filter.c 72.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
51
#include <net/dst_metadata.h>
52
#include <net/dst.h>
53
#include <net/sock_reuseport.h>
L
Linus Torvalds 已提交
54

S
Stephen Hemminger 已提交
55
/**
56
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
57 58
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
59
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
60
 *
61 62
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
63
 * than pkt_len we keep whole skb->data. This is the socket level
64
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
65 66 67
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
68
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
69 70 71 72
{
	int err;
	struct sk_filter *filter;

73 74 75 76 77 78 79 80
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
81 82 83 84
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

85 86
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
87
	if (filter) {
88
		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
89
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
90
	}
91
	rcu_read_unlock();
S
Stephen Hemminger 已提交
92 93 94

	return err;
}
95
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
96

97
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
98
{
99
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
100 101
}

102
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
103
{
104
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
105 106 107 108 109
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

110 111 112
	if (skb->len < sizeof(struct nlattr))
		return 0;

113
	if (a > skb->len - sizeof(struct nlattr))
114 115
		return 0;

116
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
117 118 119 120 121 122
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

123
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
124
{
125
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
126 127 128 129 130
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

131 132 133
	if (skb->len < sizeof(struct nlattr))
		return 0;

134
	if (a > skb->len - sizeof(struct nlattr))
135 136
		return 0;

137 138
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
139 140
		return 0;

141
	nla = nla_find_nested(nla, x);
142 143 144 145 146 147
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

148
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 150 151 152
{
	return raw_smp_processor_id();
}

153 154 155 156 157 158
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
205 206 207 208 209
	}

	return insn - insn_buf;
}

210
static bool convert_bpf_extensions(struct sock_filter *fp,
211
				   struct bpf_insn **insnp)
212
{
213
	struct bpf_insn *insn = *insnp;
214
	u32 cnt;
215 216 217

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
218 219 220 221 222 223 224
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
225 226 227
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
228 229
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
230 231 232 233 234 235
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
236 237 238 239 240 241 242 243 244 245 246 247 248 249
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
250 251 252
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
253 254
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
255 256 257 258 259
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

260 261
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
262 263 264
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
265 266
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
267 268 269
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
270 271 272 273
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
274

275 276 277 278
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
279 280
		break;

281 282 283 284 285 286 287 288 289 290
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

291 292 293 294
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
295
	case SKF_AD_OFF + SKF_AD_RANDOM:
296
		/* arg1 = CTX */
297
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
298
		/* arg2 = A */
299
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
300
		/* arg3 = X */
301
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
302
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
303 304
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
305
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
306 307
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
308
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
309 310
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
311
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
312 313
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
314
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
315
			break;
C
Chema Gonzalez 已提交
316
		case SKF_AD_OFF + SKF_AD_RANDOM:
317 318
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
319
			break;
320 321 322 323
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
324 325
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
342
 *	bpf_convert_filter - convert filter program
343 344 345 346 347 348 349 350 351
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
352
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
353 354 355
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
356
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
357
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
358
 */
359 360
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
361 362
{
	int new_flen = 0, pass = 0, target, i;
363
	struct bpf_insn *new_insn;
364 365 366 367 368
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
369
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
370

371
	if (len <= 0 || len > BPF_MAXINSNS)
372 373 374
		return -EINVAL;

	if (new_prog) {
375 376
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
377 378 379 380 381 382 383 384
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/* Classic BPF related prologue emission. */
	if (new_insn) {
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
401 402

	for (i = 0; i < len; fp++, i++) {
403 404
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

447
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
448 449
			break;

450 451 452 453 454 455 456
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
457 458 459 460 461 462 463 464
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

465 466 467 468
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
484
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
485

486 487
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
488 489
				bpf_src = BPF_X;
			} else {
490
				insn->dst_reg = BPF_REG_A;
491 492
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
493
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
494
			}
495 496 497 498 499

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
500
				BPF_EMIT_JMP;
501
				break;
L
Linus Torvalds 已提交
502
			}
503 504 505 506 507

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
508
				BPF_EMIT_JMP;
509
				break;
510
			}
511 512 513 514

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
515
			BPF_EMIT_JMP;
516 517 518 519
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
520
			BPF_EMIT_JMP;
521 522 523 524
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
525
			/* tmp = A */
526
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
527
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
528
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
529
			/* A &= 0xf */
530
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
531
			/* A <<= 2 */
532
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
533
			/* X = A */
534
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
535
			/* A = tmp */
536
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
537 538
			break;

539 540 541
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
542 543
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
544 545 546
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
547
			*insn = BPF_EXIT_INSN();
548 549 550 551 552
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
553 554 555
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
556 557 558 559 560
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
561 562 563
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
564 565 566 567 568
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
569 570
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
571 572 573 574
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
575
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
576 577 578 579
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
580
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
581 582 583 584 585
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
586 587 588
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
589 590
			break;

591
		/* Access seccomp_data fields. */
592
		case BPF_LDX | BPF_ABS | BPF_W:
593 594
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
595 596
			break;

S
Stephen Hemminger 已提交
597
		/* Unknown instruction. */
L
Linus Torvalds 已提交
598
		default:
599
			goto err;
L
Linus Torvalds 已提交
600
		}
601 602 603 604 605 606

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
607 608
	}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
625
	return 0;
626 627 628
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
629 630
}

631 632
/* Security:
 *
633
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
634
 * __bpf_prog_run(), we check that filter loaded by user never try to read
635
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
636
 * a malicious user doesn't try to abuse us.
637
 */
638
static int check_load_and_stores(const struct sock_filter *filter, int flen)
639
{
640
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
641 642 643
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
644

645
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
646 647
	if (!masks)
		return -ENOMEM;
648

649 650 651 652 653 654
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
655 656
		case BPF_ST:
		case BPF_STX:
657 658
			memvalid |= (1 << filter[pc].k);
			break;
659 660
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
661 662 663 664 665
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
666 667
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
668 669 670
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
671 672 673 674 675 676 677 678 679
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
680 681 682 683 684 685 686 687 688 689 690
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

757 758 759 760 761 762 763 764 765 766 767
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
768
/**
769
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
770 771 772 773 774
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
775 776
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
777
 *
778 779 780
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
781
 */
782 783
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
784
{
785
	bool anc_found;
786
	int pc;
L
Linus Torvalds 已提交
787

788
	/* Check the filter code now */
L
Linus Torvalds 已提交
789
	for (pc = 0; pc < flen; pc++) {
790
		const struct sock_filter *ftest = &filter[pc];
791

792 793
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
794
			return -EINVAL;
795

796
		/* Some instructions need special checks */
797 798 799 800
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
801 802 803
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
804 805 806 807 808
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
809 810 811 812 813
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
814 815 816
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
817 818
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
819 820 821
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
822
			if (ftest->k >= (unsigned int)(flen - pc - 1))
823
				return -EINVAL;
824
			break;
825 826 827 828 829 830 831 832 833
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
834
			if (pc + ftest->jt + 1 >= flen ||
835 836
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
837
			break;
838 839 840
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
841
			anc_found = false;
842 843 844
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
845 846
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
847 848
		}
	}
849

850
	/* Last instruction must be a RET code */
851
	switch (filter[flen - 1].code) {
852 853
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
854
		return check_load_and_stores(filter, flen);
855
	}
856

857
	return -EINVAL;
L
Linus Torvalds 已提交
858 859
}

860 861
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
862
{
863
	unsigned int fsize = bpf_classic_proglen(fprog);
864 865 866 867 868 869 870 871
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
872 873 874

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
875 876 877 878 879 880 881 882
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

883
static void bpf_release_orig_filter(struct bpf_prog *fp)
884 885 886 887 888 889 890 891 892
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

893 894
static void __bpf_prog_release(struct bpf_prog *prog)
{
895
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
896 897 898 899 900
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
901 902
}

903 904
static void __sk_filter_release(struct sk_filter *fp)
{
905 906
	__bpf_prog_release(fp->prog);
	kfree(fp);
907 908
}

909
/**
E
Eric Dumazet 已提交
910
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
911 912
 *	@rcu: rcu_head that contains the sk_filter to free
 */
913
static void sk_filter_release_rcu(struct rcu_head *rcu)
914 915 916
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

917
	__sk_filter_release(fp);
918
}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
934
	u32 filter_size = bpf_prog_size(fp->prog->len);
935

936 937
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
938
}
939

940 941 942 943
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
944
{
945
	u32 filter_size = bpf_prog_size(fp->prog->len);
946 947 948 949 950 951 952

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
953
	}
954
	return false;
955 956
}

957
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
958 959
{
	struct sock_filter *old_prog;
960
	struct bpf_prog *old_fp;
961
	int err, new_len, old_len = fp->len;
962 963 964 965 966 967 968

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
969
		     sizeof(struct bpf_insn));
970 971 972 973 974 975

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
976
			   GFP_KERNEL | __GFP_NOWARN);
977 978 979 980 981 982
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
983
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
984 985 986 987 988
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
989
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
990 991 992 993 994 995 996 997 998 999 1000
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1001
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1002
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1003
	if (err)
1004
		/* 2nd bpf_convert_filter() can fail only if it fails
1005 1006
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1007
		 * by krealloc().
1008 1009 1010
		 */
		goto out_err_free;

1011 1012 1013 1014 1015
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1016

1017 1018 1019 1020 1021 1022
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1023
	__bpf_prog_release(fp);
1024 1025 1026
	return ERR_PTR(err);
}

1027 1028
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1029 1030 1031
{
	int err;

1032
	fp->bpf_func = NULL;
1033
	fp->jited = 0;
1034

1035
	err = bpf_check_classic(fp->insns, fp->len);
1036
	if (err) {
1037
		__bpf_prog_release(fp);
1038
		return ERR_PTR(err);
1039
	}
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1052 1053 1054
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1055
	bpf_jit_compile(fp);
1056 1057 1058 1059

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1060
	if (!fp->jited)
1061
		fp = bpf_migrate_filter(fp);
1062 1063

	return fp;
1064 1065 1066
}

/**
1067
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1068
 *	@pfp: the unattached filter that is created
1069
 *	@fprog: the filter program
1070
 *
R
Randy Dunlap 已提交
1071
 * Create a filter independent of any socket. We first run some
1072 1073 1074 1075
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1076
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1077
{
1078
	unsigned int fsize = bpf_classic_proglen(fprog);
1079
	struct bpf_prog *fp;
1080 1081

	/* Make sure new filter is there and in the right amounts. */
1082
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1083 1084
		return -EINVAL;

1085
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1086 1087
	if (!fp)
		return -ENOMEM;
1088

1089 1090 1091
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1092 1093 1094 1095 1096
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1097

1098
	/* bpf_prepare_filter() already takes care of freeing
1099 1100
	 * memory in case something goes wrong.
	 */
1101
	fp = bpf_prepare_filter(fp, NULL);
1102 1103
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1104 1105 1106 1107

	*pfp = fp;
	return 0;
}
1108
EXPORT_SYMBOL_GPL(bpf_prog_create);
1109

1110 1111 1112 1113 1114
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1115
 *	@save_orig: save classic BPF program
1116 1117 1118 1119 1120 1121
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1122
			      bpf_aux_classic_check_t trans, bool save_orig)
1123 1124 1125
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1126
	int err;
1127 1128

	/* Make sure new filter is there and in the right amounts. */
1129
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1144 1145 1146 1147 1148 1149 1150 1151
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1162
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1163

1164
void bpf_prog_destroy(struct bpf_prog *fp)
1165
{
1166
	__bpf_prog_release(fp);
1167
}
1168
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1169

1170
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

1186 1187
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1188
	rcu_assign_pointer(sk->sk_filter, fp);
1189

1190 1191 1192 1193 1194 1195
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1196 1197 1198 1199 1200 1201 1202 1203
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1204
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1222
{
1223
	unsigned int fsize = bpf_classic_proglen(fprog);
1224
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1225 1226
	int err;

1227
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1228
		return ERR_PTR(-EPERM);
1229

L
Linus Torvalds 已提交
1230
	/* Make sure new filter is there and in the right amounts. */
1231
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1232
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1233

1234
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1235
	if (!prog)
1236
		return ERR_PTR(-ENOMEM);
1237

1238
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1239
		__bpf_prog_free(prog);
1240
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1241 1242
	}

1243
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1244

1245
	err = bpf_prog_store_orig_filter(prog, fprog);
1246
	if (err) {
1247
		__bpf_prog_free(prog);
1248
		return ERR_PTR(-ENOMEM);
1249 1250
	}

1251
	/* bpf_prepare_filter() already takes care of freeing
1252 1253
	 * memory in case something goes wrong.
	 */
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1267
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1268 1269 1270 1271
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1272 1273 1274
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1275
	err = __sk_attach_prog(prog, sk);
1276
	if (err < 0) {
1277
		__bpf_prog_release(prog);
1278
		return err;
1279 1280
	}

1281
	return 0;
L
Linus Torvalds 已提交
1282
}
1283
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1284

1285
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1286
{
1287
	struct bpf_prog *prog = __get_filter(fprog, sk);
1288
	int err;
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1304
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1305
		return ERR_PTR(-EPERM);
1306

1307
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1318
	err = __sk_attach_prog(prog, sk);
1319
	if (err < 0) {
1320
		bpf_prog_put(prog);
1321
		return err;
1322 1323 1324 1325 1326
	}

	return 0;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1344 1345 1346 1347 1348 1349 1350 1351
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	int err;

	if (!skb_cloned(skb))
		return 0;
	if (skb_clone_writable(skb, write_len))
		return 0;
	err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
	if (!err)
		bpf_compute_data_end(skb);
	return err;
}

1368 1369 1370 1371 1372 1373
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1374 1375 1376 1377 1378 1379
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1380
static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1381
{
1382
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1383
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1384
	int offset = (int) r2;
1385 1386 1387 1388
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1389
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1390 1391
		return -EINVAL;

1392 1393 1394 1395 1396 1397 1398 1399
	/* bpf verifier guarantees that:
	 * 'from' pointer points to bpf program stack
	 * 'len' bytes of it were initialized
	 * 'len' > 0
	 * 'skb' is a valid pointer to 'struct sk_buff'
	 *
	 * so check for invalid 'offset' and too large 'len'
	 */
1400
	if (unlikely((u32) offset > 0xffff || len > sizeof(sp->buff)))
1401
		return -EFAULT;
1402
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1403 1404
		return -EFAULT;

1405
	ptr = skb_header_pointer(skb, offset, len, sp->buff);
1406 1407 1408
	if (unlikely(!ptr))
		return -EFAULT;

1409
	if (flags & BPF_F_RECOMPUTE_CSUM)
1410
		__skb_postpull_rcsum(skb, ptr, len, offset);
1411 1412 1413

	memcpy(ptr, from, len);

1414
	if (ptr == sp->buff)
1415 1416 1417
		/* skb_store_bits cannot return -EFAULT here */
		skb_store_bits(skb, offset, ptr, len);

1418
	if (flags & BPF_F_RECOMPUTE_CSUM)
1419
		__skb_postpush_rcsum(skb, ptr, len, offset);
1420 1421
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1422

1423 1424 1425
	return 0;
}

1426
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1427 1428 1429 1430 1431 1432 1433
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1434 1435 1436
	.arg5_type	= ARG_ANYTHING,
};

1437 1438 1439 1440 1441 1442 1443 1444
static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
	int offset = (int) r2;
	void *to = (void *)(unsigned long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1445 1446
	if (unlikely((u32) offset > 0xffff))
		goto err_clear;
1447 1448 1449

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1450
		goto err_clear;
1451 1452 1453 1454
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1455 1456 1457
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1458 1459
}

1460
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1461 1462 1463 1464 1465
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1466
	.arg3_type	= ARG_PTR_TO_RAW_STACK,
1467 1468 1469
	.arg4_type	= ARG_CONST_STACK_SIZE,
};

1470
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1471 1472
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1473
	int offset = (int) r2;
1474 1475
	__sum16 sum, *ptr;

1476 1477
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1478
	if (unlikely((u32) offset > 0xffff))
1479
		return -EFAULT;
1480
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(sum))))
1481 1482 1483 1484 1485 1486
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

1487
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1488 1489 1490 1491 1492 1493
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

1511
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1522
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1523 1524
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1525
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1526
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1527
	int offset = (int) r2;
1528 1529
	__sum16 sum, *ptr;

1530 1531
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
			       BPF_F_HDR_FIELD_MASK)))
1532
		return -EINVAL;
1533
	if (unlikely((u32) offset > 0xffff))
1534
		return -EFAULT;
1535
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(sum))))
1536 1537 1538 1539 1540
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;
1541 1542
	if (is_mmzero && !*ptr)
		return 0;
1543

1544
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1545 1546 1547 1548 1549 1550
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1561 1562
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1563 1564 1565 1566 1567 1568 1569
	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

1570
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1571 1572 1573 1574 1575 1576 1577 1578
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1579 1580
};

1581 1582
static u64 bpf_csum_diff(u64 r1, u64 from_size, u64 r3, u64 to_size, u64 seed)
{
1583
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	u64 diff_size = from_size + to_size;
	__be32 *from = (__be32 *) (long) r1;
	__be32 *to   = (__be32 *) (long) r3;
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1609
static const struct bpf_func_proto bpf_csum_diff_proto = {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	.func		= bpf_csum_diff,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_STACK,
	.arg2_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg5_type	= ARG_ANYTHING,
};

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1644 1645
static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
1646
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1647 1648
	struct net_device *dev;

1649 1650 1651
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1652 1653 1654 1655
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1656 1657
	skb = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb))
1658 1659
		return -ENOMEM;

1660 1661
	bpf_push_mac_rcsum(skb);

1662 1663
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1664 1665
}

1666
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1667 1668 1669 1670 1671 1672 1673 1674
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1675 1676 1677 1678 1679 1680
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1681

1682 1683 1684 1685
static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1686 1687 1688
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1689 1690
	ri->ifindex = ifindex;
	ri->flags = flags;
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1707 1708
	bpf_push_mac_rcsum(skb);

1709 1710
	return ri->flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1711 1712
}

1713
static const struct bpf_func_proto bpf_redirect_proto = {
1714 1715 1716 1717 1718 1719 1720
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1733 1734
static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
1735
	return dst_tclassid((struct sk_buff *) (unsigned long) r1);
1736 1737 1738 1739 1740 1741 1742 1743 1744
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static u64 bpf_get_hash_recalc(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
	return skb_get_hash((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1762 1763 1764 1765
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;
1766
	int ret;
1767 1768 1769 1770 1771

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1772
	bpf_push_mac_rcsum(skb);
1773
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1774 1775
	bpf_pull_mac_rcsum(skb);

1776 1777
	bpf_compute_data_end(skb);
	return ret;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1788
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1789 1790 1791 1792

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1793
	int ret;
1794

1795
	bpf_push_mac_rcsum(skb);
1796
	ret = skb_vlan_pop(skb);
1797 1798
	bpf_pull_mac_rcsum(skb);

1799 1800
	bpf_compute_data_end(skb);
	return ret;
1801 1802 1803 1804 1805 1806 1807 1808
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1809
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

static u64 bpf_skb_change_proto(u64 r1, u64 r2, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 proto = (__force __be16) r2;
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static u64 bpf_skb_change_type(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u32 pkt_type = r2;

	/* We only allow a restricted subset to be changed for now. */
	if (unlikely(skb->pkt_type > PACKET_OTHERHOST ||
		     pkt_type > PACKET_OTHERHOST))
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2029 2030 2031 2032 2033 2034
bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
2035 2036
	if (func == bpf_skb_store_bytes)
		return true;
2037 2038
	if (func == bpf_skb_change_proto)
		return true;
2039 2040 2041 2042 2043
	if (func == bpf_l3_csum_replace)
		return true;
	if (func == bpf_l4_csum_replace)
		return true;

2044 2045 2046
	return false;
}

2047
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2048
				  unsigned long off, unsigned long len)
2049
{
2050
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

static u64 bpf_skb_event_output(u64 r1, u64 r2, u64 flags, u64 r4,
				u64 meta_size)
{
	struct sk_buff *skb = (struct sk_buff *)(long) r1;
	struct bpf_map *map = (struct bpf_map *)(long) r2;
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
	void *meta = (void *)(long) r4;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_STACK,
	.arg5_type	= ARG_CONST_STACK_SIZE,
};

2088 2089 2090 2091 2092
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2093 2094 2095 2096
static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
2097 2098
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2099 2100
	void *to_orig = to;
	int err;
2101

2102 2103 2104 2105 2106 2107 2108 2109
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2110
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2111
		err = -EINVAL;
2112
		switch (size) {
2113
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2114
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2115
			goto set_compat;
2116 2117 2118 2119 2120
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2121
				goto err_clear;
2122
set_compat:
2123 2124 2125
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2126
			goto err_clear;
2127 2128
		}
	}
2129 2130

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2131 2132 2133
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2134
	if (flags & BPF_F_TUNINFO_IPV6) {
2135 2136
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2137 2138
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2139
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2140
	}
2141 2142

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2143
		memcpy(to_orig, to, size);
2144 2145

	return 0;
2146 2147 2148
err_clear:
	memset(to_orig, 0, size);
	return err;
2149 2150
}

2151
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2152 2153 2154 2155
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2156
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2157 2158 2159 2160
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2161 2162 2163 2164 2165
static u64 bpf_skb_get_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u8 *to = (u8 *) (long) r2;
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2166
	int err;
2167 2168

	if (unlikely(!info ||
2169 2170 2171 2172 2173 2174 2175 2176
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2177 2178

	ip_tunnel_info_opts_get(to, info);
2179 2180
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2181 2182

	return info->options_len;
2183 2184 2185
err_clear:
	memset(to, 0, size);
	return err;
2186 2187 2188 2189 2190 2191 2192
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2193
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2194 2195 2196
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

2197 2198 2199 2200 2201 2202 2203
static struct metadata_dst __percpu *md_dst;

static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2204
	u8 compat[sizeof(struct bpf_tunnel_key)];
2205 2206
	struct ip_tunnel_info *info;

2207 2208
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2209
		return -EINVAL;
2210 2211
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2212
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2213
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
			from = (struct bpf_tunnel_key *)compat;
			break;
		default:
			return -EINVAL;
		}
	}
2226 2227
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2228
		return -EINVAL;
2229 2230 2231 2232 2233 2234 2235

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2236

2237
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2238 2239 2240
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2241
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2242 2243 2244 2245 2246 2247 2248
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2249 2250
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2251 2252
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2253 2254
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2255
	}
2256 2257 2258 2259

	return 0;
}

2260
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2261 2262 2263 2264 2265 2266 2267 2268 2269
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2270 2271 2272 2273 2274 2275 2276 2277 2278
static u64 bpf_skb_set_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u8 *from = (u8 *) (long) r2;
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2279
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2298 2299
{
	if (!md_dst) {
2300 2301
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2302
		 */
2303
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2304
						   GFP_KERNEL);
2305 2306 2307
		if (!md_dst)
			return NULL;
	}
2308 2309 2310 2311 2312 2313 2314 2315 2316

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2317 2318
}

2319
#ifdef CONFIG_SOCK_CGROUP_DATA
2320
static u64 bpf_skb_under_cgroup(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
{
	struct sk_buff *skb = (struct sk_buff *)(long)r1;
	struct bpf_map *map = (struct bpf_map *)(long)r2;
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;
	u32 i = (u32)r3;

	sk = skb->sk;
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;

	if (unlikely(i >= array->map.max_entries))
		return -E2BIG;

	cgrp = READ_ONCE(array->ptrs[i]);
	if (unlikely(!cgrp))
		return -EAGAIN;

	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), cgrp);
}

2343 2344
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2345 2346 2347 2348 2349 2350 2351 2352
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};
#endif

2353 2354
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
2355 2356 2357 2358 2359 2360 2361 2362
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
2363 2364
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
2365
	case BPF_FUNC_get_smp_processor_id:
2366
		return &bpf_get_raw_smp_processor_id_proto;
2367 2368
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
2369 2370
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
2371
	case BPF_FUNC_trace_printk:
2372 2373
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
2374 2375 2376 2377 2378
	default:
		return NULL;
	}
}

2379 2380 2381 2382 2383 2384
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
2385 2386
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2387 2388
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
2389 2390 2391 2392
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
2393 2394
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
2395 2396
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
2397 2398 2399 2400
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
2401 2402
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
2403 2404
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
2405 2406 2407
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
2408 2409 2410 2411 2412
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
2413 2414
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
2415 2416
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
2417 2418
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
2419
	case BPF_FUNC_perf_event_output:
2420
		return &bpf_skb_event_output_proto;
2421 2422
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2423
#ifdef CONFIG_SOCK_CGROUP_DATA
2424 2425
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
2426
#endif
2427 2428 2429 2430 2431
	default:
		return sk_filter_func_proto(func_id);
	}
}

2432 2433 2434 2435 2436 2437
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
	return sk_filter_func_proto(func_id);
}

2438
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
2439
{
2440 2441
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
2442
	/* The verifier guarantees that size > 0. */
2443 2444
	if (off % size != 0)
		return false;
2445
	if (size != sizeof(__u32))
2446 2447 2448 2449 2450
		return false;

	return true;
}

2451
static bool sk_filter_is_valid_access(int off, int size,
2452 2453
				      enum bpf_access_type type,
				      enum bpf_reg_type *reg_type)
2454
{
2455 2456 2457 2458
	switch (off) {
	case offsetof(struct __sk_buff, tc_classid):
	case offsetof(struct __sk_buff, data):
	case offsetof(struct __sk_buff, data_end):
2459
		return false;
2460
	}
2461

2462 2463 2464
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
2465
		     offsetof(struct __sk_buff, cb[4]):
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
2476 2477
				       enum bpf_access_type type,
				       enum bpf_reg_type *reg_type)
2478 2479 2480 2481 2482
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
2483
		case offsetof(struct __sk_buff, priority):
2484
		case offsetof(struct __sk_buff, cb[0]) ...
2485 2486
		     offsetof(struct __sk_buff, cb[4]):
		case offsetof(struct __sk_buff, tc_classid):
2487 2488 2489 2490 2491
			break;
		default:
			return false;
		}
	}
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	switch (off) {
	case offsetof(struct __sk_buff, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct __sk_buff, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

2502 2503 2504
	return __is_valid_access(off, size, type);
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static bool __is_valid_xdp_access(int off, int size,
				  enum bpf_access_type type)
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
	if (size != 4)
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
				enum bpf_reg_type *reg_type)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct xdp_md, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

	return __is_valid_xdp_access(off, size, type);
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

2543 2544
static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				      int src_reg, int ctx_off,
2545 2546
				      struct bpf_insn *insn_buf,
				      struct bpf_prog *prog)
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

2558 2559 2560 2561 2562 2563 2564
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

2565 2566 2567 2568 2569 2570 2571
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

2572 2573 2574
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

2575 2576 2577 2578 2579 2580
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
2581 2582
		break;

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

2601 2602 2603 2604 2605 2606 2607
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

2608
	case offsetof(struct __sk_buff, mark):
2609 2610 2611 2612 2613 2614 2615 2616 2617
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
2618 2619 2620 2621 2622 2623

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
2624 2625 2626 2627 2628 2629 2630 2631

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
2632 2633 2634 2635 2636

	case offsetof(struct __sk_buff, cb[0]) ...
		offsetof(struct __sk_buff, cb[4]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

2637
		prog->cb_access = 1;
2638 2639 2640 2641 2642 2643 2644 2645 2646
		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

2647 2648 2649 2650
	case offsetof(struct __sk_buff, tc_classid):
		ctx_off -= offsetof(struct __sk_buff, tc_classid);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
2651 2652 2653 2654
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
2655 2656
		break;

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	case offsetof(struct __sk_buff, data):
		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, data)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
		ctx_off -= offsetof(struct __sk_buff, data_end);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(sizeof(void *)),
				      dst_reg, src_reg, ctx_off);
		break;

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
2689 2690 2691
	}

	return insn - insn_buf;
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static u32 xdp_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				  int src_reg, int ctx_off,
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct xdp_md, data):
		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct xdp_buff, data)),
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct xdp_buff, data_end)),
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

2717
static const struct bpf_verifier_ops sk_filter_ops = {
2718 2719 2720
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
	.convert_ctx_access	= bpf_net_convert_ctx_access,
2721 2722
};

2723
static const struct bpf_verifier_ops tc_cls_act_ops = {
2724 2725 2726
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
	.convert_ctx_access	= bpf_net_convert_ctx_access,
2727 2728
};

2729 2730 2731 2732 2733 2734
static const struct bpf_verifier_ops xdp_ops = {
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
};

2735
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
2736 2737
	.ops	= &sk_filter_ops,
	.type	= BPF_PROG_TYPE_SOCKET_FILTER,
2738 2739
};

2740
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
2741 2742
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_CLS,
2743 2744
};

2745
static struct bpf_prog_type_list sched_act_type __read_mostly = {
2746 2747
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_ACT,
2748 2749
};

2750 2751 2752 2753 2754
static struct bpf_prog_type_list xdp_type __read_mostly = {
	.ops	= &xdp_ops,
	.type	= BPF_PROG_TYPE_XDP,
};

2755
static int __init register_sk_filter_ops(void)
2756
{
2757
	bpf_register_prog_type(&sk_filter_type);
2758
	bpf_register_prog_type(&sched_cls_type);
2759
	bpf_register_prog_type(&sched_act_type);
2760
	bpf_register_prog_type(&xdp_type);
2761

2762 2763
	return 0;
}
2764 2765
late_initcall(register_sk_filter_ops);

2766
int sk_detach_filter(struct sock *sk)
2767 2768 2769 2770
{
	int ret = -ENOENT;
	struct sk_filter *filter;

2771 2772 2773
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

2774 2775
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
2776
	if (filter) {
2777
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
2778
		sk_filter_uncharge(sk, filter);
2779 2780
		ret = 0;
	}
2781

2782 2783
	return ret;
}
2784
EXPORT_SYMBOL_GPL(sk_detach_filter);
2785

2786 2787
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
2788
{
2789
	struct sock_fprog_kern *fprog;
2790
	struct sk_filter *filter;
2791
	int ret = 0;
2792 2793 2794

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
2795
					   lockdep_sock_is_held(sk));
2796 2797
	if (!filter)
		goto out;
2798 2799

	/* We're copying the filter that has been originally attached,
2800 2801
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
2802
	 */
2803
	ret = -EACCES;
2804
	fprog = filter->prog->orig_prog;
2805 2806
	if (!fprog)
		goto out;
2807 2808

	ret = fprog->len;
2809
	if (!len)
2810
		/* User space only enquires number of filter blocks. */
2811
		goto out;
2812

2813
	ret = -EINVAL;
2814
	if (len < fprog->len)
2815 2816 2817
		goto out;

	ret = -EFAULT;
2818
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
2819
		goto out;
2820

2821 2822 2823 2824
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
2825 2826 2827 2828
out:
	release_sock(sk);
	return ret;
}