filter.c 45.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
L
Linus Torvalds 已提交
51

S
Stephen Hemminger 已提交
52 53 54 55 56 57
/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
L
Li RongQing 已提交
58
 * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
59
 * than pkt_len we keep whole skb->data. This is the socket level
L
Li RongQing 已提交
60
 * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
S
Stephen Hemminger 已提交
61 62 63 64 65 66 67 68
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

69 70 71 72 73 74 75 76
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
77 78 79 80
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

81 82
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
83
	if (filter) {
84
		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
85

S
Stephen Hemminger 已提交
86 87
		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
88
	rcu_read_unlock();
S
Stephen Hemminger 已提交
89 90 91 92 93

	return err;
}
EXPORT_SYMBOL(sk_filter);

94
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
95
{
96
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
97 98
}

99
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
100
{
101
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
102 103 104 105 106
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

107 108 109
	if (skb->len < sizeof(struct nlattr))
		return 0;

110
	if (a > skb->len - sizeof(struct nlattr))
111 112
		return 0;

113
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
114 115 116 117 118 119
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

120
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
121
{
122
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
123 124 125 126 127
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

128 129 130
	if (skb->len < sizeof(struct nlattr))
		return 0;

131
	if (a > skb->len - sizeof(struct nlattr))
132 133
		return 0;

134 135
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
136 137
		return 0;

138
	nla = nla_find_nested(nla, x);
139 140 141 142 143 144
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

145
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
146 147 148 149
{
	return raw_smp_processor_id();
}

C
Chema Gonzalez 已提交
150
/* note that this only generates 32-bit random numbers */
151
static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
C
Chema Gonzalez 已提交
152
{
153
	return prandom_u32();
C
Chema Gonzalez 已提交
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
202 203 204 205 206
	}

	return insn - insn_buf;
}

207
static bool convert_bpf_extensions(struct sock_filter *fp,
208
				   struct bpf_insn **insnp)
209
{
210
	struct bpf_insn *insn = *insnp;
211
	u32 cnt;
212 213 214

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
215 216 217 218 219 220 221
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
222 223 224
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
225 226
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
227 228 229 230 231 232
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
233 234 235 236 237 238 239 240 241 242 243 244 245 246
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
247 248 249
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
250 251
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
252 253 254 255 256
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

257 258
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
259 260 261
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
262 263
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
264 265 266
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
267 268 269 270
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
271

272 273 274 275
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
276 277
		break;

278 279 280 281 282 283 284 285 286 287
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

288 289 290 291
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
292
	case SKF_AD_OFF + SKF_AD_RANDOM:
293
		/* arg1 = CTX */
294
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
295
		/* arg2 = A */
296
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
297
		/* arg3 = X */
298
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
299
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
300 301
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
302
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
303 304
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
305
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
306 307
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
308
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
309 310
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
311
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
312
			break;
C
Chema Gonzalez 已提交
313
		case SKF_AD_OFF + SKF_AD_RANDOM:
314
			*insn = BPF_EMIT_CALL(__get_random_u32);
C
Chema Gonzalez 已提交
315
			break;
316 317 318 319
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
320 321
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
338
 *	bpf_convert_filter - convert filter program
339 340 341 342 343 344 345 346 347
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
348
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
349 350 351
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
352
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
353
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
354 355 356 357 358 359 360
 *
 * User BPF's register A is mapped to our BPF register 6, user BPF
 * register X is mapped to BPF register 7; frame pointer is always
 * register 10; Context 'void *ctx' is stored in register 1, that is,
 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
 * ctx == 'struct seccomp_data *'.
 */
361 362
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
363 364
{
	int new_flen = 0, pass = 0, target, i;
365
	struct bpf_insn *new_insn;
366 367 368 369 370
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
371
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
372

373
	if (len <= 0 || len > BPF_MAXINSNS)
374 375 376
		return -EINVAL;

	if (new_prog) {
377 378
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
379 380 381 382 383 384 385 386
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

387 388
	if (new_insn)
		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
389 390 391
	new_insn++;

	for (i = 0; i < len; fp++, i++) {
392 393
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

436
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
437 438
			break;

439 440 441 442 443 444 445
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
446 447 448 449 450 451 452 453
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

454 455 456 457
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
473
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
474

475 476
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
477 478
				bpf_src = BPF_X;
			} else {
479 480
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_X;
481 482
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
L
Linus Torvalds 已提交
483
			}
484 485 486 487 488

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
489
				BPF_EMIT_JMP;
490
				break;
L
Linus Torvalds 已提交
491
			}
492 493 494 495 496

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
497
				BPF_EMIT_JMP;
498
				break;
499
			}
500 501 502 503

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
504
			BPF_EMIT_JMP;
505 506 507 508
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
509
			BPF_EMIT_JMP;
510 511 512 513
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
514
			/* tmp = A */
515
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
516
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
517
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
518
			/* A &= 0xf */
519
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
520
			/* A <<= 2 */
521
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
522
			/* X = A */
523
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
524
			/* A = tmp */
525
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
526 527 528 529 530
			break;

		/* RET_K, RET_A are remaped into 2 insns. */
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
531 532 533
			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
						BPF_K : BPF_X, BPF_REG_0,
						BPF_REG_A, fp->k);
534
			*insn = BPF_EXIT_INSN();
535 536 537 538 539
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
540 541 542
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
543 544 545 546 547
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
548 549 550
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
551 552 553 554 555
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
556 557
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
558 559 560 561
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
562
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
563 564 565 566
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
567
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
568 569 570 571 572
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
573 574 575
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
576 577
			break;

578
		/* Access seccomp_data fields. */
579
		case BPF_LDX | BPF_ABS | BPF_W:
580 581
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
582 583
			break;

S
Stephen Hemminger 已提交
584
		/* Unknown instruction. */
L
Linus Torvalds 已提交
585
		default:
586
			goto err;
L
Linus Torvalds 已提交
587
		}
588 589 590 591 592 593

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
594 595
	}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
612
	return 0;
613 614 615
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
616 617
}

618 619
/* Security:
 *
620
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
621
 * __bpf_prog_run(), we check that filter loaded by user never try to read
622
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
623
 * a malicious user doesn't try to abuse us.
624
 */
625
static int check_load_and_stores(const struct sock_filter *filter, int flen)
626
{
627
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
628 629 630
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
631

632
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
633 634
	if (!masks)
		return -ENOMEM;
635

636 637 638 639 640 641
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
642 643
		case BPF_ST:
		case BPF_STX:
644 645
			memvalid |= (1 << filter[pc].k);
			break;
646 647
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
648 649 650 651 652
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
653 654
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
655 656 657
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
658 659 660 661 662 663 664 665 666
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
667 668 669 670 671 672 673 674 675 676 677
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

L
Linus Torvalds 已提交
744
/**
745
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
746 747 748 749 750
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
751 752
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
753
 *
754 755 756
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
757
 */
758 759
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
760
{
761
	bool anc_found;
762
	int pc;
L
Linus Torvalds 已提交
763

764
	if (flen == 0 || flen > BPF_MAXINSNS)
L
Linus Torvalds 已提交
765 766
		return -EINVAL;

767
	/* Check the filter code now */
L
Linus Torvalds 已提交
768
	for (pc = 0; pc < flen; pc++) {
769
		const struct sock_filter *ftest = &filter[pc];
770

771 772
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
773
			return -EINVAL;
774

775
		/* Some instructions need special checks */
776 777 778 779
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
780 781 782
			if (ftest->k == 0)
				return -EINVAL;
			break;
783 784 785 786 787
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
788 789 790
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
791 792
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
793 794 795
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
796
			if (ftest->k >= (unsigned int)(flen - pc - 1))
797
				return -EINVAL;
798
			break;
799 800 801 802 803 804 805 806 807
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
808
			if (pc + ftest->jt + 1 >= flen ||
809 810
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
811
			break;
812 813 814
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
815
			anc_found = false;
816 817 818
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
819 820
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
821 822
		}
	}
823

824
	/* Last instruction must be a RET code */
825
	switch (filter[flen - 1].code) {
826 827
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
828
		return check_load_and_stores(filter, flen);
829
	}
830

831
	return -EINVAL;
L
Linus Torvalds 已提交
832 833
}

834 835
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
836
{
837
	unsigned int fsize = bpf_classic_proglen(fprog);
838 839 840 841 842 843 844 845
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
846 847 848

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
849 850 851 852 853 854 855 856
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

857
static void bpf_release_orig_filter(struct bpf_prog *fp)
858 859 860 861 862 863 864 865 866
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

867 868
static void __bpf_prog_release(struct bpf_prog *prog)
{
869
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
870 871 872 873 874
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
875 876
}

877 878
static void __sk_filter_release(struct sk_filter *fp)
{
879 880
	__bpf_prog_release(fp->prog);
	kfree(fp);
881 882
}

883
/**
E
Eric Dumazet 已提交
884
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
885 886
 *	@rcu: rcu_head that contains the sk_filter to free
 */
887
static void sk_filter_release_rcu(struct rcu_head *rcu)
888 889 890
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

891
	__sk_filter_release(fp);
892
}
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
908
	u32 filter_size = bpf_prog_size(fp->prog->len);
909

910 911
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
912
}
913

914 915 916 917
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
918
{
919
	u32 filter_size = bpf_prog_size(fp->prog->len);
920 921 922 923 924 925 926

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
927
	}
928
	return false;
929 930
}

931
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
932 933
{
	struct sock_filter *old_prog;
934
	struct bpf_prog *old_fp;
935
	int err, new_len, old_len = fp->len;
936 937 938 939 940 941 942

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
943
		     sizeof(struct bpf_insn));
944 945 946 947 948 949

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
950
			   GFP_KERNEL | __GFP_NOWARN);
951 952 953 954 955 956
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
957
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
958 959 960 961 962
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
963
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
964 965 966 967 968 969 970 971 972 973 974
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

975
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
976
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
977
	if (err)
978
		/* 2nd bpf_convert_filter() can fail only if it fails
979 980
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
981
		 * by krealloc().
982 983 984
		 */
		goto out_err_free;

985
	bpf_prog_select_runtime(fp);
986

987 988 989 990 991 992
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
993
	__bpf_prog_release(fp);
994 995 996
	return ERR_PTR(err);
}

997 998
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
999 1000 1001
{
	int err;

1002
	fp->bpf_func = NULL;
1003
	fp->jited = false;
1004

1005
	err = bpf_check_classic(fp->insns, fp->len);
1006
	if (err) {
1007
		__bpf_prog_release(fp);
1008
		return ERR_PTR(err);
1009
	}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1022 1023 1024
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1025
	bpf_jit_compile(fp);
1026 1027 1028 1029

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1030
	if (!fp->jited)
1031
		fp = bpf_migrate_filter(fp);
1032 1033

	return fp;
1034 1035 1036
}

/**
1037
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1038
 *	@pfp: the unattached filter that is created
1039
 *	@fprog: the filter program
1040
 *
R
Randy Dunlap 已提交
1041
 * Create a filter independent of any socket. We first run some
1042 1043 1044 1045
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1046
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1047
{
1048
	unsigned int fsize = bpf_classic_proglen(fprog);
1049
	struct bpf_prog *fp;
1050 1051 1052 1053 1054

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

1055
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1056 1057
	if (!fp)
		return -ENOMEM;
1058

1059 1060 1061
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1062 1063 1064 1065 1066
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1067

1068
	/* bpf_prepare_filter() already takes care of freeing
1069 1070
	 * memory in case something goes wrong.
	 */
1071
	fp = bpf_prepare_filter(fp, NULL);
1072 1073
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1074 1075 1076 1077

	*pfp = fp;
	return 0;
}
1078
EXPORT_SYMBOL_GPL(bpf_prog_create);
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
			      bpf_aux_classic_check_t trans)
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;

	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}

1127
void bpf_prog_destroy(struct bpf_prog *fp)
1128
{
1129
	__bpf_prog_release(fp);
1130
}
1131
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
1171
	unsigned int fsize = bpf_classic_proglen(fprog);
1172 1173
	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1174 1175
	int err;

1176 1177 1178
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

L
Linus Torvalds 已提交
1179
	/* Make sure new filter is there and in the right amounts. */
1180 1181
	if (fprog->filter == NULL)
		return -EINVAL;
L
Linus Torvalds 已提交
1182

1183
	prog = bpf_prog_alloc(bpf_fsize, 0);
1184
	if (!prog)
L
Linus Torvalds 已提交
1185
		return -ENOMEM;
1186

1187
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1188
		__bpf_prog_free(prog);
L
Linus Torvalds 已提交
1189 1190 1191
		return -EFAULT;
	}

1192
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1193

1194
	err = bpf_prog_store_orig_filter(prog, fprog);
1195
	if (err) {
1196
		__bpf_prog_free(prog);
1197 1198 1199
		return -ENOMEM;
	}

1200
	/* bpf_prepare_filter() already takes care of freeing
1201 1202
	 * memory in case something goes wrong.
	 */
1203
	prog = bpf_prepare_filter(prog, NULL);
1204 1205 1206
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1207 1208
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1209
		__bpf_prog_release(prog);
1210
		return err;
1211 1212
	}

1213
	return 0;
L
Linus Torvalds 已提交
1214
}
1215
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1216

1217 1218 1219
int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog;
1220
	int err;
1221 1222 1223 1224 1225

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	prog = bpf_prog_get(ufd);
1226 1227
	if (IS_ERR(prog))
		return PTR_ERR(prog);
1228

1229
	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1230 1231 1232 1233
		bpf_prog_put(prog);
		return -EINVAL;
	}

1234 1235
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1236
		bpf_prog_put(prog);
1237
		return err;
1238 1239 1240 1241 1242
	}

	return 0;
}

1243 1244 1245
#define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)

static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1246 1247
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1248
	int offset = (int) r2;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	char buf[16];
	void *ptr;

	/* bpf verifier guarantees that:
	 * 'from' pointer points to bpf program stack
	 * 'len' bytes of it were initialized
	 * 'len' > 0
	 * 'skb' is a valid pointer to 'struct sk_buff'
	 *
	 * so check for invalid 'offset' and too large 'len'
	 */
1262
	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1263 1264
		return -EFAULT;

1265
	if (unlikely(skb_cloned(skb) &&
1266
		     !skb_clone_writable(skb, offset + len)))
1267 1268 1269 1270 1271 1272
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, len, buf);
	if (unlikely(!ptr))
		return -EFAULT;

1273 1274
	if (BPF_RECOMPUTE_CSUM(flags))
		skb_postpull_rcsum(skb, ptr, len);
1275 1276 1277 1278 1279 1280 1281

	memcpy(ptr, from, len);

	if (ptr == buf)
		/* skb_store_bits cannot return -EFAULT here */
		skb_store_bits(skb, offset, ptr, len);

1282
	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
	return 0;
}

const struct bpf_func_proto bpf_skb_store_bytes_proto = {
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1295 1296 1297 1298 1299 1300
	.arg5_type	= ARG_ANYTHING,
};

#define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
#define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)

1301
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1302 1303
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1304
	int offset = (int) r2;
1305 1306
	__sum16 sum, *ptr;

1307
	if (unlikely((u32) offset > 0xffff))
1308 1309
		return -EFAULT;

1310
	if (unlikely(skb_cloned(skb) &&
1311
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l3_csum_replace_proto = {
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1347
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1348 1349 1350
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u32 is_pseudo = BPF_IS_PSEUDO_HEADER(flags);
1351
	int offset = (int) r2;
1352 1353
	__sum16 sum, *ptr;

1354
	if (unlikely((u32) offset > 0xffff))
1355 1356
		return -EFAULT;

1357
	if (unlikely(skb_cloned(skb) &&
1358
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l4_csum_replace_proto = {
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1392 1393
};

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
#define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)

static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

	if (unlikely(!(dev->flags & IFF_UP)))
		return -EINVAL;

	skb2 = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb2))
		return -ENOMEM;

	if (BPF_IS_REDIRECT_INGRESS(flags))
		return dev_forward_skb(dev, skb2);

	skb2->dev = dev;
	return dev_queue_xmit(skb2);
}

const struct bpf_func_proto bpf_clone_redirect_proto = {
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

	return skb_vlan_push(skb, vlan_proto, vlan_tci);
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1460
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;

	return skb_vlan_pop(skb);
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1475
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
	return false;
}

1486 1487
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
1488 1489 1490 1491 1492 1493 1494 1495
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
1496 1497
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
1498 1499
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
1500 1501
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
1502 1503
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
1504 1505
	case BPF_FUNC_trace_printk:
		return bpf_get_trace_printk_proto();
1506 1507 1508 1509 1510
	default:
		return NULL;
	}
}

1511 1512 1513 1514 1515 1516
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
1517 1518 1519 1520
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
1521 1522
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
1523 1524
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
1525 1526 1527 1528
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
1529 1530 1531 1532 1533
	default:
		return sk_filter_func_proto(func_id);
	}
}

1534
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1535
{
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	/* check bounds */
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;

	/* disallow misaligned access */
	if (off % size != 0)
		return false;

	/* all __sk_buff fields are __u32 */
	if (size != 4)
		return false;

	return true;
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static bool sk_filter_is_valid_access(int off, int size,
				      enum bpf_access_type type)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
				       enum bpf_access_type type)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}
	return __is_valid_access(off, size, type);
}

static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				      int src_reg, int ctx_off,
				      struct bpf_insn *insn_buf)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

1598 1599 1600 1601 1602 1603 1604
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

1605 1606 1607 1608 1609 1610 1611
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

1612 1613 1614 1615 1616 1617 1618
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, priority));
		break;

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

1637
	case offsetof(struct __sk_buff, mark):
1638 1639 1640 1641 1642 1643 1644 1645 1646
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
1647 1648 1649 1650 1651 1652

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1653 1654 1655 1656 1657 1658 1659 1660

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	case offsetof(struct __sk_buff, cb[0]) ...
		offsetof(struct __sk_buff, cb[4]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
1693 1694 1695
	}

	return insn - insn_buf;
1696 1697
}

1698 1699 1700
static const struct bpf_verifier_ops sk_filter_ops = {
	.get_func_proto = sk_filter_func_proto,
	.is_valid_access = sk_filter_is_valid_access,
1701
	.convert_ctx_access = bpf_net_convert_ctx_access,
1702 1703
};

1704 1705
static const struct bpf_verifier_ops tc_cls_act_ops = {
	.get_func_proto = tc_cls_act_func_proto,
1706 1707
	.is_valid_access = tc_cls_act_is_valid_access,
	.convert_ctx_access = bpf_net_convert_ctx_access,
1708 1709
};

1710 1711
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
	.ops = &sk_filter_ops,
1712 1713 1714
	.type = BPF_PROG_TYPE_SOCKET_FILTER,
};

1715
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1716
	.ops = &tc_cls_act_ops,
1717 1718 1719
	.type = BPF_PROG_TYPE_SCHED_CLS,
};

1720
static struct bpf_prog_type_list sched_act_type __read_mostly = {
1721
	.ops = &tc_cls_act_ops,
1722 1723 1724
	.type = BPF_PROG_TYPE_SCHED_ACT,
};

1725
static int __init register_sk_filter_ops(void)
1726
{
1727
	bpf_register_prog_type(&sk_filter_type);
1728
	bpf_register_prog_type(&sched_cls_type);
1729
	bpf_register_prog_type(&sched_act_type);
1730

1731 1732
	return 0;
}
1733 1734
late_initcall(register_sk_filter_ops);

1735 1736 1737 1738 1739
int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

1740 1741 1742
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

1743 1744
	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
1745
	if (filter) {
1746
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
1747
		sk_filter_uncharge(sk, filter);
1748 1749
		ret = 0;
	}
1750

1751 1752
	return ret;
}
1753
EXPORT_SYMBOL_GPL(sk_detach_filter);
1754

1755 1756
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
1757
{
1758
	struct sock_fprog_kern *fprog;
1759
	struct sk_filter *filter;
1760
	int ret = 0;
1761 1762 1763

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
1764
					   sock_owned_by_user(sk));
1765 1766
	if (!filter)
		goto out;
1767 1768 1769 1770

	/* We're copying the filter that has been originally attached,
	 * so no conversion/decode needed anymore.
	 */
1771
	fprog = filter->prog->orig_prog;
1772 1773

	ret = fprog->len;
1774
	if (!len)
1775
		/* User space only enquires number of filter blocks. */
1776
		goto out;
1777

1778
	ret = -EINVAL;
1779
	if (len < fprog->len)
1780 1781 1782
		goto out;

	ret = -EFAULT;
1783
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1784
		goto out;
1785

1786 1787 1788 1789
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
1790 1791 1792 1793
out:
	release_sock(sk);
	return ret;
}