filter.c 90.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
L
Linus Torvalds 已提交
36 37
#include <net/ip.h>
#include <net/protocol.h>
38
#include <net/netlink.h>
L
Linus Torvalds 已提交
39 40
#include <linux/skbuff.h>
#include <net/sock.h>
41
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
42 43
#include <linux/errno.h>
#include <linux/timer.h>
44
#include <linux/uaccess.h>
45
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
46
#include <linux/filter.h>
47
#include <linux/ratelimit.h>
48
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
49
#include <linux/if_vlan.h>
50
#include <linux/bpf.h>
51
#include <net/sch_generic.h>
52
#include <net/cls_cgroup.h>
53
#include <net/dst_metadata.h>
54
#include <net/dst.h>
55
#include <net/sock_reuseport.h>
56
#include <net/busy_poll.h>
L
Linus Torvalds 已提交
57

S
Stephen Hemminger 已提交
58
/**
59
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
60 61
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
62
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
63
 *
64 65
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
66
 * than pkt_len we keep whole skb->data. This is the socket level
67
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
68 69 70
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
71
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
72 73 74 75
{
	int err;
	struct sk_filter *filter;

76 77 78 79 80
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
81 82
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
83
		return -ENOMEM;
84
	}
85 86 87 88
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
89 90 91 92
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

93 94
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
95
	if (filter) {
96 97 98 99 100 101
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
102
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
103
	}
104
	rcu_read_unlock();
S
Stephen Hemminger 已提交
105 106 107

	return err;
}
108
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
109

110
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
111
{
112
	return skb_get_poff(skb);
113 114
}

115
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
116 117 118 119 120 121
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

122 123 124
	if (skb->len < sizeof(struct nlattr))
		return 0;

125
	if (a > skb->len - sizeof(struct nlattr))
126 127
		return 0;

128
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
129 130 131 132 133 134
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

135
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
136 137 138 139 140 141
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

142 143 144
	if (skb->len < sizeof(struct nlattr))
		return 0;

145
	if (a > skb->len - sizeof(struct nlattr))
146 147
		return 0;

148 149
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
150 151
		return 0;

152
	nla = nla_find_nested(nla, x);
153 154 155 156 157 158
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

159
BPF_CALL_0(__get_raw_cpu_id)
160 161 162 163
{
	return raw_smp_processor_id();
}

164 165 166 167 168 169
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
216 217 218 219 220
	}

	return insn - insn_buf;
}

221
static bool convert_bpf_extensions(struct sock_filter *fp,
222
				   struct bpf_insn **insnp)
223
{
224
	struct bpf_insn *insn = *insnp;
225
	u32 cnt;
226 227 228

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
229 230 231 232 233 234 235
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
236 237 238
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
239 240
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
241 242 243 244 245 246
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
247

248
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
249 250 251 252 253 254 255 256 257 258 259
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
260 261 262
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
263 264
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
265 266 267 268 269
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

270 271
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
272 273 274
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
275 276
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
277 278 279
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
280 281 282 283
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
284

285 286 287 288
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
289 290
		break;

291 292 293 294 295 296 297 298 299 300
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

301 302 303 304
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
305
	case SKF_AD_OFF + SKF_AD_RANDOM:
306
		/* arg1 = CTX */
307
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
308
		/* arg2 = A */
309
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
310
		/* arg3 = X */
311
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
312
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
313 314
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
315
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
316 317
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
318
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
319 320
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
321
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
322 323
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
324
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
325
			break;
C
Chema Gonzalez 已提交
326
		case SKF_AD_OFF + SKF_AD_RANDOM:
327 328
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
329
			break;
330 331 332 333
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
334 335
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
352
 *	bpf_convert_filter - convert filter program
353 354
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
355
 *	@new_prog: allocated 'struct bpf_prog' or NULL
356 357
 *	@new_len: pointer to store length of converted program
 *
358 359
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
360 361 362
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
363
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
364 365 366
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
367
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
368
 */
369
static int bpf_convert_filter(struct sock_filter *prog, int len,
370
			      struct bpf_prog *new_prog, int *new_len)
371
{
372 373
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
374 375 376 377 378
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
379
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
380

381
	if (len <= 0 || len > BPF_MAXINSNS)
382 383 384
		return -EINVAL;

	if (new_prog) {
385
		first_insn = new_prog->insnsi;
386 387
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
388 389 390 391 392
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
393
	new_insn = first_insn;
394 395
	fp = prog;

396
	/* Classic BPF related prologue emission. */
397
	if (new_prog) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
412 413

	for (i = 0; i < len; fp++, i++) {
414 415
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
416 417

		if (addrs)
418
			addrs[i] = new_insn - first_insn;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

458
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
459 460
			break;

461 462 463 464 465 466 467
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
468 469 470 471 472 473 474 475
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

476 477 478 479
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
495
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
496

497 498
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
499 500
				bpf_src = BPF_X;
			} else {
501
				insn->dst_reg = BPF_REG_A;
502 503
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
504
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
505
			}
506 507 508 509 510

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
511
				BPF_EMIT_JMP;
512
				break;
L
Linus Torvalds 已提交
513
			}
514 515 516 517 518

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
519
				BPF_EMIT_JMP;
520
				break;
521
			}
522 523 524 525

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
526
			BPF_EMIT_JMP;
527 528 529 530
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
531
			BPF_EMIT_JMP;
532 533 534 535
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
536
			/* tmp = A */
537
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
538
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
539
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
540
			/* A &= 0xf */
541
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
542
			/* A <<= 2 */
543
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
544
			/* X = A */
545
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
546
			/* A = tmp */
547
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
548 549
			break;

550 551 552
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
553 554
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
555 556 557
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
558
			*insn = BPF_EXIT_INSN();
559 560 561 562 563
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
564
			stack_off = fp->k * 4  + 4;
565 566
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
567 568 569 570 571 572 573
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
574 575 576 577 578
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
579
			stack_off = fp->k * 4  + 4;
580 581
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
582
					    -stack_off);
583 584 585 586 587
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
588 589
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
590 591 592 593
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
594
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
595 596 597 598
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
599
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
600 601 602 603 604
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
605 606 607
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
608 609
			break;

610
		/* Access seccomp_data fields. */
611
		case BPF_LDX | BPF_ABS | BPF_W:
612 613
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
614 615
			break;

S
Stephen Hemminger 已提交
616
		/* Unknown instruction. */
L
Linus Torvalds 已提交
617
		default:
618
			goto err;
L
Linus Torvalds 已提交
619
		}
620 621 622 623 624 625

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
626 627
	}

628 629
	if (!new_prog) {
		/* Only calculating new length. */
630
		*new_len = new_insn - first_insn;
631 632 633 634
		return 0;
	}

	pass++;
635 636
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
637 638 639 640 641 642 643
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
644
	return 0;
645 646 647
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
648 649
}

650 651
/* Security:
 *
652
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
653
 * __bpf_prog_run(), we check that filter loaded by user never try to read
654
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
655
 * a malicious user doesn't try to abuse us.
656
 */
657
static int check_load_and_stores(const struct sock_filter *filter, int flen)
658
{
659
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
660 661 662
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
663

664
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
665 666
	if (!masks)
		return -ENOMEM;
667

668 669 670 671 672 673
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
674 675
		case BPF_ST:
		case BPF_STX:
676 677
			memvalid |= (1 << filter[pc].k);
			break;
678 679
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
680 681 682 683 684
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
685 686
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
687 688 689
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
690 691 692 693 694 695 696 697 698
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
699 700 701 702 703 704 705 706 707 708 709
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

776 777 778 779 780 781 782 783 784 785 786
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
787
/**
788
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
789 790 791 792 793
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
794 795
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
796
 *
797 798 799
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
800
 */
801 802
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
803
{
804
	bool anc_found;
805
	int pc;
L
Linus Torvalds 已提交
806

807
	/* Check the filter code now */
L
Linus Torvalds 已提交
808
	for (pc = 0; pc < flen; pc++) {
809
		const struct sock_filter *ftest = &filter[pc];
810

811 812
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
813
			return -EINVAL;
814

815
		/* Some instructions need special checks */
816 817 818 819
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
820 821 822
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
823 824 825 826 827
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
828 829 830 831 832
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
833 834 835
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
836 837
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
838 839 840
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
841
			if (ftest->k >= (unsigned int)(flen - pc - 1))
842
				return -EINVAL;
843
			break;
844 845 846 847 848 849 850 851 852
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
853
			if (pc + ftest->jt + 1 >= flen ||
854 855
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
856
			break;
857 858 859
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
860
			anc_found = false;
861 862 863
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
864 865
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
866 867
		}
	}
868

869
	/* Last instruction must be a RET code */
870
	switch (filter[flen - 1].code) {
871 872
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
873
		return check_load_and_stores(filter, flen);
874
	}
875

876
	return -EINVAL;
L
Linus Torvalds 已提交
877 878
}

879 880
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
881
{
882
	unsigned int fsize = bpf_classic_proglen(fprog);
883 884 885 886 887 888 889 890
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
891 892 893

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
894 895 896 897 898 899 900 901
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

902
static void bpf_release_orig_filter(struct bpf_prog *fp)
903 904 905 906 907 908 909 910 911
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

912 913
static void __bpf_prog_release(struct bpf_prog *prog)
{
914
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
915 916 917 918 919
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
920 921
}

922 923
static void __sk_filter_release(struct sk_filter *fp)
{
924 925
	__bpf_prog_release(fp->prog);
	kfree(fp);
926 927
}

928
/**
E
Eric Dumazet 已提交
929
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
930 931
 *	@rcu: rcu_head that contains the sk_filter to free
 */
932
static void sk_filter_release_rcu(struct rcu_head *rcu)
933 934 935
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

936
	__sk_filter_release(fp);
937
}
938 939 940 941 942 943 944 945 946

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
947
	if (refcount_dec_and_test(&fp->refcnt))
948 949 950 951 952
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
953
	u32 filter_size = bpf_prog_size(fp->prog->len);
954

955 956
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
957
}
958

959 960 961
/* try to charge the socket memory if there is space available
 * return true on success
 */
962
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
963
{
964
	u32 filter_size = bpf_prog_size(fp->prog->len);
965 966 967 968 969 970

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
971
	}
972
	return false;
973 974
}

975 976 977 978 979 980 981 982
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
	bool ret = __sk_filter_charge(sk, fp);
	if (ret)
		refcount_inc(&fp->refcnt);
	return ret;
}

983
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
984 985
{
	struct sock_filter *old_prog;
986
	struct bpf_prog *old_fp;
987
	int err, new_len, old_len = fp->len;
988 989 990 991 992 993 994

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
995
		     sizeof(struct bpf_insn));
996 997 998 999 1000 1001

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1002
			   GFP_KERNEL | __GFP_NOWARN);
1003 1004 1005 1006 1007 1008
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1009
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1010 1011 1012 1013 1014
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1015
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1027
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1028
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1029
	if (err)
1030
		/* 2nd bpf_convert_filter() can fail only if it fails
1031 1032
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1033
		 * by krealloc().
1034 1035 1036
		 */
		goto out_err_free;

1037 1038 1039 1040 1041
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1042

1043 1044 1045 1046 1047 1048
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1049
	__bpf_prog_release(fp);
1050 1051 1052
	return ERR_PTR(err);
}

1053 1054
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1055 1056 1057
{
	int err;

1058
	fp->bpf_func = NULL;
1059
	fp->jited = 0;
1060

1061
	err = bpf_check_classic(fp->insns, fp->len);
1062
	if (err) {
1063
		__bpf_prog_release(fp);
1064
		return ERR_PTR(err);
1065
	}
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1078 1079 1080
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1081
	bpf_jit_compile(fp);
1082 1083 1084 1085

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1086
	if (!fp->jited)
1087
		fp = bpf_migrate_filter(fp);
1088 1089

	return fp;
1090 1091 1092
}

/**
1093
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1094
 *	@pfp: the unattached filter that is created
1095
 *	@fprog: the filter program
1096
 *
R
Randy Dunlap 已提交
1097
 * Create a filter independent of any socket. We first run some
1098 1099 1100 1101
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1102
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1103
{
1104
	unsigned int fsize = bpf_classic_proglen(fprog);
1105
	struct bpf_prog *fp;
1106 1107

	/* Make sure new filter is there and in the right amounts. */
1108
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1109 1110
		return -EINVAL;

1111
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1112 1113
	if (!fp)
		return -ENOMEM;
1114

1115 1116 1117
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1118 1119 1120 1121 1122
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1123

1124
	/* bpf_prepare_filter() already takes care of freeing
1125 1126
	 * memory in case something goes wrong.
	 */
1127
	fp = bpf_prepare_filter(fp, NULL);
1128 1129
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1130 1131 1132 1133

	*pfp = fp;
	return 0;
}
1134
EXPORT_SYMBOL_GPL(bpf_prog_create);
1135

1136 1137 1138 1139 1140
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1141
 *	@save_orig: save classic BPF program
1142 1143 1144 1145 1146 1147
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1148
			      bpf_aux_classic_check_t trans, bool save_orig)
1149 1150 1151
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1152
	int err;
1153 1154

	/* Make sure new filter is there and in the right amounts. */
1155
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1170 1171 1172 1173 1174 1175 1176 1177
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1188
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1189

1190
void bpf_prog_destroy(struct bpf_prog *fp)
1191
{
1192
	__bpf_prog_release(fp);
1193
}
1194
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1195

1196
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1206
	if (!__sk_filter_charge(sk, fp)) {
1207 1208 1209
		kfree(fp);
		return -ENOMEM;
	}
1210
	refcount_set(&fp->refcnt, 1);
1211

1212 1213
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1214
	rcu_assign_pointer(sk->sk_filter, fp);
1215

1216 1217 1218 1219 1220 1221
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1222 1223 1224 1225 1226 1227 1228 1229
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1230
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1248
{
1249
	unsigned int fsize = bpf_classic_proglen(fprog);
1250
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1251 1252
	int err;

1253
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1254
		return ERR_PTR(-EPERM);
1255

L
Linus Torvalds 已提交
1256
	/* Make sure new filter is there and in the right amounts. */
1257
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1258
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1259

1260
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1261
	if (!prog)
1262
		return ERR_PTR(-ENOMEM);
1263

1264
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1265
		__bpf_prog_free(prog);
1266
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1267 1268
	}

1269
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1270

1271
	err = bpf_prog_store_orig_filter(prog, fprog);
1272
	if (err) {
1273
		__bpf_prog_free(prog);
1274
		return ERR_PTR(-ENOMEM);
1275 1276
	}

1277
	/* bpf_prepare_filter() already takes care of freeing
1278 1279
	 * memory in case something goes wrong.
	 */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1293
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1294 1295 1296 1297
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1298 1299 1300
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1301
	err = __sk_attach_prog(prog, sk);
1302
	if (err < 0) {
1303
		__bpf_prog_release(prog);
1304
		return err;
1305 1306
	}

1307
	return 0;
L
Linus Torvalds 已提交
1308
}
1309
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1310

1311
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1312
{
1313
	struct bpf_prog *prog = __get_filter(fprog, sk);
1314
	int err;
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1330
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1331
		return ERR_PTR(-EPERM);
1332

1333
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1344
	err = __sk_attach_prog(prog, sk);
1345
	if (err < 0) {
1346
		bpf_prog_put(prog);
1347
		return err;
1348 1349 1350 1351 1352
	}

	return 0;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1370 1371 1372 1373 1374 1375 1376 1377
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1378

1379 1380 1381 1382 1383 1384
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1385 1386 1387
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1388
	int err = __bpf_try_make_writable(skb, write_len);
1389

1390
	bpf_compute_data_end(skb);
1391 1392 1393
	return err;
}

1394 1395 1396 1397 1398
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1399 1400 1401 1402 1403 1404
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1405 1406 1407 1408 1409 1410
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1411 1412
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1413 1414 1415
{
	void *ptr;

1416
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1417
		return -EINVAL;
1418
	if (unlikely(offset > 0xffff))
1419
		return -EFAULT;
1420
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1421 1422
		return -EFAULT;

1423
	ptr = skb->data + offset;
1424
	if (flags & BPF_F_RECOMPUTE_CSUM)
1425
		__skb_postpull_rcsum(skb, ptr, len, offset);
1426 1427 1428

	memcpy(ptr, from, len);

1429
	if (flags & BPF_F_RECOMPUTE_CSUM)
1430
		__skb_postpush_rcsum(skb, ptr, len, offset);
1431 1432
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1433

1434 1435 1436
	return 0;
}

1437
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1438 1439 1440 1441 1442
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1443 1444
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1445 1446 1447
	.arg5_type	= ARG_ANYTHING,
};

1448 1449
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1450 1451 1452
{
	void *ptr;

1453
	if (unlikely(offset > 0xffff))
1454
		goto err_clear;
1455 1456 1457

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1458
		goto err_clear;
1459 1460 1461 1462
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1463 1464 1465
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1466 1467
}

1468
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1469 1470 1471 1472 1473
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1474 1475
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1476 1477
};

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1500 1501
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1502
{
1503
	__sum16 *ptr;
1504

1505 1506
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1507
	if (unlikely(offset > 0xffff || offset & 1))
1508
		return -EFAULT;
1509
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1510 1511
		return -EFAULT;

1512
	ptr = (__sum16 *)(skb->data + offset);
1513
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1514 1515 1516 1517 1518 1519
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1533
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1544 1545
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1546
{
1547
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1548
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1549
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1550
	__sum16 *ptr;
1551

1552 1553
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1554
		return -EINVAL;
1555
	if (unlikely(offset > 0xffff || offset & 1))
1556
		return -EFAULT;
1557
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1558 1559
		return -EFAULT;

1560
	ptr = (__sum16 *)(skb->data + offset);
1561
	if (is_mmzero && !do_mforce && !*ptr)
1562
		return 0;
1563

1564
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1565 1566 1567 1568 1569 1570
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1581 1582
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1583 1584 1585
	return 0;
}

1586
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1587 1588 1589 1590 1591 1592 1593 1594
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1595 1596
};

1597 1598
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1599
{
1600
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1601
	u32 diff_size = from_size + to_size;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1624
static const struct bpf_func_proto bpf_csum_diff_proto = {
1625 1626
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1627
	.pkt_access	= true,
1628
	.ret_type	= RET_INTEGER,
1629 1630 1631 1632
	.arg1_type	= ARG_PTR_TO_MEM,
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1633 1634 1635
	.arg5_type	= ARG_ANYTHING,
};

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1656 1657 1658 1659 1660
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1717 1718 1719 1720 1721 1722
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1723 1724 1725 1726 1727 1728 1729 1730
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1731
	if (dev_is_mac_header_xmit(dev))
1732
		return __bpf_redirect_common(skb, dev, flags);
1733 1734
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1735 1736
}

1737
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1738 1739
{
	struct net_device *dev;
1740 1741
	struct sk_buff *clone;
	int ret;
1742

1743 1744 1745
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1746 1747 1748 1749
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1750 1751
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1752 1753
		return -ENOMEM;

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1765
	return __bpf_redirect(clone, dev, flags);
1766 1767
}

1768
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1769 1770 1771 1772 1773 1774 1775 1776
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1777 1778 1779 1780 1781 1782
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1783

1784
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1785 1786 1787
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1788 1789 1790
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1791 1792
	ri->ifindex = ifindex;
	ri->flags = flags;
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1809
	return __bpf_redirect(skb, dev, ri->flags);
1810 1811
}

1812
static const struct bpf_func_proto bpf_redirect_proto = {
1813 1814 1815 1816 1817 1818 1819
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1820
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1821
{
1822
	return task_get_classid(skb);
1823 1824 1825 1826 1827 1828 1829 1830 1831
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1832
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1833
{
1834
	return dst_tclassid(skb);
1835 1836 1837 1838 1839 1840 1841 1842 1843
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1844
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1845 1846 1847 1848 1849 1850
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
1851
	return skb_get_hash(skb);
1852 1853 1854 1855 1856 1857 1858 1859 1860
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1895 1896
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
1897
{
1898
	int ret;
1899 1900 1901 1902 1903

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1904
	bpf_push_mac_rcsum(skb);
1905
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1906 1907
	bpf_pull_mac_rcsum(skb);

1908 1909
	bpf_compute_data_end(skb);
	return ret;
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1920
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1921

1922
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1923
{
1924
	int ret;
1925

1926
	bpf_push_mac_rcsum(skb);
1927
	ret = skb_vlan_pop(skb);
1928 1929
	bpf_pull_mac_rcsum(skb);

1930 1931
	bpf_compute_data_end(skb);
	return ret;
1932 1933 1934 1935 1936 1937 1938 1939
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1940
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2098 2099
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2137
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2138 2139
{
	/* We only allow a restricted subset to be changed for now. */
2140 2141
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
D
Daniel Borkmann 已提交
2170
	return skb->dev->mtu + skb->dev->hard_header_len;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2189 2190
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

	bpf_compute_data_end(skb);
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
	void *data = xdp->data + offset;

	if (unlikely(data < xdp->data_hard_start ||
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

bool bpf_helper_changes_pkt_data(void *func)
2302
{
2303 2304 2305 2306
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
2307
	    func == bpf_skb_change_head ||
2308 2309
	    func == bpf_skb_change_tail ||
	    func == bpf_skb_pull_data ||
2310
	    func == bpf_clone_redirect ||
2311
	    func == bpf_l3_csum_replace ||
2312 2313
	    func == bpf_l4_csum_replace ||
	    func == bpf_xdp_adjust_head)
2314 2315
		return true;

2316 2317 2318
	return false;
}

2319
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2320
				  unsigned long off, unsigned long len)
2321
{
2322
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2323 2324 2325 2326 2327 2328 2329 2330 2331

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

2332 2333
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2353 2354
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2355 2356
};

2357 2358 2359 2360 2361
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2362 2363
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
2364
{
2365 2366
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2367 2368
	void *to_orig = to;
	int err;
2369

2370 2371 2372 2373 2374 2375 2376 2377
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2378
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2379
		err = -EINVAL;
2380
		switch (size) {
2381
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2382
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2383
			goto set_compat;
2384 2385 2386 2387 2388
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2389
				goto err_clear;
2390
set_compat:
2391 2392 2393
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2394
			goto err_clear;
2395 2396
		}
	}
2397 2398

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2399 2400 2401
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2402
	if (flags & BPF_F_TUNINFO_IPV6) {
2403 2404
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2405 2406
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2407
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2408
	}
2409 2410

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2411
		memcpy(to_orig, to, size);
2412 2413

	return 0;
2414 2415 2416
err_clear:
	memset(to_orig, 0, size);
	return err;
2417 2418
}

2419
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2420 2421 2422 2423
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2424 2425
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2426 2427 2428
	.arg4_type	= ARG_ANYTHING,
};

2429
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2430 2431
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2432
	int err;
2433 2434

	if (unlikely(!info ||
2435 2436 2437 2438 2439 2440 2441 2442
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2443 2444

	ip_tunnel_info_opts_get(to, info);
2445 2446
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2447 2448

	return info->options_len;
2449 2450 2451
err_clear:
	memset(to, 0, size);
	return err;
2452 2453 2454 2455 2456 2457 2458
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2459 2460
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2461 2462
};

2463 2464
static struct metadata_dst __percpu *md_dst;

2465 2466
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2467 2468
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2469
	u8 compat[sizeof(struct bpf_tunnel_key)];
2470 2471
	struct ip_tunnel_info *info;

2472 2473
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2474
		return -EINVAL;
2475 2476
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2477
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2478
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2479 2480 2481 2482 2483 2484
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
2485
			from = (const struct bpf_tunnel_key *) compat;
2486 2487 2488 2489 2490
			break;
		default:
			return -EINVAL;
		}
	}
2491 2492
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2493
		return -EINVAL;
2494 2495 2496 2497 2498 2499 2500

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2501

2502
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2503 2504 2505
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2506
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2507 2508 2509 2510 2511 2512 2513
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2514 2515
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2516 2517
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2518 2519
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2520
	}
2521 2522 2523 2524

	return 0;
}

2525
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2526 2527 2528 2529
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2530 2531
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2532 2533 2534
	.arg4_type	= ARG_ANYTHING,
};

2535 2536
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
2537 2538 2539 2540 2541 2542
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2543
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2556 2557
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2558 2559 2560 2561
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2562 2563
{
	if (!md_dst) {
2564 2565
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2566
		 */
2567
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2568
						   METADATA_IP_TUNNEL,
2569
						   GFP_KERNEL);
2570 2571 2572
		if (!md_dst)
			return NULL;
	}
2573 2574 2575 2576 2577 2578 2579 2580 2581

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2582 2583
}

2584 2585
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
2586 2587 2588 2589 2590
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

2591
	sk = skb_to_full_sk(skb);
2592 2593
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
2594
	if (unlikely(idx >= array->map.max_entries))
2595 2596
		return -E2BIG;

2597
	cgrp = READ_ONCE(array->ptrs[idx]);
2598 2599 2600
	if (unlikely(!cgrp))
		return -EAGAIN;

2601
	return sk_under_cgroup_hierarchy(sk, cgrp);
2602 2603
}

2604 2605
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2606 2607 2608 2609 2610 2611 2612
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

2613 2614 2615 2616 2617 2618 2619
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

2620 2621
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2622 2623 2624 2625 2626 2627 2628 2629
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
2630 2631
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
2632 2633 2634 2635 2636 2637 2638 2639 2640
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2641 2642
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2643 2644
};

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2675
static const struct bpf_func_proto *
2676
bpf_base_func_proto(enum bpf_func_id func_id)
2677 2678 2679 2680 2681 2682 2683 2684
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
2685 2686
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
2687
	case BPF_FUNC_get_smp_processor_id:
2688
		return &bpf_get_raw_smp_processor_id_proto;
2689 2690
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
2691 2692
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
2693 2694
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
2695
	case BPF_FUNC_trace_printk:
2696 2697
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
2698 2699 2700 2701 2702
	default:
		return NULL;
	}
}

2703 2704 2705 2706 2707 2708
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2709 2710
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
2711 2712
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
2713 2714 2715 2716 2717
	default:
		return bpf_base_func_proto(func_id);
	}
}

2718 2719 2720 2721 2722 2723
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
2724 2725
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2726 2727
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
2728 2729
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
2730 2731
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
2732 2733 2734 2735
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
2736 2737
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
2738 2739
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
2740 2741 2742 2743
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
2744 2745
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
2746 2747
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
2748 2749
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
2750 2751 2752
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
2753 2754 2755 2756 2757
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
2758 2759
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
2760 2761
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
2762 2763
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
2764 2765
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
2766 2767
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
2768
	case BPF_FUNC_perf_event_output:
2769
		return &bpf_skb_event_output_proto;
2770 2771
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2772 2773
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
2774 2775
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
2776 2777
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
2778
	default:
2779
		return bpf_base_func_proto(func_id);
2780 2781 2782
	}
}

2783 2784 2785
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
2786 2787 2788
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
2789 2790
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2791 2792
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
2793
	default:
2794
		return bpf_base_func_proto(func_id);
2795
	}
2796 2797
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
2821
		return bpf_base_func_proto(func_id);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	}
}

static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
		return lwt_inout_func_proto(func_id);
	}
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static void __set_access_aux_info(int off, struct bpf_insn_access_aux *info)
{
	info->ctx_field_size = 4;
	switch (off) {
	case offsetof(struct __sk_buff, pkt_type) ...
	     offsetof(struct __sk_buff, pkt_type) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_present) ...
	     offsetof(struct __sk_buff, vlan_present) + sizeof(__u32) - 1:
		info->converted_op_size = 1;
		break;
	case offsetof(struct __sk_buff, queue_mapping) ...
	     offsetof(struct __sk_buff, queue_mapping) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, protocol) ...
	     offsetof(struct __sk_buff, protocol) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_tci) ...
	     offsetof(struct __sk_buff, vlan_tci) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_proto) ...
	     offsetof(struct __sk_buff, vlan_proto) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, tc_index) ...
	     offsetof(struct __sk_buff, tc_index) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
		info->converted_op_size = 2;
		break;
	default:
		info->converted_op_size = 4;
	}
}

2889
static bool __is_valid_access(int off, int size, enum bpf_access_type type,
2890
			      struct bpf_insn_access_aux *info)
2891
{
2892 2893
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
2894

2895
	/* The verifier guarantees that size > 0. */
2896 2897
	if (off % size != 0)
		return false;
2898 2899 2900 2901

	switch (off) {
	case offsetof(struct __sk_buff, cb[0]) ...
	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2902 2903
		if (off + size >
		    offsetof(struct __sk_buff, cb[4]) + sizeof(__u32))
2904 2905
			return false;
		break;
2906 2907
	case offsetof(struct __sk_buff, data) ...
	     offsetof(struct __sk_buff, data) + sizeof(__u32) - 1:
2908 2909 2910 2911
		if (size != sizeof(__u32))
			return false;
		info->reg_type = PTR_TO_PACKET;
		break;
2912 2913
	case offsetof(struct __sk_buff, data_end) ...
	     offsetof(struct __sk_buff, data_end) + sizeof(__u32) - 1:
2914 2915
		if (size != sizeof(__u32))
			return false;
2916
		info->reg_type = PTR_TO_PACKET_END;
2917 2918 2919 2920 2921 2922
		break;
	default:
		if (type == BPF_WRITE) {
			if (size != sizeof(__u32))
				return false;
		} else {
2923 2924 2925
			int allowed;

			/* permit narrower load for not cb/data/data_end fields */
2926
#ifdef __LITTLE_ENDIAN
2927
			allowed = (off & 0x3) == 0 && size <= 4 && (size & (size - 1)) == 0;
2928
#else
2929
			allowed = (off & 0x3) + size == 4 && size <= 4 && (size & (size - 1)) == 0;
2930
#endif
2931 2932 2933
			if (!allowed)
				return false;
			__set_access_aux_info(off, info);
2934
		}
2935
	}
2936 2937 2938 2939

	return true;
}

2940
static bool sk_filter_is_valid_access(int off, int size,
2941
				      enum bpf_access_type type,
2942
				      struct bpf_insn_access_aux *info)
2943
{
2944
	switch (off) {
2945 2946 2947 2948 2949 2950
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, data) ...
	     offsetof(struct __sk_buff, data) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, data_end) ...
	     offsetof(struct __sk_buff, data_end) + sizeof(__u32) - 1:
2951
		return false;
2952
	}
2953

2954 2955 2956
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
2957
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2958 2959 2960 2961 2962 2963
			break;
		default:
			return false;
		}
	}

2964
	return __is_valid_access(off, size, type, info);
2965 2966
}

2967 2968
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
2969
				struct bpf_insn_access_aux *info)
2970 2971
{
	switch (off) {
2972 2973
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
2974 2975 2976 2977 2978 2979 2980 2981
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, priority):
		case offsetof(struct __sk_buff, cb[0]) ...
2982
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2983 2984 2985 2986 2987 2988
			break;
		default:
			return false;
		}
	}

2989
	return __is_valid_access(off, size, type, info);
2990 2991
}

2992 2993
static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
2994
					struct bpf_insn_access_aux *info)
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock, bound_dev_if):
			break;
		default:
			return false;
		}
	}

	if (off < 0 || off + size > sizeof(struct bpf_sock))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

3055
static bool tc_cls_act_is_valid_access(int off, int size,
3056
				       enum bpf_access_type type,
3057
				       struct bpf_insn_access_aux *info)
3058 3059 3060 3061 3062
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
3063
		case offsetof(struct __sk_buff, priority):
3064
		case offsetof(struct __sk_buff, cb[0]) ...
3065
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3066
		case offsetof(struct __sk_buff, tc_classid):
3067 3068 3069 3070 3071
			break;
		default:
			return false;
		}
	}
3072

3073
	return __is_valid_access(off, size, type, info);
3074 3075
}

3076
static bool __is_valid_xdp_access(int off, int size)
3077 3078 3079 3080 3081
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
3082
	if (size != sizeof(__u32))
3083 3084 3085 3086 3087 3088 3089
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
3090
				struct bpf_insn_access_aux *info)
3091 3092 3093 3094 3095 3096
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
3097
		info->reg_type = PTR_TO_PACKET;
3098 3099
		break;
	case offsetof(struct xdp_md, data_end):
3100
		info->reg_type = PTR_TO_PACKET_END;
3101 3102 3103
		break;
	}

3104
	return __is_valid_xdp_access(off, size);
3105 3106 3107 3108 3109 3110 3111 3112
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

3113 3114 3115 3116
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
3117 3118
{
	struct bpf_insn *insn = insn_buf;
3119
	int off;
3120

3121
	switch (si->off) {
3122 3123 3124
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

3125
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3126 3127 3128
				      offsetof(struct sk_buff, len));
		break;

3129 3130 3131
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

3132
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3133 3134 3135
				      offsetof(struct sk_buff, protocol));
		break;

3136 3137 3138
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

3139
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3140 3141 3142
				      offsetof(struct sk_buff, vlan_proto));
		break;

3143 3144 3145
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

3146
		if (type == BPF_WRITE)
3147
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3148 3149
					      offsetof(struct sk_buff, priority));
		else
3150
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3151
					      offsetof(struct sk_buff, priority));
3152 3153
		break;

3154 3155 3156
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

3157
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3158 3159 3160 3161 3162 3163
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

3164
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3165
				      si->dst_reg, si->src_reg,
3166
				      offsetof(struct sk_buff, dev));
3167 3168
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3169 3170 3171
				      offsetof(struct net_device, ifindex));
		break;

3172 3173 3174
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

3175
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3176 3177 3178
				      offsetof(struct sk_buff, hash));
		break;

3179
	case offsetof(struct __sk_buff, mark):
3180 3181 3182
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
3183
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3184 3185
					      offsetof(struct sk_buff, mark));
		else
3186
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3187 3188
					      offsetof(struct sk_buff, mark));
		break;
3189 3190

	case offsetof(struct __sk_buff, pkt_type):
3191 3192
		return convert_skb_access(SKF_AD_PKTTYPE, si->dst_reg,
					  si->src_reg, insn);
3193 3194

	case offsetof(struct __sk_buff, queue_mapping):
3195 3196
		return convert_skb_access(SKF_AD_QUEUE, si->dst_reg,
					  si->src_reg, insn);
3197 3198 3199

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
3200
					  si->dst_reg, si->src_reg, insn);
3201 3202 3203

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
3204
					  si->dst_reg, si->src_reg, insn);
3205 3206

	case offsetof(struct __sk_buff, cb[0]) ...
3207
	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3208
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3209 3210 3211
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
3212

3213
		prog->cb_access = 1;
3214 3215 3216 3217
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
3218
		if (type == BPF_WRITE)
3219
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3220
					      si->src_reg, off);
3221
		else
3222
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3223
					      si->src_reg, off);
3224 3225
		break;

3226
	case offsetof(struct __sk_buff, tc_classid):
3227 3228 3229 3230 3231 3232
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
3233
		if (type == BPF_WRITE)
3234 3235
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3236
		else
3237 3238
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3239 3240
		break;

3241
	case offsetof(struct __sk_buff, data):
3242
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3243
				      si->dst_reg, si->src_reg,
3244 3245 3246 3247
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
3248 3249 3250 3251 3252 3253
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
3254 3255
		break;

3256 3257 3258 3259 3260
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
3261
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3262 3263
					      offsetof(struct sk_buff, tc_index));
		else
3264
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3265 3266 3267
					      offsetof(struct sk_buff, tc_index));
#else
		if (type == BPF_WRITE)
3268
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3269
		else
3270
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, napi_id) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, napi_id));
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3284
#endif
3285
		break;
3286 3287 3288
	}

	return insn - insn_buf;
3289 3290
}

3291
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3292
					  const struct bpf_insn *si,
3293 3294 3295 3296 3297
					  struct bpf_insn *insn_buf,
					  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3298
	switch (si->off) {
3299 3300 3301 3302
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
3303
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3304 3305
					offsetof(struct sock, sk_bound_dev_if));
		else
3306
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3307 3308
				      offsetof(struct sock, sk_bound_dev_if));
		break;
3309 3310 3311 3312

	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

3313
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3314 3315 3316 3317
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
3318
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3319
				      offsetof(struct sock, __sk_flags_offset));
3320 3321
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3322 3323 3324
		break;

	case offsetof(struct bpf_sock, protocol):
3325
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3326
				      offsetof(struct sock, __sk_flags_offset));
3327 3328
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3329
		break;
3330 3331 3332 3333 3334
	}

	return insn - insn_buf;
}

3335 3336
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
3337 3338 3339 3340 3341
					 struct bpf_insn *insn_buf,
					 struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3342
	switch (si->off) {
3343 3344 3345 3346
	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3347
				      si->dst_reg, si->src_reg,
3348
				      offsetof(struct sk_buff, dev));
3349
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3350 3351 3352
				      offsetof(struct net_device, ifindex));
		break;
	default:
3353
		return bpf_convert_ctx_access(type, si, insn_buf, prog);
3354 3355 3356 3357 3358
	}

	return insn - insn_buf;
}

3359 3360
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
3361 3362 3363 3364 3365
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3366
	switch (si->off) {
3367
	case offsetof(struct xdp_md, data):
3368
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3369
				      si->dst_reg, si->src_reg,
3370 3371 3372
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
3373
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3374
				      si->dst_reg, si->src_reg,
3375 3376 3377 3378 3379 3380 3381
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

3382
const struct bpf_verifier_ops sk_filter_prog_ops = {
3383 3384
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
3385
	.convert_ctx_access	= bpf_convert_ctx_access,
3386 3387
};

3388
const struct bpf_verifier_ops tc_cls_act_prog_ops = {
3389 3390
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
3391
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3392
	.gen_prologue		= tc_cls_act_prologue,
3393
	.test_run		= bpf_prog_test_run_skb,
3394 3395
};

3396
const struct bpf_verifier_ops xdp_prog_ops = {
3397 3398 3399
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
3400
	.test_run		= bpf_prog_test_run_xdp,
3401 3402
};

3403
const struct bpf_verifier_ops cg_skb_prog_ops = {
3404
	.get_func_proto		= sk_filter_func_proto,
3405
	.is_valid_access	= sk_filter_is_valid_access,
3406
	.convert_ctx_access	= bpf_convert_ctx_access,
3407
	.test_run		= bpf_prog_test_run_skb,
3408 3409
};

3410
const struct bpf_verifier_ops lwt_inout_prog_ops = {
3411 3412
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3413
	.convert_ctx_access	= bpf_convert_ctx_access,
3414
	.test_run		= bpf_prog_test_run_skb,
3415 3416
};

3417
const struct bpf_verifier_ops lwt_xmit_prog_ops = {
3418 3419
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3420
	.convert_ctx_access	= bpf_convert_ctx_access,
3421
	.gen_prologue		= tc_cls_act_prologue,
3422
	.test_run		= bpf_prog_test_run_skb,
3423 3424
};

3425
const struct bpf_verifier_ops cg_sock_prog_ops = {
3426
	.get_func_proto		= bpf_base_func_proto,
3427 3428 3429 3430
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

3431
int sk_detach_filter(struct sock *sk)
3432 3433 3434 3435
{
	int ret = -ENOENT;
	struct sk_filter *filter;

3436 3437 3438
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

3439 3440
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
3441
	if (filter) {
3442
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
3443
		sk_filter_uncharge(sk, filter);
3444 3445
		ret = 0;
	}
3446

3447 3448
	return ret;
}
3449
EXPORT_SYMBOL_GPL(sk_detach_filter);
3450

3451 3452
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
3453
{
3454
	struct sock_fprog_kern *fprog;
3455
	struct sk_filter *filter;
3456
	int ret = 0;
3457 3458 3459

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
3460
					   lockdep_sock_is_held(sk));
3461 3462
	if (!filter)
		goto out;
3463 3464

	/* We're copying the filter that has been originally attached,
3465 3466
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
3467
	 */
3468
	ret = -EACCES;
3469
	fprog = filter->prog->orig_prog;
3470 3471
	if (!fprog)
		goto out;
3472 3473

	ret = fprog->len;
3474
	if (!len)
3475
		/* User space only enquires number of filter blocks. */
3476
		goto out;
3477

3478
	ret = -EINVAL;
3479
	if (len < fprog->len)
3480 3481 3482
		goto out;

	ret = -EFAULT;
3483
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3484
		goto out;
3485

3486 3487 3488 3489
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
3490 3491 3492 3493
out:
	release_sock(sk);
	return ret;
}