_map_update_proto;
4557 4558
	case BPF_FUNC_sock_hash_update:
		return &bpf_sock_hash_update_proto;
4559 4560 4561 4562 4563
	default:
		return bpf_base_func_proto(func_id);
	}
}

4564 4565
static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4566 4567 4568 4569
{
	switch (func_id) {
	case BPF_FUNC_msg_redirect_map:
		return &bpf_msg_redirect_map_proto;
4570 4571
	case BPF_FUNC_msg_redirect_hash:
		return &bpf_msg_redirect_hash_proto;
4572 4573
	case BPF_FUNC_msg_apply_bytes:
		return &bpf_msg_apply_bytes_proto;
4574 4575
	case BPF_FUNC_msg_cork_bytes:
		return &bpf_msg_cork_bytes_proto;
4576 4577
	case BPF_FUNC_msg_pull_data:
		return &bpf_msg_pull_data_proto;
4578 4579 4580 4581 4582
	default:
		return bpf_base_func_proto(func_id);
	}
}

4583 4584
static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4585 4586
{
	switch (func_id) {
4587 4588
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
4589 4590
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4591 4592 4593 4594 4595 4596
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
4597 4598 4599 4600
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4601 4602
	case BPF_FUNC_sk_redirect_map:
		return &bpf_sk_redirect_map_proto;
4603 4604
	case BPF_FUNC_sk_redirect_hash:
		return &bpf_sk_redirect_hash_proto;
4605 4606 4607 4608 4609
	default:
		return bpf_base_func_proto(func_id);
	}
}

4610
static const struct bpf_func_proto *
4611
lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
4641
		return lwt_inout_func_proto(func_id, prog);
4642 4643 4644
	}
}

4645
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
4646
				    const struct bpf_prog *prog,
4647
				    struct bpf_insn_access_aux *info)
4648
{
4649
	const int size_default = sizeof(__u32);
4650

4651 4652
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
4653

4654
	/* The verifier guarantees that size > 0. */
4655 4656
	if (off % size != 0)
		return false;
4657 4658

	switch (off) {
4659 4660
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
4661 4662
			return false;
		break;
4663 4664 4665 4666
	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
4667
	case bpf_ctx_range(struct __sk_buff, data):
4668
	case bpf_ctx_range(struct __sk_buff, data_meta):
4669 4670
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
4671
			return false;
4672 4673
		break;
	default:
4674
		/* Only narrow read access allowed for now. */
4675
		if (type == BPF_WRITE) {
4676
			if (size != size_default)
4677 4678
				return false;
		} else {
4679 4680
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4681
				return false;
4682
		}
4683
	}
4684 4685 4686 4687

	return true;
}

4688
static bool sk_filter_is_valid_access(int off, int size,
4689
				      enum bpf_access_type type,
4690
				      const struct bpf_prog *prog,
4691
				      struct bpf_insn_access_aux *info)
4692
{
4693
	switch (off) {
4694 4695
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
4696
	case bpf_ctx_range(struct __sk_buff, data_meta):
4697
	case bpf_ctx_range(struct __sk_buff, data_end):
4698
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4699
		return false;
4700
	}
4701

4702 4703
	if (type == BPF_WRITE) {
		switch (off) {
4704
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4705 4706 4707 4708 4709 4710
			break;
		default:
			return false;
		}
	}

4711
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4712 4713
}

4714 4715
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
4716
				const struct bpf_prog *prog,
4717
				struct bpf_insn_access_aux *info)
4718 4719
{
	switch (off) {
4720
	case bpf_ctx_range(struct __sk_buff, tc_classid):
4721
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4722
	case bpf_ctx_range(struct __sk_buff, data_meta):
4723 4724 4725 4726 4727
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
4728 4729 4730
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4731 4732 4733 4734 4735 4736
			break;
		default:
			return false;
		}
	}

4737 4738 4739 4740 4741 4742 4743 4744 4745
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

4746
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4747 4748
}

A
Andrey Ignatov 已提交
4749 4750 4751 4752 4753

/* Attach type specific accesses */
static bool __sock_filter_check_attach_type(int off,
					    enum bpf_access_type access_type,
					    enum bpf_attach_type attach_type)
4754
{
A
Andrey Ignatov 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	switch (off) {
	case offsetof(struct bpf_sock, bound_dev_if):
	case offsetof(struct bpf_sock, mark):
	case offsetof(struct bpf_sock, priority):
		switch (attach_type) {
		case BPF_CGROUP_INET_SOCK_CREATE:
			goto full_access;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_ip4):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		switch (attach_type) {
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_port):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
4784 4785 4786 4787
		default:
			return false;
		}
	}
A
Andrey Ignatov 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
read_only:
	return access_type == BPF_READ;
full_access:
	return true;
}

static bool __sock_filter_check_size(int off, int size,
				     struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);
4798

A
Andrey Ignatov 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	switch (off) {
	case bpf_ctx_range(struct bpf_sock, src_ip4):
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		bpf_ctx_record_field_size(info, size_default);
		return bpf_ctx_narrow_access_ok(off, size, size_default);
	}

	return size == size_default;
}

static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
					const struct bpf_prog *prog,
					struct bpf_insn_access_aux *info)
{
	if (off < 0 || off >= sizeof(struct bpf_sock))
4815 4816 4817
		return false;
	if (off % size != 0)
		return false;
A
Andrey Ignatov 已提交
4818 4819 4820 4821
	if (!__sock_filter_check_attach_type(off, type,
					     prog->expected_attach_type))
		return false;
	if (!__sock_filter_check_size(off, size, info))
4822 4823 4824 4825
		return false;
	return true;
}

4826 4827
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
				const struct bpf_prog *prog, int drop_verdict)
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
4854
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
static int bpf_gen_ld_abs(const struct bpf_insn *orig,
			  struct bpf_insn *insn_buf)
{
	bool indirect = BPF_MODE(orig->code) == BPF_IND;
	struct bpf_insn *insn = insn_buf;

	/* We're guaranteed here that CTX is in R6. */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
		if (orig->imm)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
	}

	switch (BPF_SIZE(orig->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
		break;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
	*insn++ = BPF_EXIT_INSN();

	return insn - insn_buf;
}

4900 4901 4902 4903 4904 4905
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
}

4906
static bool tc_cls_act_is_valid_access(int off, int size,
4907
				       enum bpf_access_type type,
4908
				       const struct bpf_prog *prog,
4909
				       struct bpf_insn_access_aux *info)
4910 4911 4912
{
	if (type == BPF_WRITE) {
		switch (off) {
4913 4914 4915 4916 4917
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4918 4919 4920 4921 4922
			break;
		default:
			return false;
		}
	}
4923

4924 4925 4926 4927
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
4928 4929 4930
	case bpf_ctx_range(struct __sk_buff, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
4931 4932 4933
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
4934 4935
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
		return false;
4936 4937
	}

4938
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4939 4940
}

4941
static bool __is_valid_xdp_access(int off, int size)
4942 4943 4944 4945 4946
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
4947
	if (size != sizeof(__u32))
4948 4949 4950 4951 4952 4953 4954
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
4955
				const struct bpf_prog *prog,
4956
				struct bpf_insn_access_aux *info)
4957
{
4958 4959 4960 4961 4962 4963 4964
	if (type == BPF_WRITE) {
		if (bpf_prog_is_dev_bound(prog->aux)) {
			switch (off) {
			case offsetof(struct xdp_md, rx_queue_index):
				return __is_valid_xdp_access(off, size);
			}
		}
4965
		return false;
4966
	}
4967 4968 4969

	switch (off) {
	case offsetof(struct xdp_md, data):
4970
		info->reg_type = PTR_TO_PACKET;
4971
		break;
4972 4973 4974
	case offsetof(struct xdp_md, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
4975
	case offsetof(struct xdp_md, data_end):
4976
		info->reg_type = PTR_TO_PACKET_END;
4977 4978 4979
		break;
	}

4980
	return __is_valid_xdp_access(off, size);
4981 4982 4983 4984
}

void bpf_warn_invalid_xdp_action(u32 act)
{
4985 4986 4987 4988 4989
	const u32 act_max = XDP_REDIRECT;

	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
		  act > act_max ? "Illegal" : "Driver unsupported",
		  act);
4990 4991 4992
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

A
Andrey Ignatov 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
static bool sock_addr_is_valid_access(int off, int size,
				      enum bpf_access_type type,
				      const struct bpf_prog *prog,
				      struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);

	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
		return false;
	if (off % size != 0)
		return false;

	/* Disallow access to IPv6 fields from IPv4 contex and vise
	 * versa.
	 */
	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_BIND:
A
Andrey Ignatov 已提交
5012
		case BPF_CGROUP_INET4_CONNECT:
A
Andrey Ignatov 已提交
5013 5014 5015 5016 5017 5018 5019 5020
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET6_BIND:
A
Andrey Ignatov 已提交
5021
		case BPF_CGROUP_INET6_CONNECT:
A
Andrey Ignatov 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
			break;
		default:
			return false;
		}
		break;
	}

	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		/* Only narrow read access allowed for now. */
		if (type == BPF_READ) {
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
				return false;
		} else {
			if (size != size_default)
				return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, user_port):
		if (size != size_default)
			return false;
		break;
	default:
		if (type == BPF_READ) {
			if (size != size_default)
				return false;
		} else {
			return false;
		}
	}

	return true;
}

5058 5059
static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
5060
				     const struct bpf_prog *prog,
5061
				     struct bpf_insn_access_aux *info)
L
Lawrence Brakmo 已提交
5062
{
5063 5064
	const int size_default = sizeof(__u32);

L
Lawrence Brakmo 已提交
5065 5066
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
5067

L
Lawrence Brakmo 已提交
5068 5069 5070 5071 5072 5073
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;

	if (type == BPF_WRITE) {
		switch (off) {
5074
		case offsetof(struct bpf_sock_ops, reply):
5075
		case offsetof(struct bpf_sock_ops, sk_txhash):
5076 5077
			if (size != size_default)
				return false;
L
Lawrence Brakmo 已提交
5078 5079 5080 5081
			break;
		default:
			return false;
		}
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	} else {
		switch (off) {
		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
					bytes_acked):
			if (size != sizeof(__u64))
				return false;
			break;
		default:
			if (size != size_default)
				return false;
			break;
		}
L
Lawrence Brakmo 已提交
5094 5095
	}

5096
	return true;
L
Lawrence Brakmo 已提交
5097 5098
}

5099 5100 5101
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
			   const struct bpf_prog *prog)
{
5102
	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5103 5104
}

5105 5106
static bool sk_skb_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5107
				   const struct bpf_prog *prog,
5108 5109
				   struct bpf_insn_access_aux *info)
{
5110 5111 5112 5113 5114 5115
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data_meta):
		return false;
	}

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	if (type == BPF_WRITE) {
		switch (off) {
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
			break;
		default:
			return false;
		}
	}

5126
	switch (off) {
5127
	case bpf_ctx_range(struct __sk_buff, mark):
5128
		return false;
5129 5130 5131 5132 5133 5134 5135 5136
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

5137
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5138 5139
}

5140 5141
static bool sk_msg_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5142
				   const struct bpf_prog *prog,
5143 5144 5145 5146 5147 5148 5149 5150
				   struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct sk_msg_md, data):
		info->reg_type = PTR_TO_PACKET;
5151 5152
		if (size != sizeof(__u64))
			return false;
5153 5154 5155
		break;
	case offsetof(struct sk_msg_md, data_end):
		info->reg_type = PTR_TO_PACKET_END;
5156 5157
		if (size != sizeof(__u64))
			return false;
5158
		break;
5159 5160 5161
	default:
		if (size != sizeof(__u32))
			return false;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
	}

	if (off < 0 || off >= sizeof(struct sk_msg_md))
		return false;
	if (off % size != 0)
		return false;

	return true;
}

5172 5173 5174
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
5175
				  struct bpf_prog *prog, u32 *target_size)
5176 5177
{
	struct bpf_insn *insn = insn_buf;
5178
	int off;
5179

5180
	switch (si->off) {
5181
	case offsetof(struct __sk_buff, len):
5182
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5183 5184
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
5185 5186
		break;

5187
	case offsetof(struct __sk_buff, protocol):
5188
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5189 5190
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
5191 5192
		break;

5193
	case offsetof(struct __sk_buff, vlan_proto):
5194
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5195 5196
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
5197 5198
		break;

5199
	case offsetof(struct __sk_buff, priority):
5200
		if (type == BPF_WRITE)
5201
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5202 5203
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5204
		else
5205
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5206 5207
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5208 5209
		break;

5210
	case offsetof(struct __sk_buff, ingress_ifindex):
5211
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5212 5213
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
5214 5215 5216
		break;

	case offsetof(struct __sk_buff, ifindex):
5217
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5218
				      si->dst_reg, si->src_reg,
5219
				      offsetof(struct sk_buff, dev));
5220 5221
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5222 5223
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
5224 5225
		break;

5226
	case offsetof(struct __sk_buff, hash):
5227
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5228 5229
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
5230 5231
		break;

5232
	case offsetof(struct __sk_buff, mark):
5233
		if (type == BPF_WRITE)
5234
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5235 5236
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5237
		else
5238
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5239 5240
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5241
		break;
5242 5243

	case offsetof(struct __sk_buff, pkt_type):
5244 5245 5246 5247 5248 5249 5250 5251
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
5252 5253

	case offsetof(struct __sk_buff, queue_mapping):
5254 5255 5256 5257
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
5258 5259 5260

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
5274 5275

	case offsetof(struct __sk_buff, cb[0]) ...
5276
	     offsetofend(struct __sk_buff, cb[4]) - 1:
5277
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5278 5279 5280
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
5281

5282
		prog->cb_access = 1;
5283 5284 5285 5286
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
5287
		if (type == BPF_WRITE)
5288
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5289
					      si->src_reg, off);
5290
		else
5291
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5292
					      si->src_reg, off);
5293 5294
		break;

5295
	case offsetof(struct __sk_buff, tc_classid):
5296 5297 5298 5299 5300 5301
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
5302
		*target_size = 2;
5303
		if (type == BPF_WRITE)
5304 5305
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5306
		else
5307 5308
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5309 5310
		break;

5311
	case offsetof(struct __sk_buff, data):
5312
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5313
				      si->dst_reg, si->src_reg,
5314 5315 5316
				      offsetof(struct sk_buff, data));
		break;

5317 5318 5319 5320 5321 5322 5323 5324 5325
	case offsetof(struct __sk_buff, data_meta):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_meta);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_meta);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;

5326
	case offsetof(struct __sk_buff, data_end):
5327 5328 5329 5330 5331 5332
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
5333 5334
		break;

5335 5336 5337
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
5338
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5339 5340
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5341
		else
5342
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5343 5344
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5345
#else
5346
		*target_size = 2;
5347
		if (type == BPF_WRITE)
5348
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5349
		else
5350
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5351 5352 5353 5354 5355 5356
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5357 5358
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
5359 5360 5361
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
5362
		*target_size = 4;
5363
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5364
#endif
5365
		break;
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	case offsetof(struct __sk_buff, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_family,
						     2, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_daddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_rcv_saddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip6[0]) ...
	     offsetof(struct __sk_buff, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, remote_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;
	case offsetof(struct __sk_buff, local_ip6[0]) ...
	     offsetof(struct __sk_buff, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, local_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct __sk_buff, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_dport,
						     2, target_size));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct __sk_buff, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_num, 2, target_size));
		break;
5466 5467 5468
	}

	return insn - insn_buf;
5469 5470
}

5471
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5472
					  const struct bpf_insn *si,
5473
					  struct bpf_insn *insn_buf,
5474
					  struct bpf_prog *prog, u32 *target_size)
5475 5476
{
	struct bpf_insn *insn = insn_buf;
A
Andrey Ignatov 已提交
5477
	int off;
5478

5479
	switch (si->off) {
5480 5481 5482 5483
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
5484
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5485 5486
					offsetof(struct sock, sk_bound_dev_if));
		else
5487
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5488 5489
				      offsetof(struct sock, sk_bound_dev_if));
		break;
5490

5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	case offsetof(struct bpf_sock, mark):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_mark));
		break;

	case offsetof(struct bpf_sock, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_priority));
		break;

5513 5514 5515
	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

5516
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5517 5518 5519 5520
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
5521
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5522
				      offsetof(struct sock, __sk_flags_offset));
5523 5524
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5525 5526 5527
		break;

	case offsetof(struct bpf_sock, protocol):
5528
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5529
				      offsetof(struct sock, __sk_flags_offset));
5530 5531
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
5532
		break;
A
Andrey Ignatov 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

	case offsetof(struct bpf_sock, src_ip4):
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_rcv_saddr,
				       FIELD_SIZEOF(struct sock_common,
						    skc_rcv_saddr),
				       target_size));
		break;

	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		off = si->off;
		off -= offsetof(struct bpf_sock, src_ip6[0]);
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(
				struct sock_common,
				skc_v6_rcv_saddr.s6_addr32[0],
				FIELD_SIZEOF(struct sock_common,
					     skc_v6_rcv_saddr.s6_addr32[0]),
				target_size) + off);
#else
		(void)off;
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock, src_port):
		*insn++ = BPF_LDX_MEM(
			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
			si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_num,
				       FIELD_SIZEOF(struct sock_common,
						    skc_num),
				       target_size));
		break;
5570 5571 5572 5573 5574
	}

	return insn - insn_buf;
}

5575 5576
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
5577
					 struct bpf_insn *insn_buf,
5578
					 struct bpf_prog *prog, u32 *target_size)
5579 5580 5581
{
	struct bpf_insn *insn = insn_buf;

5582
	switch (si->off) {
5583 5584
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5585
				      si->dst_reg, si->src_reg,
5586
				      offsetof(struct sk_buff, dev));
5587
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5588 5589
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
5590 5591
		break;
	default:
5592 5593
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
5594 5595 5596 5597 5598
	}

	return insn - insn_buf;
}

5599 5600
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
5601
				  struct bpf_insn *insn_buf,
5602
				  struct bpf_prog *prog, u32 *target_size)
5603 5604 5605
{
	struct bpf_insn *insn = insn_buf;

5606
	switch (si->off) {
5607
	case offsetof(struct xdp_md, data):
5608
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
5609
				      si->dst_reg, si->src_reg,
5610 5611
				      offsetof(struct xdp_buff, data));
		break;
5612 5613 5614 5615 5616
	case offsetof(struct xdp_md, data_meta):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, data_meta));
		break;
5617
	case offsetof(struct xdp_md, data_end):
5618
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
5619
				      si->dst_reg, si->src_reg,
5620 5621
				      offsetof(struct xdp_buff, data_end));
		break;
5622 5623 5624 5625 5626 5627 5628 5629
	case offsetof(struct xdp_md, ingress_ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
				      si->dst_reg, si->dst_reg,
				      offsetof(struct xdp_rxq_info, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5630
				      offsetof(struct net_device, ifindex));
5631 5632 5633 5634 5635 5636
		break;
	case offsetof(struct xdp_md, rx_queue_index):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5637 5638
				      offsetof(struct xdp_rxq_info,
					       queue_index));
5639
		break;
5640 5641 5642 5643 5644
	}

	return insn - insn_buf;
}

A
Andrey Ignatov 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
 * context Structure, F is Field in context structure that contains a pointer
 * to Nested Structure of type NS that has the field NF.
 *
 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
 * sure that SIZE is not greater than actual size of S.F.NF.
 *
 * If offset OFF is provided, the load happens from that offset relative to
 * offset of NF.
 */
#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
	do {								       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
				      si->src_reg, offsetof(S, F));	       \
		*insn++ = BPF_LDX_MEM(					       \
			SIZE, si->dst_reg, si->dst_reg,			       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
	} while (0)

#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
					     BPF_FIELD_SIZEOF(NS, NF), 0)

/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
 *
 * It doesn't support SIZE argument though since narrow stores are not
 * supported for now.
 *
 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
 * "register" since two registers available in convert_ctx_access are not
 * enough: we can't override neither SRC, since it contains value to store, nor
 * DST since it contains pointer to context that may be used by later
 * instructions. But we need a temporary place to save pointer to nested
 * structure whose field we want to store to.
 */
#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
	do {								       \
		int tmp_reg = BPF_REG_9;				       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
				      offsetof(S, TF));			       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
				      si->dst_reg, offsetof(S, F));	       \
		*insn++ = BPF_STX_MEM(					       \
			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
				      offsetof(S, TF));			       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
						      TF)		       \
	do {								       \
		if (type == BPF_WRITE) {				       \
			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
							 TF);		       \
		} else {						       \
			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
				S, NS, F, NF, SIZE, OFF);  \
		}							       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)

static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
					const struct bpf_insn *si,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_addr, user_family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sockaddr, uaddr, sa_family);
		break;

	case offsetof(struct bpf_sock_addr, user_ip4):
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
			tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, user_port):
		/* To get port we need to know sa_family first and then treat
		 * sockaddr as either sockaddr_in or sockaddr_in6.
		 * Though we can simplify since port field has same offset and
		 * size in both structures.
		 * Here we check this invariant and use just one of the
		 * structures if it's true.
		 */
		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
			     offsetof(struct sockaddr_in6, sin6_port));
		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
						     struct sockaddr_in6, uaddr,
						     sin6_port, tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sock, sk, sk_family);
		break;

	case offsetof(struct bpf_sock_addr, type):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
		break;

	case offsetof(struct bpf_sock_addr, protocol):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
					SK_FL_PROTO_SHIFT);
		break;
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
5791 5792 5793
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
5794 5795
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
5843 5844
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);
L
Lawrence Brakmo 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	case offsetof(struct bpf_sock_ops, is_fullsock):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern,
						is_fullsock),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern,
					       is_fullsock));
		break;

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
	case offsetof(struct bpf_sock_ops, state):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_state));
		break;

	case offsetof(struct bpf_sock_ops, rtt_min):
		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
			     sizeof(struct minmax));
		BUILD_BUG_ON(sizeof(struct minmax) <
			     sizeof(struct minmax_sample));

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct tcp_sock, rtt_min) +
				      FIELD_SIZEOF(struct minmax_sample, t));
		break;

5957 5958
/* Helper macro for adding read access to tcp_sock or sock fields. */
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
5959
	do {								      \
5960 5961
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
5973 5974 5975 5976
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
						       OBJ_FIELD),	      \
				      si->dst_reg, si->dst_reg,		      \
				      offsetof(OBJ, OBJ_FIELD));	      \
5977 5978
	} while (0)

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
/* Helper macro for adding write access to tcp_sock or sock fields.
 * The macro is called with two registers, dst_reg which contains a pointer
 * to ctx (context) and src_reg which contains the value that should be
 * stored. However, we need an additional register since we cannot overwrite
 * dst_reg because it may be used later in the program.
 * Instead we "borrow" one of the other register. We first save its value
 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
 * it at the end of the macro.
 */
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
	do {								      \
		int reg = BPF_REG_9;					      \
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
				      reg, si->src_reg,			      \
				      offsetof(OBJ, OBJ_FIELD));	      \
		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
	} while (0)

#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
	do {								      \
		if (TYPE == BPF_WRITE)					      \
			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
		else							      \
			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
	} while (0)

6027
	case offsetof(struct bpf_sock_ops, snd_cwnd):
6028
		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6029 6030 6031
		break;

	case offsetof(struct bpf_sock_ops, srtt_us):
6032
		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6033
		break;
6034 6035 6036 6037 6038

	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
				   struct tcp_sock);
		break;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112

	case offsetof(struct bpf_sock_ops, snd_ssthresh):
		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rcv_nxt):
		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_nxt):
		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_una):
		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, mss_cache):
		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, ecn_flags):
		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_delivered):
		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_interval_us):
		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, packets_out):
		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, retrans_out):
		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, total_retrans):
		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_in):
		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_in):
		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_out):
		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_out):
		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, lost_out):
		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sacked_out):
		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sk_txhash):
6113 6114
		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
					  struct sock, type);
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
		break;

	case offsetof(struct bpf_sock_ops, bytes_received):
		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, bytes_acked):
		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
		break;
6125

L
Lawrence Brakmo 已提交
6126 6127 6128 6129
	}
	return insn - insn_buf;
}

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct __sk_buff, data_end):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct tcp_skb_cb, bpf.data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;
	default:
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
	}

	return insn - insn_buf;
}

6155 6156 6157 6158 6159 6160
static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
6161
	int off;
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173

	switch (si->off) {
	case offsetof(struct sk_msg_md, data):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data));
		break;
	case offsetof(struct sk_msg_md, data_end):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data_end));
		break;
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
	case offsetof(struct sk_msg_md, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct sk_msg_md, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct sk_msg_md, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
	     offsetof(struct sk_msg_md, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, local_ip6[0]) ...
	     offsetof(struct sk_msg_md, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct sk_msg_md, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
6275 6276 6277 6278 6279
	}

	return insn - insn_buf;
}

6280
const struct bpf_verifier_ops sk_filter_verifier_ops = {
6281 6282
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
6283
	.convert_ctx_access	= bpf_convert_ctx_access,
6284
	.gen_ld_abs		= bpf_gen_ld_abs,
6285 6286
};

6287
const struct bpf_prog_ops sk_filter_prog_ops = {
6288
	.test_run		= bpf_prog_test_run_skb,
6289 6290 6291
};

const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6292 6293
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
6294
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6295
	.gen_prologue		= tc_cls_act_prologue,
6296
	.gen_ld_abs		= bpf_gen_ld_abs,
6297 6298 6299
};

const struct bpf_prog_ops tc_cls_act_prog_ops = {
6300
	.test_run		= bpf_prog_test_run_skb,
6301 6302
};

6303
const struct bpf_verifier_ops xdp_verifier_ops = {
6304 6305 6306
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
6307 6308 6309
};

const struct bpf_prog_ops xdp_prog_ops = {
6310
	.test_run		= bpf_prog_test_run_xdp,
6311 6312
};

6313
const struct bpf_verifier_ops cg_skb_verifier_ops = {
6314
	.get_func_proto		= sk_filter_func_proto,
6315
	.is_valid_access	= sk_filter_is_valid_access,
6316
	.convert_ctx_access	= bpf_convert_ctx_access,
6317 6318 6319
};

const struct bpf_prog_ops cg_skb_prog_ops = {
6320
	.test_run		= bpf_prog_test_run_skb,
6321 6322
};

6323
const struct bpf_verifier_ops lwt_inout_verifier_ops = {
6324 6325
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
6326
	.convert_ctx_access	= bpf_convert_ctx_access,
6327 6328 6329
};

const struct bpf_prog_ops lwt_inout_prog_ops = {
6330
	.test_run		= bpf_prog_test_run_skb,
6331 6332
};

6333
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6334 6335
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
6336
	.convert_ctx_access	= bpf_convert_ctx_access,
6337
	.gen_prologue		= tc_cls_act_prologue,
6338 6339 6340
};

const struct bpf_prog_ops lwt_xmit_prog_ops = {
6341
	.test_run		= bpf_prog_test_run_skb,
6342 6343
};

6344
const struct bpf_verifier_ops cg_sock_verifier_ops = {
6345
	.get_func_proto		= sock_filter_func_proto,
6346 6347 6348 6349
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

6350 6351 6352
const struct bpf_prog_ops cg_sock_prog_ops = {
};

A
Andrey Ignatov 已提交
6353 6354 6355 6356 6357 6358 6359 6360 6361
const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
	.get_func_proto		= sock_addr_func_proto,
	.is_valid_access	= sock_addr_is_valid_access,
	.convert_ctx_access	= sock_addr_convert_ctx_access,
};

const struct bpf_prog_ops cg_sock_addr_prog_ops = {
};

6362
const struct bpf_verifier_ops sock_ops_verifier_ops = {
6363
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
6364 6365 6366 6367
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

6368 6369 6370 6371
const struct bpf_prog_ops sock_ops_prog_ops = {
};

const struct bpf_verifier_ops sk_skb_verifier_ops = {
6372 6373
	.get_func_proto		= sk_skb_func_proto,
	.is_valid_access	= sk_skb_is_valid_access,
6374
	.convert_ctx_access	= sk_skb_convert_ctx_access,
6375
	.gen_prologue		= sk_skb_prologue,
6376 6377
};

6378 6379 6380
const struct bpf_prog_ops sk_skb_prog_ops = {
};

6381 6382 6383 6384 6385 6386 6387 6388 6389
const struct bpf_verifier_ops sk_msg_verifier_ops = {
	.get_func_proto		= sk_msg_func_proto,
	.is_valid_access	= sk_msg_is_valid_access,
	.convert_ctx_access	= sk_msg_convert_ctx_access,
};

const struct bpf_prog_ops sk_msg_prog_ops = {
};

6390
int sk_detach_filter(struct sock *sk)
6391 6392 6393 6394
{
	int ret = -ENOENT;
	struct sk_filter *filter;

6395 6396 6397
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

6398 6399
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
6400
	if (filter) {
6401
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
6402
		sk_filter_uncharge(sk, filter);
6403 6404
		ret = 0;
	}
6405

6406 6407
	return ret;
}
6408
EXPORT_SYMBOL_GPL(sk_detach_filter);
6409

6410 6411
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
6412
{
6413
	struct sock_fprog_kern *fprog;
6414
	struct sk_filter *filter;
6415
	int ret = 0;
6416 6417 6418

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
6419
					   lockdep_sock_is_held(sk));
6420 6421
	if (!filter)
		goto out;
6422 6423

	/* We're copying the filter that has been originally attached,
6424 6425
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
6426
	 */
6427
	ret = -EACCES;
6428
	fprog = filter->prog->orig_prog;
6429 6430
	if (!fprog)
		goto out;
6431 6432

	ret = fprog->len;
6433
	if (!len)
6434
		/* User space only enquires number of filter blocks. */
6435
		goto out;
6436

6437
	ret = -EINVAL;
6438
	if (len < fprog->len)
6439 6440 6441
		goto out;

	ret = -EFAULT;
6442
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
6443
		goto out;
6444

6445 6446 6447 6448
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
6449 6450 6451 6452
out:
	release_sock(sk);
	return ret;
}