filter.c 98.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
L
Linus Torvalds 已提交
36 37
#include <net/ip.h>
#include <net/protocol.h>
38
#include <net/netlink.h>
L
Linus Torvalds 已提交
39 40
#include <linux/skbuff.h>
#include <net/sock.h>
41
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
42 43
#include <linux/errno.h>
#include <linux/timer.h>
44
#include <linux/uaccess.h>
45
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
46
#include <linux/filter.h>
47
#include <linux/ratelimit.h>
48
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
49
#include <linux/if_vlan.h>
50
#include <linux/bpf.h>
51
#include <net/sch_generic.h>
52
#include <net/cls_cgroup.h>
53
#include <net/dst_metadata.h>
54
#include <net/dst.h>
55
#include <net/sock_reuseport.h>
56
#include <net/busy_poll.h>
57
#include <net/tcp.h>
L
Linus Torvalds 已提交
58

S
Stephen Hemminger 已提交
59
/**
60
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
61 62
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
63
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
64
 *
65 66
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
67
 * than pkt_len we keep whole skb->data. This is the socket level
68
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
69 70 71
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
72
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
73 74 75 76
{
	int err;
	struct sk_filter *filter;

77 78 79 80 81
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
82 83
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
84
		return -ENOMEM;
85
	}
86 87 88 89
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
90 91 92 93
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

94 95
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
96
	if (filter) {
97 98 99 100 101 102
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
103
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
104
	}
105
	rcu_read_unlock();
S
Stephen Hemminger 已提交
106 107 108

	return err;
}
109
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
110

111
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
112
{
113
	return skb_get_poff(skb);
114 115
}

116
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
117 118 119 120 121 122
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

123 124 125
	if (skb->len < sizeof(struct nlattr))
		return 0;

126
	if (a > skb->len - sizeof(struct nlattr))
127 128
		return 0;

129
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
130 131 132 133 134 135
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

136
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
137 138 139 140 141 142
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

143 144 145
	if (skb->len < sizeof(struct nlattr))
		return 0;

146
	if (a > skb->len - sizeof(struct nlattr))
147 148
		return 0;

149 150
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
151 152
		return 0;

153
	nla = nla_find_nested(nla, x);
154 155 156 157 158 159
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

160
BPF_CALL_0(__get_raw_cpu_id)
161 162 163 164
{
	return raw_smp_processor_id();
}

165 166 167 168 169 170
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
217 218 219 220 221
	}

	return insn - insn_buf;
}

222
static bool convert_bpf_extensions(struct sock_filter *fp,
223
				   struct bpf_insn **insnp)
224
{
225
	struct bpf_insn *insn = *insnp;
226
	u32 cnt;
227 228 229

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
230 231 232 233 234 235 236
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
237 238 239
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
240 241
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
242 243 244 245 246 247
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
248

249
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
250 251 252 253 254 255 256 257 258 259 260
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
261 262 263
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
264 265
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
266 267 268 269 270
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

271 272
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
273 274 275
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
276 277
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
278 279 280
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
281 282 283 284
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
285

286 287 288 289
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
290 291
		break;

292 293 294 295 296 297 298 299 300 301
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

302 303 304 305
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
306
	case SKF_AD_OFF + SKF_AD_RANDOM:
307
		/* arg1 = CTX */
308
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
309
		/* arg2 = A */
310
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
311
		/* arg3 = X */
312
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
313
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
314 315
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
316
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
317 318
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
319
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
320 321
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
322
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
323 324
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
325
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
326
			break;
C
Chema Gonzalez 已提交
327
		case SKF_AD_OFF + SKF_AD_RANDOM:
328 329
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
330
			break;
331 332 333 334
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
335 336
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
353
 *	bpf_convert_filter - convert filter program
354 355
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
356
 *	@new_prog: allocated 'struct bpf_prog' or NULL
357 358
 *	@new_len: pointer to store length of converted program
 *
359 360
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
361 362 363
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
364
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
365 366 367
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
368
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
369
 */
370
static int bpf_convert_filter(struct sock_filter *prog, int len,
371
			      struct bpf_prog *new_prog, int *new_len)
372
{
373 374
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
375 376 377 378 379
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
380
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
381

382
	if (len <= 0 || len > BPF_MAXINSNS)
383 384 385
		return -EINVAL;

	if (new_prog) {
386
		first_insn = new_prog->insnsi;
387 388
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
389 390 391 392 393
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
394
	new_insn = first_insn;
395 396
	fp = prog;

397
	/* Classic BPF related prologue emission. */
398
	if (new_prog) {
399 400 401 402 403 404 405 406 407 408 409 410 411 412
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
413 414

	for (i = 0; i < len; fp++, i++) {
415 416
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
417 418

		if (addrs)
419
			addrs[i] = new_insn - first_insn;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

459
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
460 461
			break;

462 463 464 465 466 467 468
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
469 470 471 472 473 474 475 476
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

477 478 479 480
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
496
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
497

498 499
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
500 501
				bpf_src = BPF_X;
			} else {
502
				insn->dst_reg = BPF_REG_A;
503 504
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
505
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
506
			}
507 508 509 510 511

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
512
				BPF_EMIT_JMP;
513
				break;
L
Linus Torvalds 已提交
514
			}
515 516 517 518 519

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
520
				BPF_EMIT_JMP;
521
				break;
522
			}
523 524 525 526

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
527
			BPF_EMIT_JMP;
528 529 530 531
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
532
			BPF_EMIT_JMP;
533 534 535 536
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
537
			/* tmp = A */
538
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
539
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
540
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
541
			/* A &= 0xf */
542
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
543
			/* A <<= 2 */
544
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
545
			/* X = A */
546
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
547
			/* A = tmp */
548
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
549 550
			break;

551 552 553
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
554 555
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
556 557 558
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
559
			*insn = BPF_EXIT_INSN();
560 561 562 563 564
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
565
			stack_off = fp->k * 4  + 4;
566 567
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
568 569 570 571 572 573 574
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
575 576 577 578 579
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
580
			stack_off = fp->k * 4  + 4;
581 582
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
583
					    -stack_off);
584 585 586 587 588
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
589 590
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
591 592 593 594
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
595
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
596 597 598 599
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
600
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
601 602 603 604 605
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
606 607 608
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
609 610
			break;

611
		/* Access seccomp_data fields. */
612
		case BPF_LDX | BPF_ABS | BPF_W:
613 614
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
615 616
			break;

S
Stephen Hemminger 已提交
617
		/* Unknown instruction. */
L
Linus Torvalds 已提交
618
		default:
619
			goto err;
L
Linus Torvalds 已提交
620
		}
621 622 623 624 625 626

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
627 628
	}

629 630
	if (!new_prog) {
		/* Only calculating new length. */
631
		*new_len = new_insn - first_insn;
632 633 634 635
		return 0;
	}

	pass++;
636 637
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
638 639 640 641 642 643 644
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
645
	return 0;
646 647 648
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
649 650
}

651 652
/* Security:
 *
653
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
654
 * __bpf_prog_run(), we check that filter loaded by user never try to read
655
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
656
 * a malicious user doesn't try to abuse us.
657
 */
658
static int check_load_and_stores(const struct sock_filter *filter, int flen)
659
{
660
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
661 662 663
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
664

665
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
666 667
	if (!masks)
		return -ENOMEM;
668

669 670 671 672 673 674
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
675 676
		case BPF_ST:
		case BPF_STX:
677 678
			memvalid |= (1 << filter[pc].k);
			break;
679 680
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
681 682 683 684 685
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
686 687
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
688 689 690
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
691 692 693 694 695 696 697 698 699
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
700 701 702 703 704 705 706 707 708 709 710
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

777 778 779 780 781 782 783 784 785 786 787
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
788
/**
789
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
790 791 792 793 794
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
795 796
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
797
 *
798 799 800
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
801
 */
802 803
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
804
{
805
	bool anc_found;
806
	int pc;
L
Linus Torvalds 已提交
807

808
	/* Check the filter code now */
L
Linus Torvalds 已提交
809
	for (pc = 0; pc < flen; pc++) {
810
		const struct sock_filter *ftest = &filter[pc];
811

812 813
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
814
			return -EINVAL;
815

816
		/* Some instructions need special checks */
817 818 819 820
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
821 822 823
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
824 825 826 827 828
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
829 830 831 832 833
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
834 835 836
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
837 838
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
839 840 841
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
842
			if (ftest->k >= (unsigned int)(flen - pc - 1))
843
				return -EINVAL;
844
			break;
845 846 847 848 849 850 851 852 853
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
854
			if (pc + ftest->jt + 1 >= flen ||
855 856
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
857
			break;
858 859 860
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
861
			anc_found = false;
862 863 864
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
865 866
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
867 868
		}
	}
869

870
	/* Last instruction must be a RET code */
871
	switch (filter[flen - 1].code) {
872 873
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
874
		return check_load_and_stores(filter, flen);
875
	}
876

877
	return -EINVAL;
L
Linus Torvalds 已提交
878 879
}

880 881
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
882
{
883
	unsigned int fsize = bpf_classic_proglen(fprog);
884 885 886 887 888 889 890 891
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
892 893 894

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
895 896 897 898 899 900 901 902
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

903
static void bpf_release_orig_filter(struct bpf_prog *fp)
904 905 906 907 908 909 910 911 912
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

913 914
static void __bpf_prog_release(struct bpf_prog *prog)
{
915
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
916 917 918 919 920
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
921 922
}

923 924
static void __sk_filter_release(struct sk_filter *fp)
{
925 926
	__bpf_prog_release(fp->prog);
	kfree(fp);
927 928
}

929
/**
E
Eric Dumazet 已提交
930
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
931 932
 *	@rcu: rcu_head that contains the sk_filter to free
 */
933
static void sk_filter_release_rcu(struct rcu_head *rcu)
934 935 936
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

937
	__sk_filter_release(fp);
938
}
939 940 941 942 943 944 945 946 947

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
948
	if (refcount_dec_and_test(&fp->refcnt))
949 950 951 952 953
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
954
	u32 filter_size = bpf_prog_size(fp->prog->len);
955

956 957
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
958
}
959

960 961 962
/* try to charge the socket memory if there is space available
 * return true on success
 */
963
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
964
{
965
	u32 filter_size = bpf_prog_size(fp->prog->len);
966 967 968 969 970 971

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
972
	}
973
	return false;
974 975
}

976 977 978 979 980 981 982 983
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
	bool ret = __sk_filter_charge(sk, fp);
	if (ret)
		refcount_inc(&fp->refcnt);
	return ret;
}

984
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
985 986
{
	struct sock_filter *old_prog;
987
	struct bpf_prog *old_fp;
988
	int err, new_len, old_len = fp->len;
989 990 991 992 993 994 995

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
996
		     sizeof(struct bpf_insn));
997 998 999 1000 1001 1002

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1003
			   GFP_KERNEL | __GFP_NOWARN);
1004 1005 1006 1007 1008 1009
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1010
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1011 1012 1013 1014 1015
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1016
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1028
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1029
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1030
	if (err)
1031
		/* 2nd bpf_convert_filter() can fail only if it fails
1032 1033
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1034
		 * by krealloc().
1035 1036 1037
		 */
		goto out_err_free;

1038 1039 1040 1041 1042
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1043

1044 1045 1046 1047 1048 1049
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1050
	__bpf_prog_release(fp);
1051 1052 1053
	return ERR_PTR(err);
}

1054 1055
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1056 1057 1058
{
	int err;

1059
	fp->bpf_func = NULL;
1060
	fp->jited = 0;
1061

1062
	err = bpf_check_classic(fp->insns, fp->len);
1063
	if (err) {
1064
		__bpf_prog_release(fp);
1065
		return ERR_PTR(err);
1066
	}
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1079 1080 1081
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1082
	bpf_jit_compile(fp);
1083 1084 1085 1086

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1087
	if (!fp->jited)
1088
		fp = bpf_migrate_filter(fp);
1089 1090

	return fp;
1091 1092 1093
}

/**
1094
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1095
 *	@pfp: the unattached filter that is created
1096
 *	@fprog: the filter program
1097
 *
R
Randy Dunlap 已提交
1098
 * Create a filter independent of any socket. We first run some
1099 1100 1101 1102
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1103
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1104
{
1105
	unsigned int fsize = bpf_classic_proglen(fprog);
1106
	struct bpf_prog *fp;
1107 1108

	/* Make sure new filter is there and in the right amounts. */
1109
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1110 1111
		return -EINVAL;

1112
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1113 1114
	if (!fp)
		return -ENOMEM;
1115

1116 1117 1118
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1119 1120 1121 1122 1123
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1124

1125
	/* bpf_prepare_filter() already takes care of freeing
1126 1127
	 * memory in case something goes wrong.
	 */
1128
	fp = bpf_prepare_filter(fp, NULL);
1129 1130
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1131 1132 1133 1134

	*pfp = fp;
	return 0;
}
1135
EXPORT_SYMBOL_GPL(bpf_prog_create);
1136

1137 1138 1139 1140 1141
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1142
 *	@save_orig: save classic BPF program
1143 1144 1145 1146 1147 1148
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1149
			      bpf_aux_classic_check_t trans, bool save_orig)
1150 1151 1152
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1153
	int err;
1154 1155

	/* Make sure new filter is there and in the right amounts. */
1156
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1171 1172 1173 1174 1175 1176 1177 1178
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1189
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1190

1191
void bpf_prog_destroy(struct bpf_prog *fp)
1192
{
1193
	__bpf_prog_release(fp);
1194
}
1195
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1196

1197
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1207
	if (!__sk_filter_charge(sk, fp)) {
1208 1209 1210
		kfree(fp);
		return -ENOMEM;
	}
1211
	refcount_set(&fp->refcnt, 1);
1212

1213 1214
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1215
	rcu_assign_pointer(sk->sk_filter, fp);
1216

1217 1218 1219 1220 1221 1222
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1231
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1249
{
1250
	unsigned int fsize = bpf_classic_proglen(fprog);
1251
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1252 1253
	int err;

1254
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1255
		return ERR_PTR(-EPERM);
1256

L
Linus Torvalds 已提交
1257
	/* Make sure new filter is there and in the right amounts. */
1258
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1259
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1260

1261
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1262
	if (!prog)
1263
		return ERR_PTR(-ENOMEM);
1264

1265
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1266
		__bpf_prog_free(prog);
1267
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1268 1269
	}

1270
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1271

1272
	err = bpf_prog_store_orig_filter(prog, fprog);
1273
	if (err) {
1274
		__bpf_prog_free(prog);
1275
		return ERR_PTR(-ENOMEM);
1276 1277
	}

1278
	/* bpf_prepare_filter() already takes care of freeing
1279 1280
	 * memory in case something goes wrong.
	 */
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1294
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1295 1296 1297 1298
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1299 1300 1301
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1302
	err = __sk_attach_prog(prog, sk);
1303
	if (err < 0) {
1304
		__bpf_prog_release(prog);
1305
		return err;
1306 1307
	}

1308
	return 0;
L
Linus Torvalds 已提交
1309
}
1310
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1311

1312
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1313
{
1314
	struct bpf_prog *prog = __get_filter(fprog, sk);
1315
	int err;
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1331
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1332
		return ERR_PTR(-EPERM);
1333

1334
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1345
	err = __sk_attach_prog(prog, sk);
1346
	if (err < 0) {
1347
		bpf_prog_put(prog);
1348
		return err;
1349 1350 1351 1352 1353
	}

	return 0;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1371 1372 1373 1374 1375 1376 1377 1378
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1379

1380 1381 1382 1383 1384 1385
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1386 1387 1388
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1389
	int err = __bpf_try_make_writable(skb, write_len);
1390

1391
	bpf_compute_data_end(skb);
1392 1393 1394
	return err;
}

1395 1396 1397 1398 1399
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1400 1401 1402 1403 1404 1405
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1406 1407 1408 1409 1410 1411
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1412 1413
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1414 1415 1416
{
	void *ptr;

1417
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1418
		return -EINVAL;
1419
	if (unlikely(offset > 0xffff))
1420
		return -EFAULT;
1421
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1422 1423
		return -EFAULT;

1424
	ptr = skb->data + offset;
1425
	if (flags & BPF_F_RECOMPUTE_CSUM)
1426
		__skb_postpull_rcsum(skb, ptr, len, offset);
1427 1428 1429

	memcpy(ptr, from, len);

1430
	if (flags & BPF_F_RECOMPUTE_CSUM)
1431
		__skb_postpush_rcsum(skb, ptr, len, offset);
1432 1433
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1434

1435 1436 1437
	return 0;
}

1438
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1439 1440 1441 1442 1443
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1444 1445
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1446 1447 1448
	.arg5_type	= ARG_ANYTHING,
};

1449 1450
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1451 1452 1453
{
	void *ptr;

1454
	if (unlikely(offset > 0xffff))
1455
		goto err_clear;
1456 1457 1458

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1459
		goto err_clear;
1460 1461 1462 1463
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1464 1465 1466
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1467 1468
}

1469
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1470 1471 1472 1473 1474
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1475 1476
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1477 1478
};

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1501 1502
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1503
{
1504
	__sum16 *ptr;
1505

1506 1507
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1508
	if (unlikely(offset > 0xffff || offset & 1))
1509
		return -EFAULT;
1510
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1511 1512
		return -EFAULT;

1513
	ptr = (__sum16 *)(skb->data + offset);
1514
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1515 1516 1517 1518 1519 1520
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1534
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1545 1546
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1547
{
1548
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1549
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1550
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1551
	__sum16 *ptr;
1552

1553 1554
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1555
		return -EINVAL;
1556
	if (unlikely(offset > 0xffff || offset & 1))
1557
		return -EFAULT;
1558
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1559 1560
		return -EFAULT;

1561
	ptr = (__sum16 *)(skb->data + offset);
1562
	if (is_mmzero && !do_mforce && !*ptr)
1563
		return 0;
1564

1565
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1566 1567 1568 1569 1570 1571
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1582 1583
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1584 1585 1586
	return 0;
}

1587
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1588 1589 1590 1591 1592 1593 1594 1595
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1596 1597
};

1598 1599
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1600
{
1601
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1602
	u32 diff_size = from_size + to_size;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1625
static const struct bpf_func_proto bpf_csum_diff_proto = {
1626 1627
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1628
	.pkt_access	= true,
1629
	.ret_type	= RET_INTEGER,
1630 1631 1632 1633
	.arg1_type	= ARG_PTR_TO_MEM,
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1634 1635 1636
	.arg5_type	= ARG_ANYTHING,
};

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1657 1658 1659 1660 1661
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1718 1719 1720 1721 1722 1723
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1724 1725 1726 1727 1728 1729 1730 1731
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1732
	if (dev_is_mac_header_xmit(dev))
1733
		return __bpf_redirect_common(skb, dev, flags);
1734 1735
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1736 1737
}

1738
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1739 1740
{
	struct net_device *dev;
1741 1742
	struct sk_buff *clone;
	int ret;
1743

1744 1745 1746
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1747 1748 1749 1750
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1751 1752
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1753 1754
		return -ENOMEM;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1766
	return __bpf_redirect(clone, dev, flags);
1767 1768
}

1769
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1770 1771 1772 1773 1774 1775 1776 1777
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1778 1779 1780 1781 1782 1783
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1784

1785
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1786 1787 1788
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1789 1790 1791
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1792 1793
	ri->ifindex = ifindex;
	ri->flags = flags;
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1810
	return __bpf_redirect(skb, dev, ri->flags);
1811 1812
}

1813
static const struct bpf_func_proto bpf_redirect_proto = {
1814 1815 1816 1817 1818 1819 1820
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1821
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1822
{
1823
	return task_get_classid(skb);
1824 1825 1826 1827 1828 1829 1830 1831 1832
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1833
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1834
{
1835
	return dst_tclassid(skb);
1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1845
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1846 1847 1848 1849 1850 1851
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
1852
	return skb_get_hash(skb);
1853 1854 1855 1856 1857 1858 1859 1860 1861
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1896 1897
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
1898
{
1899
	int ret;
1900 1901 1902 1903 1904

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1905
	bpf_push_mac_rcsum(skb);
1906
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1907 1908
	bpf_pull_mac_rcsum(skb);

1909 1910
	bpf_compute_data_end(skb);
	return ret;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1921
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1922

1923
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1924
{
1925
	int ret;
1926

1927
	bpf_push_mac_rcsum(skb);
1928
	ret = skb_vlan_pop(skb);
1929 1930
	bpf_pull_mac_rcsum(skb);

1931 1932
	bpf_compute_data_end(skb);
	return ret;
1933 1934 1935 1936 1937 1938 1939 1940
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1941
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2015
	u32 off = skb_mac_header_len(skb);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2051
	u32 off = skb_mac_header_len(skb);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2099 2100
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2138
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2139 2140
{
	/* We only allow a restricted subset to be changed for now. */
2141 2142
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
D
Daniel Borkmann 已提交
2171
	return skb->dev->mtu + skb->dev->hard_header_len;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2190 2191
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

	bpf_compute_data_end(skb);
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
	void *data = xdp->data + offset;

	if (unlikely(data < xdp->data_hard_start ||
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

bool bpf_helper_changes_pkt_data(void *func)
2303
{
2304 2305 2306 2307
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
2308
	    func == bpf_skb_change_head ||
2309 2310
	    func == bpf_skb_change_tail ||
	    func == bpf_skb_pull_data ||
2311
	    func == bpf_clone_redirect ||
2312
	    func == bpf_l3_csum_replace ||
2313 2314
	    func == bpf_l4_csum_replace ||
	    func == bpf_xdp_adjust_head)
2315 2316
		return true;

2317 2318 2319
	return false;
}

2320
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2321
				  unsigned long off, unsigned long len)
2322
{
2323
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2324 2325 2326 2327 2328 2329 2330 2331 2332

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

2333 2334
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2354 2355
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2356 2357
};

2358 2359 2360 2361 2362
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2363 2364
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
2365
{
2366 2367
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2368 2369
	void *to_orig = to;
	int err;
2370

2371 2372 2373 2374 2375 2376 2377 2378
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2379
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2380
		err = -EINVAL;
2381
		switch (size) {
2382
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2383
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2384
			goto set_compat;
2385 2386 2387 2388 2389
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2390
				goto err_clear;
2391
set_compat:
2392 2393 2394
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2395
			goto err_clear;
2396 2397
		}
	}
2398 2399

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2400 2401 2402
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2403
	if (flags & BPF_F_TUNINFO_IPV6) {
2404 2405
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2406 2407
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2408
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2409
	}
2410 2411

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2412
		memcpy(to_orig, to, size);
2413 2414

	return 0;
2415 2416 2417
err_clear:
	memset(to_orig, 0, size);
	return err;
2418 2419
}

2420
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2421 2422 2423 2424
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2425 2426
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2427 2428 2429
	.arg4_type	= ARG_ANYTHING,
};

2430
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2431 2432
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2433
	int err;
2434 2435

	if (unlikely(!info ||
2436 2437 2438 2439 2440 2441 2442 2443
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2444 2445

	ip_tunnel_info_opts_get(to, info);
2446 2447
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2448 2449

	return info->options_len;
2450 2451 2452
err_clear:
	memset(to, 0, size);
	return err;
2453 2454 2455 2456 2457 2458 2459
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2460 2461
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2462 2463
};

2464 2465
static struct metadata_dst __percpu *md_dst;

2466 2467
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2468 2469
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2470
	u8 compat[sizeof(struct bpf_tunnel_key)];
2471 2472
	struct ip_tunnel_info *info;

2473 2474
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2475
		return -EINVAL;
2476 2477
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2478
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2479
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2480 2481 2482 2483 2484 2485
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
2486
			from = (const struct bpf_tunnel_key *) compat;
2487 2488 2489 2490 2491
			break;
		default:
			return -EINVAL;
		}
	}
2492 2493
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2494
		return -EINVAL;
2495 2496 2497 2498 2499 2500 2501

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2502

2503
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2504 2505 2506
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2507
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2508 2509 2510 2511 2512 2513 2514
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2515 2516
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2517 2518
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2519 2520
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2521
	}
2522 2523 2524 2525

	return 0;
}

2526
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2527 2528 2529 2530
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2531 2532
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2533 2534 2535
	.arg4_type	= ARG_ANYTHING,
};

2536 2537
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
2538 2539 2540 2541 2542 2543
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2544
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2557 2558
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2559 2560 2561 2562
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2563 2564
{
	if (!md_dst) {
2565 2566
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2567
		 */
2568
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2569
						   METADATA_IP_TUNNEL,
2570
						   GFP_KERNEL);
2571 2572 2573
		if (!md_dst)
			return NULL;
	}
2574 2575 2576 2577 2578 2579 2580 2581 2582

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2583 2584
}

2585 2586
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
2587 2588 2589 2590 2591
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

2592
	sk = skb_to_full_sk(skb);
2593 2594
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
2595
	if (unlikely(idx >= array->map.max_entries))
2596 2597
		return -E2BIG;

2598
	cgrp = READ_ONCE(array->ptrs[idx]);
2599 2600 2601
	if (unlikely(!cgrp))
		return -EAGAIN;

2602
	return sk_under_cgroup_hierarchy(sk, cgrp);
2603 2604
}

2605 2606
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2607 2608 2609 2610 2611 2612 2613
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

2614 2615 2616 2617 2618 2619 2620
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

2621 2622
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2623 2624 2625 2626 2627 2628 2629 2630
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
2631 2632
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
2633 2634 2635 2636 2637 2638 2639 2640 2641
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2642 2643
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2644 2645
};

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
2720
#ifdef CONFIG_INET
2721 2722
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
			ret = tcp_set_congestion_control(sk, name, false);
			if (!ret && bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
				/* replacing an existing ca */
				tcp_reinit_congestion_control(sk,
					inet_csk(sk)->icsk_ca_ops);
		} else {
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
2749 2750 2751 2752 2753 2754 2755
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
2756 2757 2758
			default:
				ret = -EINVAL;
			}
2759
		}
2760
		ret = -EINVAL;
2761
#endif
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

2779
static const struct bpf_func_proto *
2780
bpf_base_func_proto(enum bpf_func_id func_id)
2781 2782 2783 2784 2785 2786 2787 2788
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
2789 2790
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
2791
	case BPF_FUNC_get_smp_processor_id:
2792
		return &bpf_get_raw_smp_processor_id_proto;
2793 2794
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
2795 2796
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
2797 2798
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
2799
	case BPF_FUNC_trace_printk:
2800 2801
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
2802 2803 2804 2805 2806
	default:
		return NULL;
	}
}

2807 2808 2809 2810 2811 2812
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2813 2814
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
2815 2816
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
2817 2818 2819 2820 2821
	default:
		return bpf_base_func_proto(func_id);
	}
}

2822 2823 2824 2825 2826 2827
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
2828 2829
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2830 2831
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
2832 2833
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
2834 2835
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
2836 2837 2838 2839
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
2840 2841
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
2842 2843
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
2844 2845 2846 2847
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
2848 2849
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
2850 2851
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
2852 2853
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
2854 2855 2856
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
2857 2858 2859 2860 2861
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
2862 2863
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
2864 2865
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
2866 2867
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
2868 2869
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
2870 2871
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
2872
	case BPF_FUNC_perf_event_output:
2873
		return &bpf_skb_event_output_proto;
2874 2875
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2876 2877
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
2878 2879
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
2880 2881
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
2882
	default:
2883
		return bpf_base_func_proto(func_id);
2884 2885 2886
	}
}

2887 2888 2889
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
2890 2891 2892
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
2893 2894
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2895 2896
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
2897
	default:
2898
		return bpf_base_func_proto(func_id);
2899
	}
2900 2901
}

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
2925
		return bpf_base_func_proto(func_id);
2926 2927 2928
	}
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static const struct bpf_func_proto *
	sock_ops_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
		return lwt_inout_func_proto(func_id);
	}
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
static void __set_access_aux_info(int off, struct bpf_insn_access_aux *info)
{
	info->ctx_field_size = 4;
	switch (off) {
	case offsetof(struct __sk_buff, pkt_type) ...
	     offsetof(struct __sk_buff, pkt_type) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_present) ...
	     offsetof(struct __sk_buff, vlan_present) + sizeof(__u32) - 1:
		info->converted_op_size = 1;
		break;
	case offsetof(struct __sk_buff, queue_mapping) ...
	     offsetof(struct __sk_buff, queue_mapping) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, protocol) ...
	     offsetof(struct __sk_buff, protocol) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_tci) ...
	     offsetof(struct __sk_buff, vlan_tci) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, vlan_proto) ...
	     offsetof(struct __sk_buff, vlan_proto) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, tc_index) ...
	     offsetof(struct __sk_buff, tc_index) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
		info->converted_op_size = 2;
		break;
	default:
		info->converted_op_size = 4;
	}
}

3004
static bool __is_valid_access(int off, int size, enum bpf_access_type type,
3005
			      struct bpf_insn_access_aux *info)
3006
{
3007 3008
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
3009

3010
	/* The verifier guarantees that size > 0. */
3011 3012
	if (off % size != 0)
		return false;
3013 3014 3015 3016

	switch (off) {
	case offsetof(struct __sk_buff, cb[0]) ...
	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3017 3018
		if (off + size >
		    offsetof(struct __sk_buff, cb[4]) + sizeof(__u32))
3019 3020
			return false;
		break;
3021 3022
	case offsetof(struct __sk_buff, data) ...
	     offsetof(struct __sk_buff, data) + sizeof(__u32) - 1:
3023 3024 3025 3026
		if (size != sizeof(__u32))
			return false;
		info->reg_type = PTR_TO_PACKET;
		break;
3027 3028
	case offsetof(struct __sk_buff, data_end) ...
	     offsetof(struct __sk_buff, data_end) + sizeof(__u32) - 1:
3029 3030
		if (size != sizeof(__u32))
			return false;
3031
		info->reg_type = PTR_TO_PACKET_END;
3032 3033 3034 3035 3036 3037
		break;
	default:
		if (type == BPF_WRITE) {
			if (size != sizeof(__u32))
				return false;
		} else {
3038 3039 3040
			int allowed;

			/* permit narrower load for not cb/data/data_end fields */
3041
#ifdef __LITTLE_ENDIAN
3042
			allowed = (off & 0x3) == 0 && size <= 4 && (size & (size - 1)) == 0;
3043
#else
3044
			allowed = (off & 0x3) + size == 4 && size <= 4 && (size & (size - 1)) == 0;
3045
#endif
3046 3047 3048
			if (!allowed)
				return false;
			__set_access_aux_info(off, info);
3049
		}
3050
	}
3051 3052 3053 3054

	return true;
}

3055
static bool sk_filter_is_valid_access(int off, int size,
3056
				      enum bpf_access_type type,
3057
				      struct bpf_insn_access_aux *info)
3058
{
3059
	switch (off) {
3060 3061 3062 3063 3064 3065
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, data) ...
	     offsetof(struct __sk_buff, data) + sizeof(__u32) - 1:
	case offsetof(struct __sk_buff, data_end) ...
	     offsetof(struct __sk_buff, data_end) + sizeof(__u32) - 1:
3066
		return false;
3067
	}
3068

3069 3070 3071
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
3072
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3073 3074 3075 3076 3077 3078
			break;
		default:
			return false;
		}
	}

3079
	return __is_valid_access(off, size, type, info);
3080 3081
}

3082 3083
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
3084
				struct bpf_insn_access_aux *info)
3085 3086
{
	switch (off) {
3087 3088
	case offsetof(struct __sk_buff, tc_classid) ...
	     offsetof(struct __sk_buff, tc_classid) + sizeof(__u32) - 1:
3089 3090 3091 3092 3093 3094 3095 3096
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, priority):
		case offsetof(struct __sk_buff, cb[0]) ...
3097
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3098 3099 3100 3101 3102 3103
			break;
		default:
			return false;
		}
	}

3104
	return __is_valid_access(off, size, type, info);
3105 3106
}

3107 3108
static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
3109
					struct bpf_insn_access_aux *info)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock, bound_dev_if):
			break;
		default:
			return false;
		}
	}

	if (off < 0 || off + size > sizeof(struct bpf_sock))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

3170
static bool tc_cls_act_is_valid_access(int off, int size,
3171
				       enum bpf_access_type type,
3172
				       struct bpf_insn_access_aux *info)
3173 3174 3175 3176 3177
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
3178
		case offsetof(struct __sk_buff, priority):
3179
		case offsetof(struct __sk_buff, cb[0]) ...
3180
		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3181
		case offsetof(struct __sk_buff, tc_classid):
3182 3183 3184 3185 3186
			break;
		default:
			return false;
		}
	}
3187

3188
	return __is_valid_access(off, size, type, info);
3189 3190
}

3191
static bool __is_valid_xdp_access(int off, int size)
3192 3193 3194 3195 3196
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
3197
	if (size != sizeof(__u32))
3198 3199 3200 3201 3202 3203 3204
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
3205
				struct bpf_insn_access_aux *info)
3206 3207 3208 3209 3210 3211
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
3212
		info->reg_type = PTR_TO_PACKET;
3213 3214
		break;
	case offsetof(struct xdp_md, data_end):
3215
		info->reg_type = PTR_TO_PACKET_END;
3216 3217 3218
		break;
	}

3219
	return __is_valid_xdp_access(off, size);
3220 3221 3222 3223 3224 3225 3226 3227
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

L
Lawrence Brakmo 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
static bool __is_valid_sock_ops_access(int off, int size)
{
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
				     struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock_ops, op) ...
		     offsetof(struct bpf_sock_ops, replylong[3]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_sock_ops_access(off, size);
}

3258 3259 3260 3261
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
3262 3263
{
	struct bpf_insn *insn = insn_buf;
3264
	int off;
3265

3266
	switch (si->off) {
3267 3268 3269
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

3270
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3271 3272 3273
				      offsetof(struct sk_buff, len));
		break;

3274 3275 3276
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

3277
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3278 3279 3280
				      offsetof(struct sk_buff, protocol));
		break;

3281 3282 3283
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

3284
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3285 3286 3287
				      offsetof(struct sk_buff, vlan_proto));
		break;

3288 3289 3290
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

3291
		if (type == BPF_WRITE)
3292
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3293 3294
					      offsetof(struct sk_buff, priority));
		else
3295
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3296
					      offsetof(struct sk_buff, priority));
3297 3298
		break;

3299 3300 3301
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

3302
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3303 3304 3305 3306 3307 3308
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

3309
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3310
				      si->dst_reg, si->src_reg,
3311
				      offsetof(struct sk_buff, dev));
3312 3313
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3314 3315 3316
				      offsetof(struct net_device, ifindex));
		break;

3317 3318 3319
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

3320
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3321 3322 3323
				      offsetof(struct sk_buff, hash));
		break;

3324
	case offsetof(struct __sk_buff, mark):
3325 3326 3327
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
3328
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3329 3330
					      offsetof(struct sk_buff, mark));
		else
3331
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3332 3333
					      offsetof(struct sk_buff, mark));
		break;
3334 3335

	case offsetof(struct __sk_buff, pkt_type):
3336 3337
		return convert_skb_access(SKF_AD_PKTTYPE, si->dst_reg,
					  si->src_reg, insn);
3338 3339

	case offsetof(struct __sk_buff, queue_mapping):
3340 3341
		return convert_skb_access(SKF_AD_QUEUE, si->dst_reg,
					  si->src_reg, insn);
3342 3343 3344

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
3345
					  si->dst_reg, si->src_reg, insn);
3346 3347 3348

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
3349
					  si->dst_reg, si->src_reg, insn);
3350 3351

	case offsetof(struct __sk_buff, cb[0]) ...
3352
	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3353
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3354 3355 3356
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
3357

3358
		prog->cb_access = 1;
3359 3360 3361 3362
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
3363
		if (type == BPF_WRITE)
3364
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3365
					      si->src_reg, off);
3366
		else
3367
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3368
					      si->src_reg, off);
3369 3370
		break;

3371
	case offsetof(struct __sk_buff, tc_classid):
3372 3373 3374 3375 3376 3377
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
3378
		if (type == BPF_WRITE)
3379 3380
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3381
		else
3382 3383
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3384 3385
		break;

3386
	case offsetof(struct __sk_buff, data):
3387
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3388
				      si->dst_reg, si->src_reg,
3389 3390 3391 3392
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
3393 3394 3395 3396 3397 3398
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
3399 3400
		break;

3401 3402 3403 3404 3405
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
3406
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3407 3408
					      offsetof(struct sk_buff, tc_index));
		else
3409
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3410 3411 3412
					      offsetof(struct sk_buff, tc_index));
#else
		if (type == BPF_WRITE)
3413
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3414
		else
3415
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, napi_id) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, napi_id));
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3429
#endif
3430
		break;
3431 3432 3433
	}

	return insn - insn_buf;
3434 3435
}

3436
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3437
					  const struct bpf_insn *si,
3438 3439 3440 3441 3442
					  struct bpf_insn *insn_buf,
					  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3443
	switch (si->off) {
3444 3445 3446 3447
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
3448
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3449 3450
					offsetof(struct sock, sk_bound_dev_if));
		else
3451
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3452 3453
				      offsetof(struct sock, sk_bound_dev_if));
		break;
3454 3455 3456 3457

	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

3458
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3459 3460 3461 3462
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
3463
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3464
				      offsetof(struct sock, __sk_flags_offset));
3465 3466
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3467 3468 3469
		break;

	case offsetof(struct bpf_sock, protocol):
3470
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3471
				      offsetof(struct sock, __sk_flags_offset));
3472 3473
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3474
		break;
3475 3476 3477 3478 3479
	}

	return insn - insn_buf;
}

3480 3481
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
3482 3483 3484 3485 3486
					 struct bpf_insn *insn_buf,
					 struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3487
	switch (si->off) {
3488 3489 3490 3491
	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3492
				      si->dst_reg, si->src_reg,
3493
				      offsetof(struct sk_buff, dev));
3494
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3495 3496 3497
				      offsetof(struct net_device, ifindex));
		break;
	default:
3498
		return bpf_convert_ctx_access(type, si, insn_buf, prog);
3499 3500 3501 3502 3503
	}

	return insn - insn_buf;
}

3504 3505
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
3506 3507 3508 3509 3510
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

3511
	switch (si->off) {
3512
	case offsetof(struct xdp_md, data):
3513
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3514
				      si->dst_reg, si->src_reg,
3515 3516 3517
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
3518
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3519
				      si->dst_reg, si->src_reg,
3520 3521 3522 3523 3524 3525 3526
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
				       struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
	}
	return insn - insn_buf;
}

3659
const struct bpf_verifier_ops sk_filter_prog_ops = {
3660 3661
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
3662
	.convert_ctx_access	= bpf_convert_ctx_access,
3663 3664
};

3665
const struct bpf_verifier_ops tc_cls_act_prog_ops = {
3666 3667
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
3668
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3669
	.gen_prologue		= tc_cls_act_prologue,
3670
	.test_run		= bpf_prog_test_run_skb,
3671 3672
};

3673
const struct bpf_verifier_ops xdp_prog_ops = {
3674 3675 3676
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
3677
	.test_run		= bpf_prog_test_run_xdp,
3678 3679
};

3680
const struct bpf_verifier_ops cg_skb_prog_ops = {
3681
	.get_func_proto		= sk_filter_func_proto,
3682
	.is_valid_access	= sk_filter_is_valid_access,
3683
	.convert_ctx_access	= bpf_convert_ctx_access,
3684
	.test_run		= bpf_prog_test_run_skb,
3685 3686
};

3687
const struct bpf_verifier_ops lwt_inout_prog_ops = {
3688 3689
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3690
	.convert_ctx_access	= bpf_convert_ctx_access,
3691
	.test_run		= bpf_prog_test_run_skb,
3692 3693
};

3694
const struct bpf_verifier_ops lwt_xmit_prog_ops = {
3695 3696
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3697
	.convert_ctx_access	= bpf_convert_ctx_access,
3698
	.gen_prologue		= tc_cls_act_prologue,
3699
	.test_run		= bpf_prog_test_run_skb,
3700 3701
};

3702
const struct bpf_verifier_ops cg_sock_prog_ops = {
3703
	.get_func_proto		= bpf_base_func_proto,
3704 3705 3706 3707
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

L
Lawrence Brakmo 已提交
3708
const struct bpf_verifier_ops sock_ops_prog_ops = {
3709
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
3710 3711 3712 3713
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

3714
int sk_detach_filter(struct sock *sk)
3715 3716 3717 3718
{
	int ret = -ENOENT;
	struct sk_filter *filter;

3719 3720 3721
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

3722 3723
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
3724
	if (filter) {
3725
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
3726
		sk_filter_uncharge(sk, filter);
3727 3728
		ret = 0;
	}
3729

3730 3731
	return ret;
}
3732
EXPORT_SYMBOL_GPL(sk_detach_filter);
3733

3734 3735
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
3736
{
3737
	struct sock_fprog_kern *fprog;
3738
	struct sk_filter *filter;
3739
	int ret = 0;
3740 3741 3742

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
3743
					   lockdep_sock_is_held(sk));
3744 3745
	if (!filter)
		goto out;
3746 3747

	/* We're copying the filter that has been originally attached,
3748 3749
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
3750
	 */
3751
	ret = -EACCES;
3752
	fprog = filter->prog->orig_prog;
3753 3754
	if (!fprog)
		goto out;
3755 3756

	ret = fprog->len;
3757
	if (!len)
3758
		/* User space only enquires number of filter blocks. */
3759
		goto out;
3760

3761
	ret = -EINVAL;
3762
	if (len < fprog->len)
3763 3764 3765
		goto out;

	ret = -EFAULT;
3766
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3767
		goto out;
3768

3769 3770 3771 3772
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
3773 3774 3775 3776
out:
	release_sock(sk);
	return ret;
}