filter.c 48.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
51
#include <net/dst_metadata.h>
L
Linus Torvalds 已提交
52

S
Stephen Hemminger 已提交
53 54 55 56 57 58
/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
L
Li RongQing 已提交
59
 * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
60
 * than pkt_len we keep whole skb->data. This is the socket level
L
Li RongQing 已提交
61
 * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
S
Stephen Hemminger 已提交
62 63 64 65 66 67 68 69
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

70 71 72 73 74 75 76 77
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
78 79 80 81
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

82 83
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
84
	if (filter) {
85
		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
86

S
Stephen Hemminger 已提交
87 88
		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
89
	rcu_read_unlock();
S
Stephen Hemminger 已提交
90 91 92 93 94

	return err;
}
EXPORT_SYMBOL(sk_filter);

95
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
96
{
97
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
98 99
}

100
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
101
{
102
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
103 104 105 106 107
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

108 109 110
	if (skb->len < sizeof(struct nlattr))
		return 0;

111
	if (a > skb->len - sizeof(struct nlattr))
112 113
		return 0;

114
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
115 116 117 118 119 120
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

121
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
122
{
123
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
124 125 126 127 128
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

129 130 131
	if (skb->len < sizeof(struct nlattr))
		return 0;

132
	if (a > skb->len - sizeof(struct nlattr))
133 134
		return 0;

135 136
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
137 138
		return 0;

139
	nla = nla_find_nested(nla, x);
140 141 142 143 144 145
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

146
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
147 148 149 150
{
	return raw_smp_processor_id();
}

C
Chema Gonzalez 已提交
151
/* note that this only generates 32-bit random numbers */
152
static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
C
Chema Gonzalez 已提交
153
{
154
	return prandom_u32();
C
Chema Gonzalez 已提交
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
203 204 205 206 207
	}

	return insn - insn_buf;
}

208
static bool convert_bpf_extensions(struct sock_filter *fp,
209
				   struct bpf_insn **insnp)
210
{
211
	struct bpf_insn *insn = *insnp;
212
	u32 cnt;
213 214 215

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
216 217 218 219 220 221 222
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
223 224 225
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
226 227
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
228 229 230 231 232 233
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
234 235 236 237 238 239 240 241 242 243 244 245 246 247
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
248 249 250
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
251 252
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
253 254 255 256 257
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

258 259
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
260 261 262
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
263 264
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
265 266 267
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
268 269 270 271
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
272

273 274 275 276
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
277 278
		break;

279 280 281 282 283 284 285 286 287 288
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

289 290 291 292
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
293
	case SKF_AD_OFF + SKF_AD_RANDOM:
294
		/* arg1 = CTX */
295
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
296
		/* arg2 = A */
297
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
298
		/* arg3 = X */
299
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
300
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
301 302
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
303
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
304 305
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
306
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
307 308
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
309
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
310 311
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
312
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
313
			break;
C
Chema Gonzalez 已提交
314
		case SKF_AD_OFF + SKF_AD_RANDOM:
315
			*insn = BPF_EMIT_CALL(__get_random_u32);
C
Chema Gonzalez 已提交
316
			break;
317 318 319 320
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
321 322
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
339
 *	bpf_convert_filter - convert filter program
340 341 342 343 344 345 346 347 348
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
349
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
350 351 352
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
353
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
354
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
355 356 357 358 359 360 361
 *
 * User BPF's register A is mapped to our BPF register 6, user BPF
 * register X is mapped to BPF register 7; frame pointer is always
 * register 10; Context 'void *ctx' is stored in register 1, that is,
 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
 * ctx == 'struct seccomp_data *'.
 */
362 363
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
364 365
{
	int new_flen = 0, pass = 0, target, i;
366
	struct bpf_insn *new_insn;
367 368 369 370 371
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
372
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
373

374
	if (len <= 0 || len > BPF_MAXINSNS)
375 376 377
		return -EINVAL;

	if (new_prog) {
378 379
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
380 381 382 383 384 385 386 387
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

388 389
	if (new_insn)
		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
390 391 392
	new_insn++;

	for (i = 0; i < len; fp++, i++) {
393 394
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

437
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
438 439
			break;

440 441 442 443 444 445 446
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
447 448 449 450 451 452 453 454
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

455 456 457 458
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
474
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
475

476 477
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
478 479
				bpf_src = BPF_X;
			} else {
480 481
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_X;
482 483
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
L
Linus Torvalds 已提交
484
			}
485 486 487 488 489

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
490
				BPF_EMIT_JMP;
491
				break;
L
Linus Torvalds 已提交
492
			}
493 494 495 496 497

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
498
				BPF_EMIT_JMP;
499
				break;
500
			}
501 502 503 504

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
505
			BPF_EMIT_JMP;
506 507 508 509
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
510
			BPF_EMIT_JMP;
511 512 513 514
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
515
			/* tmp = A */
516
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
517
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
518
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
519
			/* A &= 0xf */
520
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
521
			/* A <<= 2 */
522
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
523
			/* X = A */
524
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
525
			/* A = tmp */
526
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
527 528 529 530 531
			break;

		/* RET_K, RET_A are remaped into 2 insns. */
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
532 533 534
			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
						BPF_K : BPF_X, BPF_REG_0,
						BPF_REG_A, fp->k);
535
			*insn = BPF_EXIT_INSN();
536 537 538 539 540
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
541 542 543
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
544 545 546 547 548
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
549 550 551
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
552 553 554 555 556
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
557 558
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
559 560 561 562
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
563
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
564 565 566 567
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
568
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
569 570 571 572 573
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
574 575 576
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
577 578
			break;

579
		/* Access seccomp_data fields. */
580
		case BPF_LDX | BPF_ABS | BPF_W:
581 582
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
583 584
			break;

S
Stephen Hemminger 已提交
585
		/* Unknown instruction. */
L
Linus Torvalds 已提交
586
		default:
587
			goto err;
L
Linus Torvalds 已提交
588
		}
589 590 591 592 593 594

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
595 596
	}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
613
	return 0;
614 615 616
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
617 618
}

619 620
/* Security:
 *
621
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
622
 * __bpf_prog_run(), we check that filter loaded by user never try to read
623
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
624
 * a malicious user doesn't try to abuse us.
625
 */
626
static int check_load_and_stores(const struct sock_filter *filter, int flen)
627
{
628
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
629 630 631
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
632

633
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
634 635
	if (!masks)
		return -ENOMEM;
636

637 638 639 640 641 642
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
643 644
		case BPF_ST:
		case BPF_STX:
645 646
			memvalid |= (1 << filter[pc].k);
			break;
647 648
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
649 650 651 652 653
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
654 655
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
656 657 658
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
659 660 661 662 663 664 665 666 667
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
668 669 670 671 672 673 674 675 676 677 678
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

L
Linus Torvalds 已提交
745
/**
746
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
747 748 749 750 751
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
752 753
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
754
 *
755 756 757
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
758
 */
759 760
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
761
{
762
	bool anc_found;
763
	int pc;
L
Linus Torvalds 已提交
764

765
	if (flen == 0 || flen > BPF_MAXINSNS)
L
Linus Torvalds 已提交
766 767
		return -EINVAL;

768
	/* Check the filter code now */
L
Linus Torvalds 已提交
769
	for (pc = 0; pc < flen; pc++) {
770
		const struct sock_filter *ftest = &filter[pc];
771

772 773
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
774
			return -EINVAL;
775

776
		/* Some instructions need special checks */
777 778 779 780
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
781 782 783
			if (ftest->k == 0)
				return -EINVAL;
			break;
784 785 786 787 788
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
789 790 791
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
792 793
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
794 795 796
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
797
			if (ftest->k >= (unsigned int)(flen - pc - 1))
798
				return -EINVAL;
799
			break;
800 801 802 803 804 805 806 807 808
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
809
			if (pc + ftest->jt + 1 >= flen ||
810 811
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
812
			break;
813 814 815
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
816
			anc_found = false;
817 818 819
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
820 821
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
822 823
		}
	}
824

825
	/* Last instruction must be a RET code */
826
	switch (filter[flen - 1].code) {
827 828
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
829
		return check_load_and_stores(filter, flen);
830
	}
831

832
	return -EINVAL;
L
Linus Torvalds 已提交
833 834
}

835 836
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
837
{
838
	unsigned int fsize = bpf_classic_proglen(fprog);
839 840 841 842 843 844 845 846
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
847 848 849

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
850 851 852 853 854 855 856 857
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

858
static void bpf_release_orig_filter(struct bpf_prog *fp)
859 860 861 862 863 864 865 866 867
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

868 869
static void __bpf_prog_release(struct bpf_prog *prog)
{
870
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
871 872 873 874 875
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
876 877
}

878 879
static void __sk_filter_release(struct sk_filter *fp)
{
880 881
	__bpf_prog_release(fp->prog);
	kfree(fp);
882 883
}

884
/**
E
Eric Dumazet 已提交
885
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
886 887
 *	@rcu: rcu_head that contains the sk_filter to free
 */
888
static void sk_filter_release_rcu(struct rcu_head *rcu)
889 890 891
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

892
	__sk_filter_release(fp);
893
}
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
909
	u32 filter_size = bpf_prog_size(fp->prog->len);
910

911 912
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
913
}
914

915 916 917 918
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
919
{
920
	u32 filter_size = bpf_prog_size(fp->prog->len);
921 922 923 924 925 926 927

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
928
	}
929
	return false;
930 931
}

932
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
933 934
{
	struct sock_filter *old_prog;
935
	struct bpf_prog *old_fp;
936
	int err, new_len, old_len = fp->len;
937 938 939 940 941 942 943

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
944
		     sizeof(struct bpf_insn));
945 946 947 948 949 950

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
951
			   GFP_KERNEL | __GFP_NOWARN);
952 953 954 955 956 957
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
958
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
959 960 961 962 963
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
964
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
965 966 967 968 969 970 971 972 973 974 975
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

976
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
977
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
978
	if (err)
979
		/* 2nd bpf_convert_filter() can fail only if it fails
980 981
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
982
		 * by krealloc().
983 984 985
		 */
		goto out_err_free;

986
	bpf_prog_select_runtime(fp);
987

988 989 990 991 992 993
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
994
	__bpf_prog_release(fp);
995 996 997
	return ERR_PTR(err);
}

998 999
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1000 1001 1002
{
	int err;

1003
	fp->bpf_func = NULL;
1004
	fp->jited = false;
1005

1006
	err = bpf_check_classic(fp->insns, fp->len);
1007
	if (err) {
1008
		__bpf_prog_release(fp);
1009
		return ERR_PTR(err);
1010
	}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1023 1024 1025
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1026
	bpf_jit_compile(fp);
1027 1028 1029 1030

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1031
	if (!fp->jited)
1032
		fp = bpf_migrate_filter(fp);
1033 1034

	return fp;
1035 1036 1037
}

/**
1038
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1039
 *	@pfp: the unattached filter that is created
1040
 *	@fprog: the filter program
1041
 *
R
Randy Dunlap 已提交
1042
 * Create a filter independent of any socket. We first run some
1043 1044 1045 1046
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1047
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1048
{
1049
	unsigned int fsize = bpf_classic_proglen(fprog);
1050
	struct bpf_prog *fp;
1051 1052 1053 1054 1055

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

1056
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1057 1058
	if (!fp)
		return -ENOMEM;
1059

1060 1061 1062
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1063 1064 1065 1066 1067
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1068

1069
	/* bpf_prepare_filter() already takes care of freeing
1070 1071
	 * memory in case something goes wrong.
	 */
1072
	fp = bpf_prepare_filter(fp, NULL);
1073 1074
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1075 1076 1077 1078

	*pfp = fp;
	return 0;
}
1079
EXPORT_SYMBOL_GPL(bpf_prog_create);
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
			      bpf_aux_classic_check_t trans)
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;

	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}

1128
void bpf_prog_destroy(struct bpf_prog *fp)
1129
{
1130
	__bpf_prog_release(fp);
1131
}
1132
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
1172
	unsigned int fsize = bpf_classic_proglen(fprog);
1173 1174
	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1175 1176
	int err;

1177 1178 1179
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

L
Linus Torvalds 已提交
1180
	/* Make sure new filter is there and in the right amounts. */
1181 1182
	if (fprog->filter == NULL)
		return -EINVAL;
L
Linus Torvalds 已提交
1183

1184
	prog = bpf_prog_alloc(bpf_fsize, 0);
1185
	if (!prog)
L
Linus Torvalds 已提交
1186
		return -ENOMEM;
1187

1188
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1189
		__bpf_prog_free(prog);
L
Linus Torvalds 已提交
1190 1191 1192
		return -EFAULT;
	}

1193
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1194

1195
	err = bpf_prog_store_orig_filter(prog, fprog);
1196
	if (err) {
1197
		__bpf_prog_free(prog);
1198 1199 1200
		return -ENOMEM;
	}

1201
	/* bpf_prepare_filter() already takes care of freeing
1202 1203
	 * memory in case something goes wrong.
	 */
1204
	prog = bpf_prepare_filter(prog, NULL);
1205 1206 1207
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1208 1209
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1210
		__bpf_prog_release(prog);
1211
		return err;
1212 1213
	}

1214
	return 0;
L
Linus Torvalds 已提交
1215
}
1216
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1217

1218 1219 1220
int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog;
1221
	int err;
1222 1223 1224 1225 1226

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	prog = bpf_prog_get(ufd);
1227 1228
	if (IS_ERR(prog))
		return PTR_ERR(prog);
1229

1230
	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1231 1232 1233 1234
		bpf_prog_put(prog);
		return -EINVAL;
	}

1235 1236
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1237
		bpf_prog_put(prog);
1238
		return err;
1239 1240 1241 1242 1243
	}

	return 0;
}

1244 1245 1246
#define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)

static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1247 1248
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1249
	int offset = (int) r2;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	char buf[16];
	void *ptr;

	/* bpf verifier guarantees that:
	 * 'from' pointer points to bpf program stack
	 * 'len' bytes of it were initialized
	 * 'len' > 0
	 * 'skb' is a valid pointer to 'struct sk_buff'
	 *
	 * so check for invalid 'offset' and too large 'len'
	 */
1263
	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1264 1265
		return -EFAULT;

1266
	if (unlikely(skb_cloned(skb) &&
1267
		     !skb_clone_writable(skb, offset + len)))
1268 1269 1270 1271 1272 1273
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, len, buf);
	if (unlikely(!ptr))
		return -EFAULT;

1274 1275
	if (BPF_RECOMPUTE_CSUM(flags))
		skb_postpull_rcsum(skb, ptr, len);
1276 1277 1278 1279 1280 1281 1282

	memcpy(ptr, from, len);

	if (ptr == buf)
		/* skb_store_bits cannot return -EFAULT here */
		skb_store_bits(skb, offset, ptr, len);

1283
	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
	return 0;
}

const struct bpf_func_proto bpf_skb_store_bytes_proto = {
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1296 1297 1298 1299 1300 1301
	.arg5_type	= ARG_ANYTHING,
};

#define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
#define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)

1302
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1303 1304
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1305
	int offset = (int) r2;
1306 1307
	__sum16 sum, *ptr;

1308
	if (unlikely((u32) offset > 0xffff))
1309 1310
		return -EFAULT;

1311
	if (unlikely(skb_cloned(skb) &&
1312
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l3_csum_replace_proto = {
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1348
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1349 1350 1351
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u32 is_pseudo = BPF_IS_PSEUDO_HEADER(flags);
1352
	int offset = (int) r2;
1353 1354
	__sum16 sum, *ptr;

1355
	if (unlikely((u32) offset > 0xffff))
1356 1357
		return -EFAULT;

1358
	if (unlikely(skb_cloned(skb) &&
1359
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l4_csum_replace_proto = {
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1393 1394
};

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
#define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)

static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

	if (unlikely(!(dev->flags & IFF_UP)))
		return -EINVAL;

	skb2 = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb2))
		return -ENOMEM;

	if (BPF_IS_REDIRECT_INGRESS(flags))
		return dev_forward_skb(dev, skb2);

	skb2->dev = dev;
	return dev_queue_xmit(skb2);
}

const struct bpf_func_proto bpf_clone_redirect_proto = {
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

	return skb_vlan_push(skb, vlan_proto, vlan_tci);
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1461
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;

	return skb_vlan_pop(skb);
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1476
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
	return false;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
	struct ip_tunnel_info *info = skb_tunnel_info(skb, AF_INET);

	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
		return -EINVAL;

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
	to->remote_ipv4 = be32_to_cpu(info->key.ipv4_src);

	return 0;
}

const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static struct metadata_dst __percpu *md_dst;

static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
	struct metadata_dst *md = this_cpu_ptr(md_dst);
	struct ip_tunnel_info *info;

	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
		return -EINVAL;

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
	info->key.ipv4_dst = cpu_to_be32(from->remote_ipv4);

	return 0;
}

const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
{
	if (!md_dst) {
		/* race is not possible, since it's called from
		 * verifier that is holding verifier mutex
		 */
		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
		if (!md_dst)
			return NULL;
	}
	return &bpf_skb_set_tunnel_key_proto;
}

1559 1560
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
1561 1562 1563 1564 1565 1566 1567 1568
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
1569 1570
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
1571 1572
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
1573 1574
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
1575 1576
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
1577 1578
	case BPF_FUNC_trace_printk:
		return bpf_get_trace_printk_proto();
1579 1580 1581 1582 1583
	default:
		return NULL;
	}
}

1584 1585 1586 1587 1588 1589
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
1590 1591 1592 1593
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
1594 1595
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
1596 1597
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
1598 1599 1600 1601
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
1602 1603 1604 1605
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_key_proto();
1606 1607 1608 1609 1610
	default:
		return sk_filter_func_proto(func_id);
	}
}

1611
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1612
{
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/* check bounds */
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;

	/* disallow misaligned access */
	if (off % size != 0)
		return false;

	/* all __sk_buff fields are __u32 */
	if (size != 4)
		return false;

	return true;
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static bool sk_filter_is_valid_access(int off, int size,
				      enum bpf_access_type type)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
				       enum bpf_access_type type)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}
	return __is_valid_access(off, size, type);
}

static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				      int src_reg, int ctx_off,
				      struct bpf_insn *insn_buf)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

1675 1676 1677 1678 1679 1680 1681
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

1682 1683 1684 1685 1686 1687 1688
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

1689 1690 1691 1692 1693 1694 1695
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, priority));
		break;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

1714 1715 1716 1717 1718 1719 1720
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

1721
	case offsetof(struct __sk_buff, mark):
1722 1723 1724 1725 1726 1727 1728 1729 1730
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
1731 1732 1733 1734 1735 1736

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1737 1738 1739 1740 1741 1742 1743 1744

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	case offsetof(struct __sk_buff, cb[0]) ...
		offsetof(struct __sk_buff, cb[4]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
1777 1778 1779
	}

	return insn - insn_buf;
1780 1781
}

1782 1783 1784
static const struct bpf_verifier_ops sk_filter_ops = {
	.get_func_proto = sk_filter_func_proto,
	.is_valid_access = sk_filter_is_valid_access,
1785
	.convert_ctx_access = bpf_net_convert_ctx_access,
1786 1787
};

1788 1789
static const struct bpf_verifier_ops tc_cls_act_ops = {
	.get_func_proto = tc_cls_act_func_proto,
1790 1791
	.is_valid_access = tc_cls_act_is_valid_access,
	.convert_ctx_access = bpf_net_convert_ctx_access,
1792 1793
};

1794 1795
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
	.ops = &sk_filter_ops,
1796 1797 1798
	.type = BPF_PROG_TYPE_SOCKET_FILTER,
};

1799
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1800
	.ops = &tc_cls_act_ops,
1801 1802 1803
	.type = BPF_PROG_TYPE_SCHED_CLS,
};

1804
static struct bpf_prog_type_list sched_act_type __read_mostly = {
1805
	.ops = &tc_cls_act_ops,
1806 1807 1808
	.type = BPF_PROG_TYPE_SCHED_ACT,
};

1809
static int __init register_sk_filter_ops(void)
1810
{
1811
	bpf_register_prog_type(&sk_filter_type);
1812
	bpf_register_prog_type(&sched_cls_type);
1813
	bpf_register_prog_type(&sched_act_type);
1814

1815 1816
	return 0;
}
1817 1818
late_initcall(register_sk_filter_ops);

1819 1820 1821 1822 1823
int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

1824 1825 1826
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

1827 1828
	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
1829
	if (filter) {
1830
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
1831
		sk_filter_uncharge(sk, filter);
1832 1833
		ret = 0;
	}
1834

1835 1836
	return ret;
}
1837
EXPORT_SYMBOL_GPL(sk_detach_filter);
1838

1839 1840
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
1841
{
1842
	struct sock_fprog_kern *fprog;
1843
	struct sk_filter *filter;
1844
	int ret = 0;
1845 1846 1847

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
1848
					   sock_owned_by_user(sk));
1849 1850
	if (!filter)
		goto out;
1851 1852 1853 1854

	/* We're copying the filter that has been originally attached,
	 * so no conversion/decode needed anymore.
	 */
1855
	fprog = filter->prog->orig_prog;
1856 1857

	ret = fprog->len;
1858
	if (!len)
1859
		/* User space only enquires number of filter blocks. */
1860
		goto out;
1861

1862
	ret = -EINVAL;
1863
	if (len < fprog->len)
1864 1865 1866
		goto out;

	ret = -EFAULT;
1867
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1868
		goto out;
1869

1870 1871 1872 1873
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
1874 1875 1876 1877
out:
	release_sock(sk);
	return ret;
}