filter.c 128.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
L
Linus Torvalds 已提交
36 37
#include <net/ip.h>
#include <net/protocol.h>
38
#include <net/netlink.h>
L
Linus Torvalds 已提交
39 40
#include <linux/skbuff.h>
#include <net/sock.h>
41
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
42 43
#include <linux/errno.h>
#include <linux/timer.h>
44
#include <linux/uaccess.h>
45
#include <asm/unaligned.h>
46
#include <asm/cmpxchg.h>
L
Linus Torvalds 已提交
47
#include <linux/filter.h>
48
#include <linux/ratelimit.h>
49
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
50
#include <linux/if_vlan.h>
51
#include <linux/bpf.h>
52
#include <net/sch_generic.h>
53
#include <net/cls_cgroup.h>
54
#include <net/dst_metadata.h>
55
#include <net/dst.h>
56
#include <net/sock_reuseport.h>
57
#include <net/busy_poll.h>
58
#include <net/tcp.h>
59
#include <linux/bpf_trace.h>
L
Linus Torvalds 已提交
60

S
Stephen Hemminger 已提交
61
/**
62
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
63 64
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
65
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
66
 *
67 68
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
69
 * than pkt_len we keep whole skb->data. This is the socket level
70
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
71 72 73
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
74
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
75 76 77 78
{
	int err;
	struct sk_filter *filter;

79 80 81 82 83
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
84 85
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
86
		return -ENOMEM;
87
	}
88 89 90 91
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
92 93 94 95
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

96 97
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
98
	if (filter) {
99 100 101 102 103 104
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
105
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
106
	}
107
	rcu_read_unlock();
S
Stephen Hemminger 已提交
108 109 110

	return err;
}
111
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
112

113
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
114
{
115
	return skb_get_poff(skb);
116 117
}

118
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
119 120 121 122 123 124
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

125 126 127
	if (skb->len < sizeof(struct nlattr))
		return 0;

128
	if (a > skb->len - sizeof(struct nlattr))
129 130
		return 0;

131
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
132 133 134 135 136 137
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

138
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
139 140 141 142 143 144
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

145 146 147
	if (skb->len < sizeof(struct nlattr))
		return 0;

148
	if (a > skb->len - sizeof(struct nlattr))
149 150
		return 0;

151 152
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
153 154
		return 0;

155
	nla = nla_find_nested(nla, x);
156 157 158 159 160 161
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

162
BPF_CALL_0(__get_raw_cpu_id)
163 164 165 166
{
	return raw_smp_processor_id();
}

167 168 169 170 171 172
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
219 220 221 222 223
	}

	return insn - insn_buf;
}

224
static bool convert_bpf_extensions(struct sock_filter *fp,
225
				   struct bpf_insn **insnp)
226
{
227
	struct bpf_insn *insn = *insnp;
228
	u32 cnt;
229 230 231

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
232 233 234 235 236 237 238
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
239 240 241
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
242 243
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
244 245 246 247 248 249
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
250

251
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
252 253 254 255 256 257 258 259 260 261 262
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
263 264 265
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
266 267
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
268 269 270 271 272
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

273 274
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
275 276 277
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
278 279
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
280 281 282
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
283 284 285 286
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
287

288 289 290 291
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
292 293
		break;

294 295 296 297 298 299 300 301 302 303
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

304 305 306 307
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
308
	case SKF_AD_OFF + SKF_AD_RANDOM:
309
		/* arg1 = CTX */
310
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
311
		/* arg2 = A */
312
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
313
		/* arg3 = X */
314
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
315
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
316 317
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
318
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
319 320
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
321
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
322 323
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
324
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
325 326
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
327
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
328
			break;
C
Chema Gonzalez 已提交
329
		case SKF_AD_OFF + SKF_AD_RANDOM:
330 331
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
332
			break;
333 334 335 336
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
337 338
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
355
 *	bpf_convert_filter - convert filter program
356 357
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
358
 *	@new_prog: allocated 'struct bpf_prog' or NULL
359 360
 *	@new_len: pointer to store length of converted program
 *
361 362
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
363 364 365
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
366
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
367 368 369
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
370
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
371
 */
372
static int bpf_convert_filter(struct sock_filter *prog, int len,
373
			      struct bpf_prog *new_prog, int *new_len)
374
{
375 376
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
377 378 379 380 381
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
382
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
383

384
	if (len <= 0 || len > BPF_MAXINSNS)
385 386 387
		return -EINVAL;

	if (new_prog) {
388
		first_insn = new_prog->insnsi;
389 390
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
391 392 393 394 395
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
396
	new_insn = first_insn;
397 398
	fp = prog;

399
	/* Classic BPF related prologue emission. */
400
	if (new_prog) {
401 402 403
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
404 405
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
406 407 408 409 410 411 412 413 414

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
415 416

	for (i = 0; i < len; fp++, i++) {
417 418
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
419 420

		if (addrs)
421
			addrs[i] = new_insn - first_insn;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

461 462 463 464
			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
			    fp->code == (BPF_ALU | BPF_MOD | BPF_X))
				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);

465
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
466 467
			break;

468 469 470 471 472 473 474
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
475 476 477 478 479 480 481 482
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

483 484 485 486
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
502
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
503

504 505
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
506 507
				bpf_src = BPF_X;
			} else {
508
				insn->dst_reg = BPF_REG_A;
509 510
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
511
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
512
			}
513 514 515 516 517

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
518
				BPF_EMIT_JMP;
519
				break;
L
Linus Torvalds 已提交
520
			}
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			/* Convert some jumps when 'jump_true' is next insn. */
			if (fp->jt == 0) {
				switch (BPF_OP(fp->code)) {
				case BPF_JEQ:
					insn->code = BPF_JMP | BPF_JNE | bpf_src;
					break;
				case BPF_JGT:
					insn->code = BPF_JMP | BPF_JLE | bpf_src;
					break;
				case BPF_JGE:
					insn->code = BPF_JMP | BPF_JLT | bpf_src;
					break;
				default:
					goto jmp_rest;
				}

538
				target = i + fp->jf + 1;
539
				BPF_EMIT_JMP;
540
				break;
541
			}
542
jmp_rest:
543 544 545
			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
546
			BPF_EMIT_JMP;
547 548 549 550
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
551
			BPF_EMIT_JMP;
552 553 554 555
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
556
			/* tmp = A */
557
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
558
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
559
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
560
			/* A &= 0xf */
561
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
562
			/* A <<= 2 */
563
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
564
			/* X = A */
565
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
566
			/* A = tmp */
567
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
568 569
			break;

570 571 572
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
573 574
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
575 576 577
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
578
			*insn = BPF_EXIT_INSN();
579 580 581 582 583
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
584
			stack_off = fp->k * 4  + 4;
585 586
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
587 588 589 590 591 592 593
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
594 595 596 597 598
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
599
			stack_off = fp->k * 4  + 4;
600 601
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
602
					    -stack_off);
603 604 605 606 607
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
608 609
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
610 611 612 613
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
614
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
615 616 617 618
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
619
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
620 621 622 623 624
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
625 626 627
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
628 629
			break;

630
		/* Access seccomp_data fields. */
631
		case BPF_LDX | BPF_ABS | BPF_W:
632 633
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
634 635
			break;

S
Stephen Hemminger 已提交
636
		/* Unknown instruction. */
L
Linus Torvalds 已提交
637
		default:
638
			goto err;
L
Linus Torvalds 已提交
639
		}
640 641 642 643 644 645

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
646 647
	}

648 649
	if (!new_prog) {
		/* Only calculating new length. */
650
		*new_len = new_insn - first_insn;
651 652 653 654
		return 0;
	}

	pass++;
655 656
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
657 658 659 660 661 662 663
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
664
	return 0;
665 666 667
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
668 669
}

670 671
/* Security:
 *
672
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
673
 * __bpf_prog_run(), we check that filter loaded by user never try to read
674
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
675
 * a malicious user doesn't try to abuse us.
676
 */
677
static int check_load_and_stores(const struct sock_filter *filter, int flen)
678
{
679
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
680 681 682
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
683

684
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
685 686
	if (!masks)
		return -ENOMEM;
687

688 689 690 691 692 693
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
694 695
		case BPF_ST:
		case BPF_STX:
696 697
			memvalid |= (1 << filter[pc].k);
			break;
698 699
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
700 701 702 703 704
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
705 706
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
707 708 709
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
710 711 712 713 714 715 716 717 718
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
719 720 721 722 723 724 725 726 727 728 729
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

796 797 798 799 800 801 802 803 804 805 806
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
807
/**
808
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
809 810 811 812 813
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
814 815
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
816
 *
817 818 819
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
820
 */
821 822
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
823
{
824
	bool anc_found;
825
	int pc;
L
Linus Torvalds 已提交
826

827
	/* Check the filter code now */
L
Linus Torvalds 已提交
828
	for (pc = 0; pc < flen; pc++) {
829
		const struct sock_filter *ftest = &filter[pc];
830

831 832
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
833
			return -EINVAL;
834

835
		/* Some instructions need special checks */
836 837 838 839
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
840 841 842
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
843 844 845 846 847
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
848 849 850 851 852
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
853 854 855
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
856 857
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
858 859 860
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
861
			if (ftest->k >= (unsigned int)(flen - pc - 1))
862
				return -EINVAL;
863
			break;
864 865 866 867 868 869 870 871 872
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
873
			if (pc + ftest->jt + 1 >= flen ||
874 875
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
876
			break;
877 878 879
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
880
			anc_found = false;
881 882 883
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
884 885
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
886 887
		}
	}
888

889
	/* Last instruction must be a RET code */
890
	switch (filter[flen - 1].code) {
891 892
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
893
		return check_load_and_stores(filter, flen);
894
	}
895

896
	return -EINVAL;
L
Linus Torvalds 已提交
897 898
}

899 900
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
901
{
902
	unsigned int fsize = bpf_classic_proglen(fprog);
903 904 905 906 907 908 909 910
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
911 912 913

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
914 915 916 917 918 919 920 921
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

922
static void bpf_release_orig_filter(struct bpf_prog *fp)
923 924 925 926 927 928 929 930 931
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

932 933
static void __bpf_prog_release(struct bpf_prog *prog)
{
934
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
935 936 937 938 939
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
940 941
}

942 943
static void __sk_filter_release(struct sk_filter *fp)
{
944 945
	__bpf_prog_release(fp->prog);
	kfree(fp);
946 947
}

948
/**
E
Eric Dumazet 已提交
949
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
950 951
 *	@rcu: rcu_head that contains the sk_filter to free
 */
952
static void sk_filter_release_rcu(struct rcu_head *rcu)
953 954 955
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

956
	__sk_filter_release(fp);
957
}
958 959 960 961 962 963 964 965 966

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
967
	if (refcount_dec_and_test(&fp->refcnt))
968 969 970 971 972
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
973
	u32 filter_size = bpf_prog_size(fp->prog->len);
974

975 976
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
977
}
978

979 980 981
/* try to charge the socket memory if there is space available
 * return true on success
 */
982
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
983
{
984
	u32 filter_size = bpf_prog_size(fp->prog->len);
985 986 987 988 989 990

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
991
	}
992
	return false;
993 994
}

995 996
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
997 998 999 1000 1001 1002 1003 1004
	if (!refcount_inc_not_zero(&fp->refcnt))
		return false;

	if (!__sk_filter_charge(sk, fp)) {
		sk_filter_release(fp);
		return false;
	}
	return true;
1005 1006
}

1007
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1008 1009
{
	struct sock_filter *old_prog;
1010
	struct bpf_prog *old_fp;
1011
	int err, new_len, old_len = fp->len;
1012 1013 1014 1015 1016 1017 1018

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1019
		     sizeof(struct bpf_insn));
1020 1021 1022 1023 1024 1025

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1026
			   GFP_KERNEL | __GFP_NOWARN);
1027 1028 1029 1030 1031 1032
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1033
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1034 1035 1036 1037 1038
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1039
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1051
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1052
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1053
	if (err)
1054
		/* 2nd bpf_convert_filter() can fail only if it fails
1055 1056
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1057
		 * by krealloc().
1058 1059 1060
		 */
		goto out_err_free;

1061
	fp = bpf_prog_select_runtime(fp, &err);
1062 1063
	if (err)
		goto out_err_free;
1064

1065 1066 1067 1068 1069 1070
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1071
	__bpf_prog_release(fp);
1072 1073 1074
	return ERR_PTR(err);
}

1075 1076
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1077 1078 1079
{
	int err;

1080
	fp->bpf_func = NULL;
1081
	fp->jited = 0;
1082

1083
	err = bpf_check_classic(fp->insns, fp->len);
1084
	if (err) {
1085
		__bpf_prog_release(fp);
1086
		return ERR_PTR(err);
1087
	}
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1100 1101 1102
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1103
	bpf_jit_compile(fp);
1104 1105 1106 1107

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1108
	if (!fp->jited)
1109
		fp = bpf_migrate_filter(fp);
1110 1111

	return fp;
1112 1113 1114
}

/**
1115
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1116
 *	@pfp: the unattached filter that is created
1117
 *	@fprog: the filter program
1118
 *
R
Randy Dunlap 已提交
1119
 * Create a filter independent of any socket. We first run some
1120 1121 1122 1123
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1124
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1125
{
1126
	unsigned int fsize = bpf_classic_proglen(fprog);
1127
	struct bpf_prog *fp;
1128 1129

	/* Make sure new filter is there and in the right amounts. */
1130
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1131 1132
		return -EINVAL;

1133
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1134 1135
	if (!fp)
		return -ENOMEM;
1136

1137 1138 1139
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1140 1141 1142 1143 1144
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1145

1146
	/* bpf_prepare_filter() already takes care of freeing
1147 1148
	 * memory in case something goes wrong.
	 */
1149
	fp = bpf_prepare_filter(fp, NULL);
1150 1151
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1152 1153 1154 1155

	*pfp = fp;
	return 0;
}
1156
EXPORT_SYMBOL_GPL(bpf_prog_create);
1157

1158 1159 1160 1161 1162
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1163
 *	@save_orig: save classic BPF program
1164 1165 1166 1167 1168 1169
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1170
			      bpf_aux_classic_check_t trans, bool save_orig)
1171 1172 1173
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1174
	int err;
1175 1176

	/* Make sure new filter is there and in the right amounts. */
1177
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1192 1193 1194 1195 1196 1197 1198 1199
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1210
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1211

1212
void bpf_prog_destroy(struct bpf_prog *fp)
1213
{
1214
	__bpf_prog_release(fp);
1215
}
1216
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1217

1218
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1219 1220 1221 1222 1223 1224 1225 1226 1227
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1228
	if (!__sk_filter_charge(sk, fp)) {
1229 1230 1231
		kfree(fp);
		return -ENOMEM;
	}
1232
	refcount_set(&fp->refcnt, 1);
1233

1234 1235
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1236
	rcu_assign_pointer(sk->sk_filter, fp);
1237

1238 1239 1240 1241 1242 1243
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1244 1245 1246 1247 1248 1249 1250 1251
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1252
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1270
{
1271
	unsigned int fsize = bpf_classic_proglen(fprog);
1272
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1273 1274
	int err;

1275
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1276
		return ERR_PTR(-EPERM);
1277

L
Linus Torvalds 已提交
1278
	/* Make sure new filter is there and in the right amounts. */
1279
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1280
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1281

1282
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1283
	if (!prog)
1284
		return ERR_PTR(-ENOMEM);
1285

1286
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1287
		__bpf_prog_free(prog);
1288
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1289 1290
	}

1291
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1292

1293
	err = bpf_prog_store_orig_filter(prog, fprog);
1294
	if (err) {
1295
		__bpf_prog_free(prog);
1296
		return ERR_PTR(-ENOMEM);
1297 1298
	}

1299
	/* bpf_prepare_filter() already takes care of freeing
1300 1301
	 * memory in case something goes wrong.
	 */
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1315
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1316 1317 1318 1319
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1320 1321 1322
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1323
	err = __sk_attach_prog(prog, sk);
1324
	if (err < 0) {
1325
		__bpf_prog_release(prog);
1326
		return err;
1327 1328
	}

1329
	return 0;
L
Linus Torvalds 已提交
1330
}
1331
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1332

1333
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1334
{
1335
	struct bpf_prog *prog = __get_filter(fprog, sk);
1336
	int err;
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1352
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1353
		return ERR_PTR(-EPERM);
1354

1355
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1366
	err = __sk_attach_prog(prog, sk);
1367
	if (err < 0) {
1368
		bpf_prog_put(prog);
1369
		return err;
1370 1371 1372 1373 1374
	}

	return 0;
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1392 1393 1394 1395 1396 1397 1398 1399
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1400

1401 1402 1403 1404 1405 1406
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1407 1408 1409
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1410
	int err = __bpf_try_make_writable(skb, write_len);
1411

1412
	bpf_compute_data_pointers(skb);
1413 1414 1415
	return err;
}

1416 1417 1418 1419 1420
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1421 1422 1423 1424 1425 1426
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1427 1428 1429 1430 1431 1432
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1433 1434
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1435 1436 1437
{
	void *ptr;

1438
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1439
		return -EINVAL;
1440
	if (unlikely(offset > 0xffff))
1441
		return -EFAULT;
1442
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1443 1444
		return -EFAULT;

1445
	ptr = skb->data + offset;
1446
	if (flags & BPF_F_RECOMPUTE_CSUM)
1447
		__skb_postpull_rcsum(skb, ptr, len, offset);
1448 1449 1450

	memcpy(ptr, from, len);

1451
	if (flags & BPF_F_RECOMPUTE_CSUM)
1452
		__skb_postpush_rcsum(skb, ptr, len, offset);
1453 1454
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1455

1456 1457 1458
	return 0;
}

1459
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1460 1461 1462 1463 1464
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1465 1466
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1467 1468 1469
	.arg5_type	= ARG_ANYTHING,
};

1470 1471
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1472 1473 1474
{
	void *ptr;

1475
	if (unlikely(offset > 0xffff))
1476
		goto err_clear;
1477 1478 1479

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1480
		goto err_clear;
1481 1482 1483 1484
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1485 1486 1487
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1488 1489
}

1490
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1491 1492 1493 1494 1495
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1496 1497
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1498 1499
};

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1522 1523
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1524
{
1525
	__sum16 *ptr;
1526

1527 1528
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1529
	if (unlikely(offset > 0xffff || offset & 1))
1530
		return -EFAULT;
1531
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1532 1533
		return -EFAULT;

1534
	ptr = (__sum16 *)(skb->data + offset);
1535
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1536 1537 1538 1539 1540 1541
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1555
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1566 1567
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1568
{
1569
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1570
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1571
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1572
	__sum16 *ptr;
1573

1574 1575
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1576
		return -EINVAL;
1577
	if (unlikely(offset > 0xffff || offset & 1))
1578
		return -EFAULT;
1579
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1580 1581
		return -EFAULT;

1582
	ptr = (__sum16 *)(skb->data + offset);
1583
	if (is_mmzero && !do_mforce && !*ptr)
1584
		return 0;
1585

1586
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1587 1588 1589 1590 1591 1592
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1603 1604
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1605 1606 1607
	return 0;
}

1608
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1609 1610 1611 1612 1613 1614 1615 1616
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1617 1618
};

1619 1620
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1621
{
1622
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1623
	u32 diff_size = from_size + to_size;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1646
static const struct bpf_func_proto bpf_csum_diff_proto = {
1647 1648
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1649
	.pkt_access	= true,
1650
	.ret_type	= RET_INTEGER,
1651
	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1652
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1653
	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1654
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1655 1656 1657
	.arg5_type	= ARG_ANYTHING,
};

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1678 1679 1680 1681 1682
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1739 1740 1741 1742 1743 1744
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1745 1746 1747 1748 1749 1750 1751 1752
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1753
	if (dev_is_mac_header_xmit(dev))
1754
		return __bpf_redirect_common(skb, dev, flags);
1755 1756
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1757 1758
}

1759
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1760 1761
{
	struct net_device *dev;
1762 1763
	struct sk_buff *clone;
	int ret;
1764

1765 1766 1767
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1768 1769 1770 1771
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1772 1773
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1774 1775
		return -ENOMEM;

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1787
	return __bpf_redirect(clone, dev, flags);
1788 1789
}

1790
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1791 1792 1793 1794 1795 1796 1797 1798
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1799 1800 1801
struct redirect_info {
	u32 ifindex;
	u32 flags;
1802
	struct bpf_map *map;
1803
	struct bpf_map *map_to_flush;
1804
	unsigned long   map_owner;
1805 1806 1807
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1808

1809
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1810 1811 1812
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1813 1814 1815
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1816 1817
	ri->ifindex = ifindex;
	ri->flags = flags;
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1834
	return __bpf_redirect(skb, dev, ri->flags);
1835 1836
}

1837
static const struct bpf_func_proto bpf_redirect_proto = {
1838 1839 1840 1841 1842 1843 1844
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1845 1846
BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
	   struct bpf_map *, map, u32, key, u64, flags)
1847
{
1848
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1849

1850
	/* If user passes invalid input drop the packet. */
1851
	if (unlikely(flags))
1852
		return SK_DROP;
1853

1854 1855 1856
	tcb->bpf.key = key;
	tcb->bpf.flags = flags;
	tcb->bpf.map = map;
1857

1858
	return SK_PASS;
1859 1860
}

1861
struct sock *do_sk_redirect_map(struct sk_buff *skb)
1862
{
1863
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1864 1865
	struct sock *sk = NULL;

1866 1867
	if (tcb->bpf.map) {
		sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1868

1869 1870
		tcb->bpf.key = 0;
		tcb->bpf.map = NULL;
1871 1872 1873 1874 1875 1876 1877 1878 1879
	}

	return sk;
}

static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
	.func           = bpf_sk_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
1880 1881
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
1882
	.arg3_type      = ARG_ANYTHING,
1883
	.arg4_type      = ARG_ANYTHING,
1884 1885
};

1886
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1887
{
1888
	return task_get_classid(skb);
1889 1890 1891 1892 1893 1894 1895 1896 1897
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1898
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1899
{
1900
	return dst_tclassid(skb);
1901 1902 1903 1904 1905 1906 1907 1908 1909
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1910
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1911 1912 1913 1914 1915 1916
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
1917
	return skb_get_hash(skb);
1918 1919 1920 1921 1922 1923 1924 1925 1926
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1961 1962
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
1963
{
1964
	int ret;
1965 1966 1967 1968 1969

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1970
	bpf_push_mac_rcsum(skb);
1971
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1972 1973
	bpf_pull_mac_rcsum(skb);

1974
	bpf_compute_data_pointers(skb);
1975
	return ret;
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1986
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1987

1988
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1989
{
1990
	int ret;
1991

1992
	bpf_push_mac_rcsum(skb);
1993
	ret = skb_vlan_pop(skb);
1994 1995
	bpf_pull_mac_rcsum(skb);

1996
	bpf_compute_data_pointers(skb);
1997
	return ret;
1998 1999 2000 2001 2002 2003 2004 2005
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
2006
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2080
	u32 off = skb_mac_header_len(skb);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2092 2093
		/* SKB_GSO_TCPV4 needs to be changed into
		 * SKB_GSO_TCPV6.
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2116
	u32 off = skb_mac_header_len(skb);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2128 2129
		/* SKB_GSO_TCPV6 needs to be changed into
		 * SKB_GSO_TCPV4.
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2164 2165
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
2190
	bpf_compute_data_pointers(skb);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2203
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2204 2205
{
	/* We only allow a restricted subset to be changed for now. */
2206 2207
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* Due to header grow, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* Due to header shrink, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
	return skb->dev->mtu + skb->dev->hard_header_len;
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

2315
	bpf_compute_data_pointers(skb);
2316
	return ret;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2368 2369
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

2406
	bpf_compute_data_pointers(skb);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

2446
	bpf_compute_data_pointers(skb);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2459 2460 2461 2462 2463 2464
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
{
	return xdp_data_meta_unsupported(xdp) ? 0 :
	       xdp->data - xdp->data_meta;
}

2465 2466
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
2467 2468
	unsigned long metalen = xdp_get_metalen(xdp);
	void *data_start = xdp->data_hard_start + metalen;
2469 2470
	void *data = xdp->data + offset;

2471
	if (unlikely(data < data_start ||
2472 2473 2474
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

2475 2476 2477 2478
	if (metalen)
		memmove(xdp->data_meta + offset,
			xdp->data_meta, metalen);
	xdp->data_meta += offset;
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
{
	void *meta = xdp->data_meta + offset;
	unsigned long metalen = xdp->data - meta;

	if (xdp_data_meta_unsupported(xdp))
		return -ENOTSUPP;
	if (unlikely(meta < xdp->data_hard_start ||
		     meta > xdp->data))
		return -EINVAL;
	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
		     (metalen > 32)))
		return -EACCES;

	xdp->data_meta = meta;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
	.func		= bpf_xdp_adjust_meta,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2519 2520 2521 2522
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
2523
{
2524 2525 2526 2527
	int err;

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		return -EOPNOTSUPP;
2528
	}
2529 2530 2531 2532

	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
	if (err)
		return err;
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	dev->netdev_ops->ndo_xdp_flush(dev);
	return 0;
}

static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
			    struct bpf_map *map,
			    struct xdp_buff *xdp,
			    u32 index)
{
	int err;

	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
		struct net_device *dev = fwd;

		if (!dev->netdev_ops->ndo_xdp_xmit)
			return -EOPNOTSUPP;

		err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
		if (err)
			return err;
2553
		__dev_map_insert_ctx(map, index);
2554 2555 2556 2557 2558 2559 2560 2561 2562

	} else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
		struct bpf_cpu_map_entry *rcpu = fwd;

		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
		if (err)
			return err;
		__cpu_map_insert_ctx(map, index);
	}
2563
	return 0;
2564 2565
}

2566 2567 2568 2569 2570 2571
void xdp_do_flush_map(void)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct bpf_map *map = ri->map_to_flush;

	ri->map_to_flush = NULL;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (map) {
		switch (map->map_type) {
		case BPF_MAP_TYPE_DEVMAP:
			__dev_map_flush(map);
			break;
		case BPF_MAP_TYPE_CPUMAP:
			__cpu_map_flush(map);
			break;
		default:
			break;
		}
	}
2584 2585 2586
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
{
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP:
		return __dev_map_lookup_elem(map, index);
	case BPF_MAP_TYPE_CPUMAP:
		return __cpu_map_lookup_elem(map, index);
	default:
		return NULL;
	}
}

2599 2600 2601 2602 2603 2604
static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
				   unsigned long aux)
{
	return (unsigned long)xdp_prog->aux != aux;
}

2605 2606
static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
			       struct bpf_prog *xdp_prog)
2607 2608
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2609
	unsigned long map_owner = ri->map_owner;
2610
	struct bpf_map *map = ri->map;
2611
	u32 index = ri->ifindex;
2612
	void *fwd = NULL;
2613
	int err;
2614 2615 2616

	ri->ifindex = 0;
	ri->map = NULL;
2617
	ri->map_owner = 0;
2618

2619
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2620 2621 2622 2623
		err = -EFAULT;
		map = NULL;
		goto err;
	}
2624

2625
	fwd = __xdp_map_lookup_elem(map, index);
2626 2627
	if (!fwd) {
		err = -EINVAL;
2628
		goto err;
2629
	}
2630
	if (ri->map_to_flush && ri->map_to_flush != map)
2631 2632
		xdp_do_flush_map();

2633
	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2634 2635 2636 2637
	if (unlikely(err))
		goto err;

	ri->map_to_flush = map;
2638
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2639 2640
	return 0;
err:
2641
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2642 2643 2644
	return err;
}

2645 2646
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
2647 2648
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2649
	struct net_device *fwd;
W
William Tu 已提交
2650
	u32 index = ri->ifindex;
2651
	int err;
2652

2653 2654 2655
	if (ri->map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog);

W
William Tu 已提交
2656
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2657
	ri->ifindex = 0;
2658
	if (unlikely(!fwd)) {
2659
		err = -EINVAL;
2660
		goto err;
2661 2662
	}

2663
	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2664 2665 2666 2667 2668 2669 2670
	if (unlikely(err))
		goto err;

	_trace_xdp_redirect(dev, xdp_prog, index);
	return 0;
err:
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2671
	return err;
2672 2673 2674
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
{
	unsigned int len;

	if (unlikely(!(fwd->flags & IFF_UP)))
		return -ENETDOWN;

	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
	if (skb->len > len)
		return -EMSGSIZE;

	return 0;
}

2689 2690 2691
static int xdp_do_generic_redirect_map(struct net_device *dev,
				       struct sk_buff *skb,
				       struct bpf_prog *xdp_prog)
2692 2693
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2694
	unsigned long map_owner = ri->map_owner;
2695 2696
	struct bpf_map *map = ri->map;
	struct net_device *fwd = NULL;
W
William Tu 已提交
2697
	u32 index = ri->ifindex;
2698
	int err = 0;
2699 2700

	ri->ifindex = 0;
2701
	ri->map = NULL;
2702
	ri->map_owner = 0;
2703

2704 2705 2706 2707
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
		err = -EFAULT;
		map = NULL;
		goto err;
2708
	}
2709
	fwd = __xdp_map_lookup_elem(map, index);
2710 2711
	if (unlikely(!fwd)) {
		err = -EINVAL;
2712
		goto err;
2713 2714
	}

2715 2716 2717 2718 2719 2720 2721
	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
		if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
			goto err;
		skb->dev = fwd;
	} else {
		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
		err = -EBADRQC;
2722
		goto err;
2723
	}
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
	return 0;
err:
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
	return err;
}

int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
			    struct bpf_prog *xdp_prog)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	u32 index = ri->ifindex;
	struct net_device *fwd;
	int err = 0;

	if (ri->map)
		return xdp_do_generic_redirect_map(dev, skb, xdp_prog);

	ri->ifindex = 0;
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
	if (unlikely(!fwd)) {
		err = -EINVAL;
2747
		goto err;
2748 2749
	}

2750 2751 2752
	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
		goto err;

2753
	skb->dev = fwd;
2754
	_trace_xdp_redirect(dev, xdp_prog, index);
2755 2756
	return 0;
err:
2757
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2758
	return err;
2759 2760 2761
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

2762 2763 2764 2765 2766 2767 2768 2769 2770
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
2771
	ri->map = NULL;
2772
	ri->map_owner = 0;
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

2785
BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
2786
	   unsigned long, map_owner)
2787 2788 2789 2790 2791 2792 2793 2794 2795
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	ri->map = map;
2796
	ri->map_owner = map_owner;
2797 2798 2799 2800

	return XDP_REDIRECT;
}

2801 2802 2803
/* Note, arg4 is hidden from users and populated by the verifier
 * with the right pointer.
 */
2804 2805 2806 2807 2808 2809 2810 2811 2812
static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
	.func           = bpf_xdp_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2813
bool bpf_helper_changes_pkt_data(void *func)
2814
{
2815 2816 2817 2818
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
2819
	    func == bpf_skb_change_head ||
2820
	    func == bpf_skb_change_tail ||
2821
	    func == bpf_skb_adjust_room ||
2822
	    func == bpf_skb_pull_data ||
2823
	    func == bpf_clone_redirect ||
2824
	    func == bpf_l3_csum_replace ||
2825
	    func == bpf_l4_csum_replace ||
2826 2827
	    func == bpf_xdp_adjust_head ||
	    func == bpf_xdp_adjust_meta)
2828 2829
		return true;

2830 2831 2832
	return false;
}

2833
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2834
				  unsigned long off, unsigned long len)
2835
{
2836
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2837 2838 2839 2840 2841 2842 2843 2844 2845

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

2846 2847
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2867
	.arg4_type	= ARG_PTR_TO_MEM,
2868
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
2869 2870
};

2871 2872 2873 2874 2875
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2876 2877
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
2878
{
2879 2880
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2881 2882
	void *to_orig = to;
	int err;
2883

2884 2885 2886 2887 2888 2889 2890 2891
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2892
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2893
		err = -EINVAL;
2894
		switch (size) {
2895
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2896
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2897
			goto set_compat;
2898 2899 2900 2901 2902
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2903
				goto err_clear;
2904
set_compat:
2905 2906 2907
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2908
			goto err_clear;
2909 2910
		}
	}
2911 2912

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2913 2914 2915
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2916
	if (flags & BPF_F_TUNINFO_IPV6) {
2917 2918
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2919 2920
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2921
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2922
	}
2923 2924

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2925
		memcpy(to_orig, to, size);
2926 2927

	return 0;
2928 2929 2930
err_clear:
	memset(to_orig, 0, size);
	return err;
2931 2932
}

2933
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2934 2935 2936 2937
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2938 2939
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2940 2941 2942
	.arg4_type	= ARG_ANYTHING,
};

2943
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2944 2945
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2946
	int err;
2947 2948

	if (unlikely(!info ||
2949 2950 2951 2952 2953 2954 2955 2956
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2957 2958

	ip_tunnel_info_opts_get(to, info);
2959 2960
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2961 2962

	return info->options_len;
2963 2964 2965
err_clear:
	memset(to, 0, size);
	return err;
2966 2967 2968 2969 2970 2971 2972
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2973 2974
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2975 2976
};

2977 2978
static struct metadata_dst __percpu *md_dst;

2979 2980
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2981 2982
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2983
	u8 compat[sizeof(struct bpf_tunnel_key)];
2984 2985
	struct ip_tunnel_info *info;

2986 2987
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2988
		return -EINVAL;
2989 2990
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2991
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2992
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2993 2994 2995 2996 2997 2998
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
2999
			from = (const struct bpf_tunnel_key *) compat;
3000 3001 3002 3003 3004
			break;
		default:
			return -EINVAL;
		}
	}
3005 3006
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
3007
		return -EINVAL;
3008 3009 3010 3011 3012 3013 3014

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
3015

3016
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3017 3018
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
W
William Tu 已提交
3019 3020
	if (flags & BPF_F_ZERO_CSUM_TX)
		info->key.tun_flags &= ~TUNNEL_CSUM;
3021

3022
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3023 3024 3025 3026 3027 3028 3029
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
3030 3031
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
3032 3033 3034
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
3035 3036 3037 3038

	return 0;
}

3039
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3040 3041 3042 3043
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3044 3045
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3046 3047 3048
	.arg4_type	= ARG_ANYTHING,
};

3049 3050
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
3051 3052 3053 3054 3055 3056
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
3057
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3070 3071
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3072 3073 3074 3075
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3076 3077
{
	if (!md_dst) {
3078 3079 3080 3081 3082 3083
		struct metadata_dst __percpu *tmp;

		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
						METADATA_IP_TUNNEL,
						GFP_KERNEL);
		if (!tmp)
3084
			return NULL;
3085 3086
		if (cmpxchg(&md_dst, NULL, tmp))
			metadata_dst_free_percpu(tmp);
3087
	}
3088 3089 3090 3091 3092 3093 3094 3095 3096

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
3097 3098
}

3099 3100
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
3101 3102 3103 3104 3105
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

3106
	sk = skb_to_full_sk(skb);
3107 3108
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
3109
	if (unlikely(idx >= array->map.max_entries))
3110 3111
		return -E2BIG;

3112
	cgrp = READ_ONCE(array->ptrs[idx]);
3113 3114 3115
	if (unlikely(!cgrp))
		return -EAGAIN;

3116
	return sk_under_cgroup_hierarchy(sk, cgrp);
3117 3118
}

3119 3120
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
3121 3122 3123 3124 3125 3126 3127
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

3128 3129 3130 3131 3132 3133 3134
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

3135 3136
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3137 3138 3139 3140 3141 3142 3143 3144
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
3145 3146
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
3147 3148 3149 3150 3151 3152 3153 3154 3155
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3156
	.arg4_type	= ARG_PTR_TO_MEM,
3157
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3158 3159
};

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
3234
#ifdef CONFIG_INET
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct ipv6_pinfo *np = inet6_sk(sk);

				if (val == -1)
					val = 0;
				np->tclass = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
#endif
3258 3259
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3260 3261
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];
3262
			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3263 3264 3265 3266

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
3267 3268
			ret = tcp_set_congestion_control(sk, name, false,
							 reinit);
3269
		} else {
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
3284 3285 3286 3287 3288 3289 3290
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
3291
				break;
3292 3293 3294
			default:
				ret = -EINVAL;
			}
3295 3296
		}
#endif
3297 3298 3299 3300 3301 3302 3303 3304
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
3305
	.gpl_only	= false,
3306 3307 3308 3309 3310 3311 3312 3313
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;

	if (!sk_fullsock(sk))
		goto err_clear;

#ifdef CONFIG_INET
	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
		if (optname == TCP_CONGESTION) {
			struct inet_connection_sock *icsk = inet_csk(sk);

			if (!icsk->icsk_ca_ops || optlen <= 1)
				goto err_clear;
			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
			optval[optlen - 1] = 0;
		} else {
			goto err_clear;
		}
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		struct ipv6_pinfo *np = inet6_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			*((int *)optval) = (int)np->tclass;
			break;
		default:
			goto err_clear;
		}
#endif
3350 3351 3352
	} else {
		goto err_clear;
	}
3353
	return 0;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#endif
err_clear:
	memset(optval, 0, optlen);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_getsockopt_proto = {
	.func		= bpf_getsockopt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
	   int, argval)
{
	struct sock *sk = bpf_sock->sk;
	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;

	if (!sk_fullsock(sk))
		return -EINVAL;

#ifdef CONFIG_INET
	if (val)
		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;

	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
#else
	return -EINVAL;
#endif
}

static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
	.func		= bpf_sock_ops_cb_flags_set,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3398
static const struct bpf_func_proto *
3399
bpf_base_func_proto(enum bpf_func_id func_id)
3400 3401 3402 3403 3404 3405 3406 3407
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
3408 3409
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
3410
	case BPF_FUNC_get_smp_processor_id:
3411
		return &bpf_get_raw_smp_processor_id_proto;
3412 3413
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
3414 3415
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
3416 3417
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
3418
	case BPF_FUNC_trace_printk:
3419 3420
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
3421 3422 3423 3424 3425
	default:
		return NULL;
	}
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

3440 3441 3442 3443 3444 3445
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3446 3447
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3448 3449
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3450 3451 3452 3453 3454
	default:
		return bpf_base_func_proto(func_id);
	}
}

3455 3456 3457 3458 3459 3460
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
3461 3462
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3463 3464
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
3465 3466
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
3467 3468
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
3469 3470 3471 3472
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
3473 3474
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
3475 3476
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
3477 3478 3479 3480
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
3481 3482
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
3483 3484
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
3485 3486
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
3487 3488
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
3489 3490 3491
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
3492 3493 3494 3495 3496
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
3497 3498
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
3499 3500
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
3501 3502
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
3503 3504
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
3505 3506
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
3507
	case BPF_FUNC_perf_event_output:
3508
		return &bpf_skb_event_output_proto;
3509 3510
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3511 3512
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
3513 3514
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3515 3516
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3517
	default:
3518
		return bpf_base_func_proto(func_id);
3519 3520 3521
	}
}

3522 3523 3524
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
3525 3526 3527
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
3528 3529
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3530 3531
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
3532 3533
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
3534 3535
	case BPF_FUNC_xdp_adjust_meta:
		return &bpf_xdp_adjust_meta_proto;
3536 3537
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
3538
	case BPF_FUNC_redirect_map:
3539
		return &bpf_xdp_redirect_map_proto;
3540
	default:
3541
		return bpf_base_func_proto(func_id);
3542
	}
3543 3544
}

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
3568
		return bpf_base_func_proto(func_id);
3569 3570 3571
	}
}

3572 3573 3574 3575 3576 3577
static const struct bpf_func_proto *
	sock_ops_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
3578 3579
	case BPF_FUNC_getsockopt:
		return &bpf_getsockopt_proto;
3580 3581
	case BPF_FUNC_sock_ops_cb_flags_set:
		return &bpf_sock_ops_cb_flags_set_proto;
3582 3583
	case BPF_FUNC_sock_map_update:
		return &bpf_sock_map_update_proto;
3584 3585 3586 3587 3588
	default:
		return bpf_base_func_proto(func_id);
	}
}

3589 3590 3591
static const struct bpf_func_proto *sk_skb_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
3592 3593
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
3594 3595
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3596 3597 3598 3599 3600 3601
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
3602 3603 3604 3605
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3606 3607
	case BPF_FUNC_sk_redirect_map:
		return &bpf_sk_redirect_map_proto;
3608 3609 3610 3611 3612
	default:
		return bpf_base_func_proto(func_id);
	}
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
		return lwt_inout_func_proto(func_id);
	}
}

3648 3649
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
				    struct bpf_insn_access_aux *info)
3650
{
3651
	const int size_default = sizeof(__u32);
3652

3653 3654
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
3655

3656
	/* The verifier guarantees that size > 0. */
3657 3658
	if (off % size != 0)
		return false;
3659 3660

	switch (off) {
3661 3662
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
3663 3664
			return false;
		break;
3665 3666 3667 3668
	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3669
	case bpf_ctx_range(struct __sk_buff, data):
3670
	case bpf_ctx_range(struct __sk_buff, data_meta):
3671 3672
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
3673
			return false;
3674 3675
		break;
	default:
3676
		/* Only narrow read access allowed for now. */
3677
		if (type == BPF_WRITE) {
3678
			if (size != size_default)
3679 3680
				return false;
		} else {
3681 3682
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3683
				return false;
3684
		}
3685
	}
3686 3687 3688 3689

	return true;
}

3690
static bool sk_filter_is_valid_access(int off, int size,
3691
				      enum bpf_access_type type,
3692
				      struct bpf_insn_access_aux *info)
3693
{
3694
	switch (off) {
3695 3696
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
3697
	case bpf_ctx_range(struct __sk_buff, data_meta):
3698
	case bpf_ctx_range(struct __sk_buff, data_end):
3699
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3700
		return false;
3701
	}
3702

3703 3704
	if (type == BPF_WRITE) {
		switch (off) {
3705
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3706 3707 3708 3709 3710 3711
			break;
		default:
			return false;
		}
	}

3712
	return bpf_skb_is_valid_access(off, size, type, info);
3713 3714
}

3715 3716
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
3717
				struct bpf_insn_access_aux *info)
3718 3719
{
	switch (off) {
3720
	case bpf_ctx_range(struct __sk_buff, tc_classid):
3721
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3722
	case bpf_ctx_range(struct __sk_buff, data_meta):
3723 3724 3725 3726 3727
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
3728 3729 3730
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3731 3732 3733 3734 3735 3736
			break;
		default:
			return false;
		}
	}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

	return bpf_skb_is_valid_access(off, size, type, info);
3747 3748
}

3749 3750
static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
3751
					struct bpf_insn_access_aux *info)
3752 3753 3754 3755
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock, bound_dev_if):
3756 3757 3758
		case offsetof(struct bpf_sock, mark):
		case offsetof(struct bpf_sock, priority):
			break;
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
		default:
			return false;
		}
	}

	if (off < 0 || off + size > sizeof(struct bpf_sock))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

3775 3776
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
				const struct bpf_prog *prog, int drop_verdict)
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3803
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

3814 3815 3816 3817 3818 3819
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
}

3820
static bool tc_cls_act_is_valid_access(int off, int size,
3821
				       enum bpf_access_type type,
3822
				       struct bpf_insn_access_aux *info)
3823 3824 3825
{
	if (type == BPF_WRITE) {
		switch (off) {
3826 3827 3828 3829 3830
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3831 3832 3833 3834 3835
			break;
		default:
			return false;
		}
	}
3836

3837 3838 3839 3840
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
3841 3842 3843
	case bpf_ctx_range(struct __sk_buff, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
3844 3845 3846
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
3847 3848
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
		return false;
3849 3850 3851
	}

	return bpf_skb_is_valid_access(off, size, type, info);
3852 3853
}

3854
static bool __is_valid_xdp_access(int off, int size)
3855 3856 3857 3858 3859
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
3860
	if (size != sizeof(__u32))
3861 3862 3863 3864 3865 3866 3867
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
3868
				struct bpf_insn_access_aux *info)
3869 3870 3871 3872 3873 3874
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
3875
		info->reg_type = PTR_TO_PACKET;
3876
		break;
3877 3878 3879
	case offsetof(struct xdp_md, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
3880
	case offsetof(struct xdp_md, data_end):
3881
		info->reg_type = PTR_TO_PACKET_END;
3882 3883 3884
		break;
	}

3885
	return __is_valid_xdp_access(off, size);
3886 3887 3888 3889
}

void bpf_warn_invalid_xdp_action(u32 act)
{
3890 3891 3892 3893 3894
	const u32 act_max = XDP_REDIRECT;

	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
		  act > act_max ? "Illegal" : "Driver unsupported",
		  act);
3895 3896 3897
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

3898 3899 3900
static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
				     struct bpf_insn_access_aux *info)
L
Lawrence Brakmo 已提交
3901
{
3902 3903
	const int size_default = sizeof(__u32);

L
Lawrence Brakmo 已提交
3904 3905
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
3906

L
Lawrence Brakmo 已提交
3907 3908 3909 3910 3911 3912
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;

	if (type == BPF_WRITE) {
		switch (off) {
3913
		case offsetof(struct bpf_sock_ops, reply):
3914
		case offsetof(struct bpf_sock_ops, sk_txhash):
3915 3916
			if (size != size_default)
				return false;
L
Lawrence Brakmo 已提交
3917 3918 3919 3920
			break;
		default:
			return false;
		}
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	} else {
		switch (off) {
		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
					bytes_acked):
			if (size != sizeof(__u64))
				return false;
			break;
		default:
			if (size != size_default)
				return false;
			break;
		}
L
Lawrence Brakmo 已提交
3933 3934
	}

3935
	return true;
L
Lawrence Brakmo 已提交
3936 3937
}

3938 3939 3940
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
			   const struct bpf_prog *prog)
{
3941
	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
3942 3943
}

3944 3945 3946 3947
static bool sk_skb_is_valid_access(int off, int size,
				   enum bpf_access_type type,
				   struct bpf_insn_access_aux *info)
{
3948 3949 3950 3951 3952 3953
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data_meta):
		return false;
	}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	if (type == BPF_WRITE) {
		switch (off) {
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
			break;
		default:
			return false;
		}
	}

3964
	switch (off) {
3965
	case bpf_ctx_range(struct __sk_buff, mark):
3966
		return false;
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

	return bpf_skb_is_valid_access(off, size, type, info);
}

3978 3979 3980
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
3981
				  struct bpf_prog *prog, u32 *target_size)
3982 3983
{
	struct bpf_insn *insn = insn_buf;
3984
	int off;
3985

3986
	switch (si->off) {
3987
	case offsetof(struct __sk_buff, len):
3988
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3989 3990
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
3991 3992
		break;

3993
	case offsetof(struct __sk_buff, protocol):
3994
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3995 3996
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
3997 3998
		break;

3999
	case offsetof(struct __sk_buff, vlan_proto):
4000
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4001 4002
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
4003 4004
		break;

4005
	case offsetof(struct __sk_buff, priority):
4006
		if (type == BPF_WRITE)
4007
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4008 4009
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
4010
		else
4011
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4012 4013
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
4014 4015
		break;

4016
	case offsetof(struct __sk_buff, ingress_ifindex):
4017
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4018 4019
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
4020 4021 4022
		break;

	case offsetof(struct __sk_buff, ifindex):
4023
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4024
				      si->dst_reg, si->src_reg,
4025
				      offsetof(struct sk_buff, dev));
4026 4027
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4028 4029
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
4030 4031
		break;

4032
	case offsetof(struct __sk_buff, hash):
4033
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4034 4035
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
4036 4037
		break;

4038
	case offsetof(struct __sk_buff, mark):
4039
		if (type == BPF_WRITE)
4040
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4041 4042
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
4043
		else
4044
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4045 4046
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
4047
		break;
4048 4049

	case offsetof(struct __sk_buff, pkt_type):
4050 4051 4052 4053 4054 4055 4056 4057
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
4058 4059

	case offsetof(struct __sk_buff, queue_mapping):
4060 4061 4062 4063
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
4064 4065 4066

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
4080 4081

	case offsetof(struct __sk_buff, cb[0]) ...
4082
	     offsetofend(struct __sk_buff, cb[4]) - 1:
4083
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
4084 4085 4086
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
4087

4088
		prog->cb_access = 1;
4089 4090 4091 4092
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
4093
		if (type == BPF_WRITE)
4094
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
4095
					      si->src_reg, off);
4096
		else
4097
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
4098
					      si->src_reg, off);
4099 4100
		break;

4101
	case offsetof(struct __sk_buff, tc_classid):
4102 4103 4104 4105 4106 4107
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
4108
		*target_size = 2;
4109
		if (type == BPF_WRITE)
4110 4111
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
4112
		else
4113 4114
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
4115 4116
		break;

4117
	case offsetof(struct __sk_buff, data):
4118
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
4119
				      si->dst_reg, si->src_reg,
4120 4121 4122
				      offsetof(struct sk_buff, data));
		break;

4123 4124 4125 4126 4127 4128 4129 4130 4131
	case offsetof(struct __sk_buff, data_meta):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_meta);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_meta);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;

4132
	case offsetof(struct __sk_buff, data_end):
4133 4134 4135 4136 4137 4138
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
4139 4140
		break;

4141 4142 4143
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
4144
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
4145 4146
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
4147
		else
4148
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4149 4150
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
4151
#else
4152
		*target_size = 2;
4153
		if (type == BPF_WRITE)
4154
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
4155
		else
4156
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4157 4158 4159 4160 4161 4162
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4163 4164
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
4165 4166 4167
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
4168
		*target_size = 4;
4169
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4170
#endif
4171
		break;
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	case offsetof(struct __sk_buff, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_family,
						     2, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_daddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_rcv_saddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip6[0]) ...
	     offsetof(struct __sk_buff, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, remote_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;
	case offsetof(struct __sk_buff, local_ip6[0]) ...
	     offsetof(struct __sk_buff, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, local_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct __sk_buff, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_dport,
						     2, target_size));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct __sk_buff, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_num, 2, target_size));
		break;
4272 4273 4274
	}

	return insn - insn_buf;
4275 4276
}

4277
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4278
					  const struct bpf_insn *si,
4279
					  struct bpf_insn *insn_buf,
4280
					  struct bpf_prog *prog, u32 *target_size)
4281 4282 4283
{
	struct bpf_insn *insn = insn_buf;

4284
	switch (si->off) {
4285 4286 4287 4288
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
4289
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4290 4291
					offsetof(struct sock, sk_bound_dev_if));
		else
4292
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4293 4294
				      offsetof(struct sock, sk_bound_dev_if));
		break;
4295

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	case offsetof(struct bpf_sock, mark):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_mark));
		break;

	case offsetof(struct bpf_sock, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_priority));
		break;

4318 4319 4320
	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

4321
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4322 4323 4324 4325
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
4326
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4327
				      offsetof(struct sock, __sk_flags_offset));
4328 4329
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4330 4331 4332
		break;

	case offsetof(struct bpf_sock, protocol):
4333
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4334
				      offsetof(struct sock, __sk_flags_offset));
4335 4336
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4337
		break;
4338 4339 4340 4341 4342
	}

	return insn - insn_buf;
}

4343 4344
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
4345
					 struct bpf_insn *insn_buf,
4346
					 struct bpf_prog *prog, u32 *target_size)
4347 4348 4349
{
	struct bpf_insn *insn = insn_buf;

4350
	switch (si->off) {
4351 4352
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4353
				      si->dst_reg, si->src_reg,
4354
				      offsetof(struct sk_buff, dev));
4355
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4356 4357
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
4358 4359
		break;
	default:
4360 4361
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
4362 4363 4364 4365 4366
	}

	return insn - insn_buf;
}

4367 4368
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
4369
				  struct bpf_insn *insn_buf,
4370
				  struct bpf_prog *prog, u32 *target_size)
4371 4372 4373
{
	struct bpf_insn *insn = insn_buf;

4374
	switch (si->off) {
4375
	case offsetof(struct xdp_md, data):
4376
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4377
				      si->dst_reg, si->src_reg,
4378 4379
				      offsetof(struct xdp_buff, data));
		break;
4380 4381 4382 4383 4384
	case offsetof(struct xdp_md, data_meta):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, data_meta));
		break;
4385
	case offsetof(struct xdp_md, data_end):
4386
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4387
				      si->dst_reg, si->src_reg,
4388 4389
				      offsetof(struct xdp_buff, data_end));
		break;
4390 4391 4392 4393 4394 4395 4396 4397
	case offsetof(struct xdp_md, ingress_ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
				      si->dst_reg, si->dst_reg,
				      offsetof(struct xdp_rxq_info, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4398
				      offsetof(struct net_device, ifindex));
4399 4400 4401 4402 4403 4404
		break;
	case offsetof(struct xdp_md, rx_queue_index):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4405 4406
				      offsetof(struct xdp_rxq_info,
					       queue_index));
4407
		break;
4408 4409 4410 4411 4412
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
4413 4414 4415
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
4416 4417
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

	case offsetof(struct bpf_sock_ops, is_fullsock):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern,
						is_fullsock),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern,
					       is_fullsock));
		break;

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	case offsetof(struct bpf_sock_ops, state):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_state));
		break;

	case offsetof(struct bpf_sock_ops, rtt_min):
		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
			     sizeof(struct minmax));
		BUILD_BUG_ON(sizeof(struct minmax) <
			     sizeof(struct minmax_sample));

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct tcp_sock, rtt_min) +
				      FIELD_SIZEOF(struct minmax_sample, t));
		break;

4578 4579
/* Helper macro for adding read access to tcp_sock or sock fields. */
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
4580
	do {								      \
4581 4582
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
4594 4595 4596 4597
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
						       OBJ_FIELD),	      \
				      si->dst_reg, si->dst_reg,		      \
				      offsetof(OBJ, OBJ_FIELD));	      \
4598 4599
	} while (0)

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/* Helper macro for adding write access to tcp_sock or sock fields.
 * The macro is called with two registers, dst_reg which contains a pointer
 * to ctx (context) and src_reg which contains the value that should be
 * stored. However, we need an additional register since we cannot overwrite
 * dst_reg because it may be used later in the program.
 * Instead we "borrow" one of the other register. We first save its value
 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
 * it at the end of the macro.
 */
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
	do {								      \
		int reg = BPF_REG_9;					      \
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
				      reg, si->src_reg,			      \
				      offsetof(OBJ, OBJ_FIELD));	      \
		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
	} while (0)

#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
	do {								      \
		if (TYPE == BPF_WRITE)					      \
			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
		else							      \
			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
	} while (0)

4648
	case offsetof(struct bpf_sock_ops, snd_cwnd):
4649
		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
4650 4651 4652
		break;

	case offsetof(struct bpf_sock_ops, srtt_us):
4653
		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
4654
		break;
4655 4656 4657 4658 4659

	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
				   struct tcp_sock);
		break;
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733

	case offsetof(struct bpf_sock_ops, snd_ssthresh):
		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rcv_nxt):
		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_nxt):
		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_una):
		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, mss_cache):
		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, ecn_flags):
		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_delivered):
		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_interval_us):
		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, packets_out):
		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, retrans_out):
		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, total_retrans):
		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_in):
		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_in):
		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_out):
		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_out):
		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, lost_out):
		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sacked_out):
		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sk_txhash):
4734 4735
		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
					  struct sock, type);
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
		break;

	case offsetof(struct bpf_sock_ops, bytes_received):
		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, bytes_acked):
		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
		break;
4746

L
Lawrence Brakmo 已提交
4747 4748 4749 4750
	}
	return insn - insn_buf;
}

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct __sk_buff, data_end):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct tcp_skb_cb, bpf.data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;
	default:
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
	}

	return insn - insn_buf;
}

4776
const struct bpf_verifier_ops sk_filter_verifier_ops = {
4777 4778
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
4779
	.convert_ctx_access	= bpf_convert_ctx_access,
4780 4781
};

4782
const struct bpf_prog_ops sk_filter_prog_ops = {
4783
	.test_run		= bpf_prog_test_run_skb,
4784 4785 4786
};

const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
4787 4788
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
4789
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
4790
	.gen_prologue		= tc_cls_act_prologue,
4791 4792 4793
};

const struct bpf_prog_ops tc_cls_act_prog_ops = {
4794
	.test_run		= bpf_prog_test_run_skb,
4795 4796
};

4797
const struct bpf_verifier_ops xdp_verifier_ops = {
4798 4799 4800
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
4801 4802 4803
};

const struct bpf_prog_ops xdp_prog_ops = {
4804
	.test_run		= bpf_prog_test_run_xdp,
4805 4806
};

4807
const struct bpf_verifier_ops cg_skb_verifier_ops = {
4808
	.get_func_proto		= sk_filter_func_proto,
4809
	.is_valid_access	= sk_filter_is_valid_access,
4810
	.convert_ctx_access	= bpf_convert_ctx_access,
4811 4812 4813
};

const struct bpf_prog_ops cg_skb_prog_ops = {
4814
	.test_run		= bpf_prog_test_run_skb,
4815 4816
};

4817
const struct bpf_verifier_ops lwt_inout_verifier_ops = {
4818 4819
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
4820
	.convert_ctx_access	= bpf_convert_ctx_access,
4821 4822 4823
};

const struct bpf_prog_ops lwt_inout_prog_ops = {
4824
	.test_run		= bpf_prog_test_run_skb,
4825 4826
};

4827
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
4828 4829
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
4830
	.convert_ctx_access	= bpf_convert_ctx_access,
4831
	.gen_prologue		= tc_cls_act_prologue,
4832 4833 4834
};

const struct bpf_prog_ops lwt_xmit_prog_ops = {
4835
	.test_run		= bpf_prog_test_run_skb,
4836 4837
};

4838
const struct bpf_verifier_ops cg_sock_verifier_ops = {
4839
	.get_func_proto		= sock_filter_func_proto,
4840 4841 4842 4843
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

4844 4845 4846 4847
const struct bpf_prog_ops cg_sock_prog_ops = {
};

const struct bpf_verifier_ops sock_ops_verifier_ops = {
4848
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
4849 4850 4851 4852
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

4853 4854 4855 4856
const struct bpf_prog_ops sock_ops_prog_ops = {
};

const struct bpf_verifier_ops sk_skb_verifier_ops = {
4857 4858
	.get_func_proto		= sk_skb_func_proto,
	.is_valid_access	= sk_skb_is_valid_access,
4859
	.convert_ctx_access	= sk_skb_convert_ctx_access,
4860
	.gen_prologue		= sk_skb_prologue,
4861 4862
};

4863 4864 4865
const struct bpf_prog_ops sk_skb_prog_ops = {
};

4866
int sk_detach_filter(struct sock *sk)
4867 4868 4869 4870
{
	int ret = -ENOENT;
	struct sk_filter *filter;

4871 4872 4873
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

4874 4875
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
4876
	if (filter) {
4877
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
4878
		sk_filter_uncharge(sk, filter);
4879 4880
		ret = 0;
	}
4881

4882 4883
	return ret;
}
4884
EXPORT_SYMBOL_GPL(sk_detach_filter);
4885

4886 4887
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
4888
{
4889
	struct sock_fprog_kern *fprog;
4890
	struct sk_filter *filter;
4891
	int ret = 0;
4892 4893 4894

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
4895
					   lockdep_sock_is_held(sk));
4896 4897
	if (!filter)
		goto out;
4898 4899

	/* We're copying the filter that has been originally attached,
4900 4901
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
4902
	 */
4903
	ret = -EACCES;
4904
	fprog = filter->prog->orig_prog;
4905 4906
	if (!fprog)
		goto out;
4907 4908

	ret = fprog->len;
4909
	if (!len)
4910
		/* User space only enquires number of filter blocks. */
4911
		goto out;
4912

4913
	ret = -EINVAL;
4914
	if (len < fprog->len)
4915 4916 4917
		goto out;

	ret = -EFAULT;
4918
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4919
		goto out;
4920

4921 4922 4923 4924
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
4925 4926 4927 4928
out:
	release_sock(sk);
	return ret;
}