filter.c 75.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
51
#include <net/dst_metadata.h>
52
#include <net/dst.h>
53
#include <net/sock_reuseport.h>
L
Linus Torvalds 已提交
54

S
Stephen Hemminger 已提交
55
/**
56
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
57 58
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
59
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
60
 *
61 62
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
63
 * than pkt_len we keep whole skb->data. This is the socket level
64
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
65 66 67
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
68
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
69 70 71 72
{
	int err;
	struct sk_filter *filter;

73 74 75 76 77 78 79 80
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
81 82 83 84
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

85 86
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
87
	if (filter) {
88
		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
89
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
90
	}
91
	rcu_read_unlock();
S
Stephen Hemminger 已提交
92 93 94

	return err;
}
95
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
96

97
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
98
{
99
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
100 101
}

102
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
103
{
104
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
105 106 107 108 109
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

110 111 112
	if (skb->len < sizeof(struct nlattr))
		return 0;

113
	if (a > skb->len - sizeof(struct nlattr))
114 115
		return 0;

116
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
117 118 119 120 121 122
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

123
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
124
{
125
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
126 127 128 129 130
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

131 132 133
	if (skb->len < sizeof(struct nlattr))
		return 0;

134
	if (a > skb->len - sizeof(struct nlattr))
135 136
		return 0;

137 138
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
139 140
		return 0;

141
	nla = nla_find_nested(nla, x);
142 143 144 145 146 147
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

148
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 150 151 152
{
	return raw_smp_processor_id();
}

153 154 155 156 157 158
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
205 206 207 208 209
	}

	return insn - insn_buf;
}

210
static bool convert_bpf_extensions(struct sock_filter *fp,
211
				   struct bpf_insn **insnp)
212
{
213
	struct bpf_insn *insn = *insnp;
214
	u32 cnt;
215 216 217

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
218 219 220 221 222 223 224
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
225 226 227
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
228 229
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
230 231 232 233 234 235
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
236

237
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
238 239 240 241 242 243 244 245 246 247 248
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
249 250 251
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
252 253
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
254 255 256 257 258
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

259 260
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
261 262 263
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
264 265
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
266 267 268
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
269 270 271 272
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
273

274 275 276 277
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
278 279
		break;

280 281 282 283 284 285 286 287 288 289
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

290 291 292 293
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
294
	case SKF_AD_OFF + SKF_AD_RANDOM:
295
		/* arg1 = CTX */
296
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
297
		/* arg2 = A */
298
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
299
		/* arg3 = X */
300
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
301
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
302 303
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
304
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
305 306
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
307
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
308 309
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
310
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
311 312
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
313
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
314
			break;
C
Chema Gonzalez 已提交
315
		case SKF_AD_OFF + SKF_AD_RANDOM:
316 317
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
318
			break;
319 320 321 322
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
323 324
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
341
 *	bpf_convert_filter - convert filter program
342 343 344 345 346 347 348 349 350
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
351
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
352 353 354
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
355
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
356
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
357
 */
358 359
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
360 361
{
	int new_flen = 0, pass = 0, target, i;
362
	struct bpf_insn *new_insn;
363 364 365 366 367
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369

370
	if (len <= 0 || len > BPF_MAXINSNS)
371 372 373
		return -EINVAL;

	if (new_prog) {
374 375
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
376 377 378 379 380 381 382 383
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	/* Classic BPF related prologue emission. */
	if (new_insn) {
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
400 401

	for (i = 0; i < len; fp++, i++) {
402 403
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

446
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
447 448
			break;

449 450 451 452 453 454 455
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
456 457 458 459 460 461 462 463
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

464 465 466 467
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
483
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
484

485 486
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
487 488
				bpf_src = BPF_X;
			} else {
489
				insn->dst_reg = BPF_REG_A;
490 491
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
492
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
493
			}
494 495 496 497 498

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
499
				BPF_EMIT_JMP;
500
				break;
L
Linus Torvalds 已提交
501
			}
502 503 504 505 506

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
507
				BPF_EMIT_JMP;
508
				break;
509
			}
510 511 512 513

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
514
			BPF_EMIT_JMP;
515 516 517 518
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
519
			BPF_EMIT_JMP;
520 521 522 523
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
524
			/* tmp = A */
525
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
526
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
527
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
528
			/* A &= 0xf */
529
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
530
			/* A <<= 2 */
531
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
532
			/* X = A */
533
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
534
			/* A = tmp */
535
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
536 537
			break;

538 539 540
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
541 542
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
543 544 545
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
546
			*insn = BPF_EXIT_INSN();
547 548 549 550 551
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
552 553 554
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
555 556 557 558 559
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
560 561 562
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
563 564 565 566 567
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
568 569
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
570 571 572 573
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
574
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
575 576 577 578
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
579
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
580 581 582 583 584
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
585 586 587
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
588 589
			break;

590
		/* Access seccomp_data fields. */
591
		case BPF_LDX | BPF_ABS | BPF_W:
592 593
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
594 595
			break;

S
Stephen Hemminger 已提交
596
		/* Unknown instruction. */
L
Linus Torvalds 已提交
597
		default:
598
			goto err;
L
Linus Torvalds 已提交
599
		}
600 601 602 603 604 605

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
606 607
	}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
624
	return 0;
625 626 627
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
628 629
}

630 631
/* Security:
 *
632
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
633
 * __bpf_prog_run(), we check that filter loaded by user never try to read
634
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
635
 * a malicious user doesn't try to abuse us.
636
 */
637
static int check_load_and_stores(const struct sock_filter *filter, int flen)
638
{
639
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
640 641 642
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
643

644
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
645 646
	if (!masks)
		return -ENOMEM;
647

648 649 650 651 652 653
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
654 655
		case BPF_ST:
		case BPF_STX:
656 657
			memvalid |= (1 << filter[pc].k);
			break;
658 659
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
660 661 662 663 664
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
665 666
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
667 668 669
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
670 671 672 673 674 675 676 677 678
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
679 680 681 682 683 684 685 686 687 688 689
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

756 757 758 759 760 761 762 763 764 765 766
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
767
/**
768
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
769 770 771 772 773
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
774 775
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
776
 *
777 778 779
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
780
 */
781 782
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
783
{
784
	bool anc_found;
785
	int pc;
L
Linus Torvalds 已提交
786

787
	/* Check the filter code now */
L
Linus Torvalds 已提交
788
	for (pc = 0; pc < flen; pc++) {
789
		const struct sock_filter *ftest = &filter[pc];
790

791 792
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
793
			return -EINVAL;
794

795
		/* Some instructions need special checks */
796 797 798 799
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
800 801 802
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
803 804 805 806 807
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
808 809 810 811 812
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
813 814 815
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
816 817
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
818 819 820
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
821
			if (ftest->k >= (unsigned int)(flen - pc - 1))
822
				return -EINVAL;
823
			break;
824 825 826 827 828 829 830 831 832
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
833
			if (pc + ftest->jt + 1 >= flen ||
834 835
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
836
			break;
837 838 839
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
840
			anc_found = false;
841 842 843
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
844 845
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
846 847
		}
	}
848

849
	/* Last instruction must be a RET code */
850
	switch (filter[flen - 1].code) {
851 852
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
853
		return check_load_and_stores(filter, flen);
854
	}
855

856
	return -EINVAL;
L
Linus Torvalds 已提交
857 858
}

859 860
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
861
{
862
	unsigned int fsize = bpf_classic_proglen(fprog);
863 864 865 866 867 868 869 870
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
871 872 873

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
874 875 876 877 878 879 880 881
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

882
static void bpf_release_orig_filter(struct bpf_prog *fp)
883 884 885 886 887 888 889 890 891
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

892 893
static void __bpf_prog_release(struct bpf_prog *prog)
{
894
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
895 896 897 898 899
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
900 901
}

902 903
static void __sk_filter_release(struct sk_filter *fp)
{
904 905
	__bpf_prog_release(fp->prog);
	kfree(fp);
906 907
}

908
/**
E
Eric Dumazet 已提交
909
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
910 911
 *	@rcu: rcu_head that contains the sk_filter to free
 */
912
static void sk_filter_release_rcu(struct rcu_head *rcu)
913 914 915
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

916
	__sk_filter_release(fp);
917
}
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
933
	u32 filter_size = bpf_prog_size(fp->prog->len);
934

935 936
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
937
}
938

939 940 941 942
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
943
{
944
	u32 filter_size = bpf_prog_size(fp->prog->len);
945 946 947 948 949 950 951

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
952
	}
953
	return false;
954 955
}

956
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
957 958
{
	struct sock_filter *old_prog;
959
	struct bpf_prog *old_fp;
960
	int err, new_len, old_len = fp->len;
961 962 963 964 965 966 967

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
968
		     sizeof(struct bpf_insn));
969 970 971 972 973 974

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
975
			   GFP_KERNEL | __GFP_NOWARN);
976 977 978 979 980 981
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
982
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
983 984 985 986 987
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
988
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
989 990 991 992 993 994 995 996 997 998 999
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1000
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1001
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1002
	if (err)
1003
		/* 2nd bpf_convert_filter() can fail only if it fails
1004 1005
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1006
		 * by krealloc().
1007 1008 1009
		 */
		goto out_err_free;

1010 1011 1012 1013 1014
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1015

1016 1017 1018 1019 1020 1021
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1022
	__bpf_prog_release(fp);
1023 1024 1025
	return ERR_PTR(err);
}

1026 1027
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1028 1029 1030
{
	int err;

1031
	fp->bpf_func = NULL;
1032
	fp->jited = 0;
1033

1034
	err = bpf_check_classic(fp->insns, fp->len);
1035
	if (err) {
1036
		__bpf_prog_release(fp);
1037
		return ERR_PTR(err);
1038
	}
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1051 1052 1053
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1054
	bpf_jit_compile(fp);
1055 1056 1057 1058

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1059
	if (!fp->jited)
1060
		fp = bpf_migrate_filter(fp);
1061 1062

	return fp;
1063 1064 1065
}

/**
1066
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1067
 *	@pfp: the unattached filter that is created
1068
 *	@fprog: the filter program
1069
 *
R
Randy Dunlap 已提交
1070
 * Create a filter independent of any socket. We first run some
1071 1072 1073 1074
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1075
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1076
{
1077
	unsigned int fsize = bpf_classic_proglen(fprog);
1078
	struct bpf_prog *fp;
1079 1080

	/* Make sure new filter is there and in the right amounts. */
1081
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1082 1083
		return -EINVAL;

1084
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1085 1086
	if (!fp)
		return -ENOMEM;
1087

1088 1089 1090
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1091 1092 1093 1094 1095
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1096

1097
	/* bpf_prepare_filter() already takes care of freeing
1098 1099
	 * memory in case something goes wrong.
	 */
1100
	fp = bpf_prepare_filter(fp, NULL);
1101 1102
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1103 1104 1105 1106

	*pfp = fp;
	return 0;
}
1107
EXPORT_SYMBOL_GPL(bpf_prog_create);
1108

1109 1110 1111 1112 1113
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1114
 *	@save_orig: save classic BPF program
1115 1116 1117 1118 1119 1120
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1121
			      bpf_aux_classic_check_t trans, bool save_orig)
1122 1123 1124
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1125
	int err;
1126 1127

	/* Make sure new filter is there and in the right amounts. */
1128
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1143 1144 1145 1146 1147 1148 1149 1150
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1161
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1162

1163
void bpf_prog_destroy(struct bpf_prog *fp)
1164
{
1165
	__bpf_prog_release(fp);
1166
}
1167
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1168

1169
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

1185 1186
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1187
	rcu_assign_pointer(sk->sk_filter, fp);
1188

1189 1190 1191 1192 1193 1194
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1195 1196 1197 1198 1199 1200 1201 1202
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1203
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1221
{
1222
	unsigned int fsize = bpf_classic_proglen(fprog);
1223
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1224 1225
	int err;

1226
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1227
		return ERR_PTR(-EPERM);
1228

L
Linus Torvalds 已提交
1229
	/* Make sure new filter is there and in the right amounts. */
1230
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1231
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1232

1233
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1234
	if (!prog)
1235
		return ERR_PTR(-ENOMEM);
1236

1237
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1238
		__bpf_prog_free(prog);
1239
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1240 1241
	}

1242
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1243

1244
	err = bpf_prog_store_orig_filter(prog, fprog);
1245
	if (err) {
1246
		__bpf_prog_free(prog);
1247
		return ERR_PTR(-ENOMEM);
1248 1249
	}

1250
	/* bpf_prepare_filter() already takes care of freeing
1251 1252
	 * memory in case something goes wrong.
	 */
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1266
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1267 1268 1269 1270
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1271 1272 1273
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1274
	err = __sk_attach_prog(prog, sk);
1275
	if (err < 0) {
1276
		__bpf_prog_release(prog);
1277
		return err;
1278 1279
	}

1280
	return 0;
L
Linus Torvalds 已提交
1281
}
1282
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1283

1284
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1285
{
1286
	struct bpf_prog *prog = __get_filter(fprog, sk);
1287
	int err;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1303
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1304
		return ERR_PTR(-EPERM);
1305

1306
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1317
	err = __sk_attach_prog(prog, sk);
1318
	if (err < 0) {
1319
		bpf_prog_put(prog);
1320
		return err;
1321 1322 1323 1324 1325
	}

	return 0;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1343 1344 1345 1346 1347 1348 1349 1350
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1351

1352 1353 1354 1355 1356 1357
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1358 1359 1360
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1361
	int err = __bpf_try_make_writable(skb, write_len);
1362

1363
	bpf_compute_data_end(skb);
1364 1365 1366
	return err;
}

1367 1368 1369 1370 1371 1372
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1373 1374 1375 1376 1377 1378
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1379
static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1380 1381
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1382
	unsigned int offset = (unsigned int) r2;
1383 1384 1385 1386
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1387
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1388
		return -EINVAL;
1389
	if (unlikely(offset > 0xffff))
1390
		return -EFAULT;
1391
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1392 1393
		return -EFAULT;

1394
	ptr = skb->data + offset;
1395
	if (flags & BPF_F_RECOMPUTE_CSUM)
1396
		__skb_postpull_rcsum(skb, ptr, len, offset);
1397 1398 1399

	memcpy(ptr, from, len);

1400
	if (flags & BPF_F_RECOMPUTE_CSUM)
1401
		__skb_postpush_rcsum(skb, ptr, len, offset);
1402 1403
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1404

1405 1406 1407
	return 0;
}

1408
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1409 1410 1411 1412 1413 1414 1415
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1416 1417 1418
	.arg5_type	= ARG_ANYTHING,
};

1419 1420 1421
static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
1422
	unsigned int offset = (unsigned int) r2;
1423 1424 1425 1426
	void *to = (void *)(unsigned long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1427
	if (unlikely(offset > 0xffff))
1428
		goto err_clear;
1429 1430 1431

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1432
		goto err_clear;
1433 1434 1435 1436
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1437 1438 1439
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1440 1441
}

1442
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1443 1444 1445 1446 1447
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1448
	.arg3_type	= ARG_PTR_TO_RAW_STACK,
1449 1450 1451
	.arg4_type	= ARG_CONST_STACK_SIZE,
};

1452
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1453 1454
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1455 1456
	unsigned int offset = (unsigned int) r2;
	__sum16 *ptr;
1457

1458 1459
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1460
	if (unlikely(offset > 0xffff || offset & 1))
1461
		return -EFAULT;
1462
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1463 1464
		return -EFAULT;

1465
	ptr = (__sum16 *)(skb->data + offset);
1466
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1467 1468 1469 1470 1471 1472
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1486
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1497
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1498 1499
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1500
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1501
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1502 1503
	unsigned int offset = (unsigned int) r2;
	__sum16 *ptr;
1504

1505 1506
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
			       BPF_F_HDR_FIELD_MASK)))
1507
		return -EINVAL;
1508
	if (unlikely(offset > 0xffff || offset & 1))
1509
		return -EFAULT;
1510
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1511 1512
		return -EFAULT;

1513
	ptr = (__sum16 *)(skb->data + offset);
1514 1515
	if (is_mmzero && !*ptr)
		return 0;
1516

1517
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1518 1519 1520 1521 1522 1523
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1534 1535
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1536 1537 1538
	return 0;
}

1539
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1540 1541 1542 1543 1544 1545 1546 1547
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1548 1549
};

1550 1551
static u64 bpf_csum_diff(u64 r1, u64 from_size, u64 r3, u64 to_size, u64 seed)
{
1552
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	u64 diff_size = from_size + to_size;
	__be32 *from = (__be32 *) (long) r1;
	__be32 *to   = (__be32 *) (long) r3;
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1578
static const struct bpf_func_proto bpf_csum_diff_proto = {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	.func		= bpf_csum_diff,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_STACK,
	.arg2_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg5_type	= ARG_ANYTHING,
};

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1613 1614
static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
1615
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1616 1617
	struct net_device *dev;

1618 1619 1620
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1621 1622 1623 1624
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1625 1626
	skb = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb))
1627 1628
		return -ENOMEM;

1629 1630
	bpf_push_mac_rcsum(skb);

1631 1632
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1633 1634
}

1635
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1636 1637 1638 1639 1640 1641 1642 1643
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1644 1645 1646 1647 1648 1649
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1650

1651 1652 1653 1654
static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1655 1656 1657
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1658 1659
	ri->ifindex = ifindex;
	ri->flags = flags;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1676 1677
	bpf_push_mac_rcsum(skb);

1678 1679
	return ri->flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1680 1681
}

1682
static const struct bpf_func_proto bpf_redirect_proto = {
1683 1684 1685 1686 1687 1688 1689
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1702 1703
static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
1704
	return dst_tclassid((struct sk_buff *) (unsigned long) r1);
1705 1706 1707 1708 1709 1710 1711 1712 1713
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static u64 bpf_get_hash_recalc(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
	return skb_get_hash((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1731 1732 1733 1734
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;
1735
	int ret;
1736 1737 1738 1739 1740

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1741
	bpf_push_mac_rcsum(skb);
1742
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1743 1744
	bpf_pull_mac_rcsum(skb);

1745 1746
	bpf_compute_data_end(skb);
	return ret;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1757
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1758 1759 1760 1761

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1762
	int ret;
1763

1764
	bpf_push_mac_rcsum(skb);
1765
	ret = skb_vlan_pop(skb);
1766 1767
	bpf_pull_mac_rcsum(skb);

1768 1769
	bpf_compute_data_end(skb);
	return ret;
1770 1771 1772 1773 1774 1775 1776 1777
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1778
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
	u32 off = skb->network_header - skb->mac_header;
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

static u64 bpf_skb_change_proto(u64 r1, u64 r2, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 proto = (__force __be16) r2;
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

1976 1977 1978 1979 1980 1981
static u64 bpf_skb_change_type(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u32 pkt_type = r2;

	/* We only allow a restricted subset to be changed for now. */
1982 1983
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
D
Daniel Borkmann 已提交
2012
	return skb->dev->mtu + skb->dev->hard_header_len;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

static u64 bpf_skb_change_tail(u64 r1, u64 r2, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *)(long) r1;
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	u32 new_len = (u32) r2;
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2083 2084 2085 2086 2087 2088
bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
2089 2090
	if (func == bpf_skb_store_bytes)
		return true;
2091 2092
	if (func == bpf_skb_change_proto)
		return true;
2093 2094
	if (func == bpf_skb_change_tail)
		return true;
2095 2096 2097 2098 2099
	if (func == bpf_l3_csum_replace)
		return true;
	if (func == bpf_l4_csum_replace)
		return true;

2100 2101 2102
	return false;
}

2103
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2104
				  unsigned long off, unsigned long len)
2105
{
2106
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

static u64 bpf_skb_event_output(u64 r1, u64 r2, u64 flags, u64 r4,
				u64 meta_size)
{
	struct sk_buff *skb = (struct sk_buff *)(long) r1;
	struct bpf_map *map = (struct bpf_map *)(long) r2;
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
	void *meta = (void *)(long) r4;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_STACK,
	.arg5_type	= ARG_CONST_STACK_SIZE,
};

2144 2145 2146 2147 2148
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2149 2150 2151 2152
static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
2153 2154
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2155 2156
	void *to_orig = to;
	int err;
2157

2158 2159 2160 2161 2162 2163 2164 2165
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2166
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2167
		err = -EINVAL;
2168
		switch (size) {
2169
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2170
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2171
			goto set_compat;
2172 2173 2174 2175 2176
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2177
				goto err_clear;
2178
set_compat:
2179 2180 2181
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2182
			goto err_clear;
2183 2184
		}
	}
2185 2186

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2187 2188 2189
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2190
	if (flags & BPF_F_TUNINFO_IPV6) {
2191 2192
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2193 2194
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2195
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2196
	}
2197 2198

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2199
		memcpy(to_orig, to, size);
2200 2201

	return 0;
2202 2203 2204
err_clear:
	memset(to_orig, 0, size);
	return err;
2205 2206
}

2207
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2208 2209 2210 2211
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2212
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2213 2214 2215 2216
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2217 2218 2219 2220 2221
static u64 bpf_skb_get_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u8 *to = (u8 *) (long) r2;
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2222
	int err;
2223 2224

	if (unlikely(!info ||
2225 2226 2227 2228 2229 2230 2231 2232
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2233 2234

	ip_tunnel_info_opts_get(to, info);
2235 2236
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2237 2238

	return info->options_len;
2239 2240 2241
err_clear:
	memset(to, 0, size);
	return err;
2242 2243 2244 2245 2246 2247 2248
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2249
	.arg2_type	= ARG_PTR_TO_RAW_STACK,
2250 2251 2252
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

2253 2254 2255 2256 2257 2258 2259
static struct metadata_dst __percpu *md_dst;

static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2260
	u8 compat[sizeof(struct bpf_tunnel_key)];
2261 2262
	struct ip_tunnel_info *info;

2263 2264
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2265
		return -EINVAL;
2266 2267
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2268
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2269
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
			from = (struct bpf_tunnel_key *)compat;
			break;
		default:
			return -EINVAL;
		}
	}
2282 2283
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2284
		return -EINVAL;
2285 2286 2287 2288 2289 2290 2291

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2292

2293
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2294 2295 2296
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2297
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2298 2299 2300 2301 2302 2303 2304
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2305 2306
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2307 2308
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2309 2310
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2311
	}
2312 2313 2314 2315

	return 0;
}

2316
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2317 2318 2319 2320 2321 2322 2323 2324 2325
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

2326 2327 2328 2329 2330 2331 2332 2333 2334
static u64 bpf_skb_set_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	u8 *from = (u8 *) (long) r2;
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2335
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2354 2355
{
	if (!md_dst) {
2356 2357
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2358
		 */
2359
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2360
						   GFP_KERNEL);
2361 2362 2363
		if (!md_dst)
			return NULL;
	}
2364 2365 2366 2367 2368 2369 2370 2371 2372

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2373 2374
}

2375
static u64 bpf_skb_under_cgroup(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
{
	struct sk_buff *skb = (struct sk_buff *)(long)r1;
	struct bpf_map *map = (struct bpf_map *)(long)r2;
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;
	u32 i = (u32)r3;

	sk = skb->sk;
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;

	if (unlikely(i >= array->map.max_entries))
		return -E2BIG;

	cgrp = READ_ONCE(array->ptrs[i]);
	if (unlikely(!cgrp))
		return -EAGAIN;

2395
	return sk_under_cgroup_hierarchy(sk, cgrp);
2396 2397
}

2398 2399
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2400 2401 2402 2403 2404 2405 2406
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

static u64 bpf_xdp_event_output(u64 r1, u64 r2, u64 flags, u64 r4,
				u64 meta_size)
{
	struct xdp_buff *xdp = (struct xdp_buff *)(long) r1;
	struct bpf_map *map = (struct bpf_map *)(long) r2;
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
	void *meta = (void *)(long) r4;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, xdp, xdp_size,
				bpf_xdp_copy);
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_STACK,
	.arg5_type	= ARG_CONST_STACK_SIZE,
};

2442 2443
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
2444 2445 2446 2447 2448 2449 2450 2451
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
2452 2453
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
2454
	case BPF_FUNC_get_smp_processor_id:
2455
		return &bpf_get_raw_smp_processor_id_proto;
2456 2457
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
2458 2459
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
2460
	case BPF_FUNC_trace_printk:
2461 2462
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
2463 2464 2465 2466 2467
	default:
		return NULL;
	}
}

2468 2469 2470 2471 2472 2473
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
2474 2475
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
2476 2477
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
2478 2479 2480 2481
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
2482 2483
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
2484 2485
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
2486 2487 2488 2489
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
2490 2491
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
2492 2493
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
2494 2495
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
2496 2497 2498
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
2499 2500 2501 2502 2503
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
2504 2505
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
2506 2507
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
2508 2509
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
2510
	case BPF_FUNC_perf_event_output:
2511
		return &bpf_skb_event_output_proto;
2512 2513
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
2514 2515
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
2516 2517 2518 2519 2520
	default:
		return sk_filter_func_proto(func_id);
	}
}

2521 2522 2523
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
2524 2525 2526 2527 2528 2529
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
	default:
		return sk_filter_func_proto(func_id);
	}
2530 2531
}

2532
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
2533
{
2534 2535
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
2536
	/* The verifier guarantees that size > 0. */
2537 2538
	if (off % size != 0)
		return false;
2539
	if (size != sizeof(__u32))
2540 2541 2542 2543 2544
		return false;

	return true;
}

2545
static bool sk_filter_is_valid_access(int off, int size,
2546 2547
				      enum bpf_access_type type,
				      enum bpf_reg_type *reg_type)
2548
{
2549 2550 2551 2552
	switch (off) {
	case offsetof(struct __sk_buff, tc_classid):
	case offsetof(struct __sk_buff, data):
	case offsetof(struct __sk_buff, data_end):
2553
		return false;
2554
	}
2555

2556 2557 2558
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
2559
		     offsetof(struct __sk_buff, cb[4]):
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
2570 2571
				       enum bpf_access_type type,
				       enum bpf_reg_type *reg_type)
2572 2573 2574 2575 2576
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
2577
		case offsetof(struct __sk_buff, priority):
2578
		case offsetof(struct __sk_buff, cb[0]) ...
2579 2580
		     offsetof(struct __sk_buff, cb[4]):
		case offsetof(struct __sk_buff, tc_classid):
2581 2582 2583 2584 2585
			break;
		default:
			return false;
		}
	}
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	switch (off) {
	case offsetof(struct __sk_buff, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct __sk_buff, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

2596 2597 2598
	return __is_valid_access(off, size, type);
}

2599 2600 2601 2602 2603 2604 2605
static bool __is_valid_xdp_access(int off, int size,
				  enum bpf_access_type type)
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
2606
	if (size != sizeof(__u32))
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
				enum bpf_reg_type *reg_type)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
		*reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct xdp_md, data_end):
		*reg_type = PTR_TO_PACKET_END;
		break;
	}

	return __is_valid_xdp_access(off, size, type);
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

2637 2638 2639 2640
static u32 sk_filter_convert_ctx_access(enum bpf_access_type type, int dst_reg,
					int src_reg, int ctx_off,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog)
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

2652 2653 2654 2655 2656 2657 2658
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

2659 2660 2661 2662 2663 2664 2665
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

2666 2667 2668
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

2669 2670 2671 2672 2673 2674
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
2675 2676
		break;

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

2687
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
2688 2689 2690 2691 2692 2693 2694
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

2695 2696 2697 2698 2699 2700 2701
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

2702
	case offsetof(struct __sk_buff, mark):
2703 2704 2705 2706 2707 2708 2709 2710 2711
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
2712 2713 2714 2715 2716 2717

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
2718 2719 2720 2721 2722 2723 2724 2725

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
2726 2727

	case offsetof(struct __sk_buff, cb[0]) ...
D
Daniel Borkmann 已提交
2728
	     offsetof(struct __sk_buff, cb[4]):
2729 2730
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

2731
		prog->cb_access = 1;
2732 2733 2734 2735 2736 2737 2738 2739 2740
		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

2741 2742 2743 2744
	case offsetof(struct __sk_buff, tc_classid):
		ctx_off -= offsetof(struct __sk_buff, tc_classid);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
2745 2746 2747 2748
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
2749 2750
		break;

2751
	case offsetof(struct __sk_buff, data):
2752
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
2753 2754 2755 2756 2757 2758 2759 2760
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
		ctx_off -= offsetof(struct __sk_buff, data_end);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct bpf_skb_data_end, data_end);
2761 2762
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), dst_reg, src_reg,
				      ctx_off);
2763 2764
		break;

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
2783 2784 2785
	}

	return insn - insn_buf;
2786 2787
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, int dst_reg,
					 int src_reg, int ctx_off,
					 struct bpf_insn *insn_buf,
					 struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;
	default:
		return sk_filter_convert_ctx_access(type, dst_reg, src_reg,
						    ctx_off, insn_buf, prog);
	}

	return insn - insn_buf;
}

2813 2814 2815 2816 2817 2818 2819 2820 2821
static u32 xdp_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				  int src_reg, int ctx_off,
				  struct bpf_insn *insn_buf,
				  struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct xdp_md, data):
2822
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
2823 2824 2825 2826
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
2827
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
2828 2829 2830 2831 2832 2833 2834 2835
				      dst_reg, src_reg,
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

2836
static const struct bpf_verifier_ops sk_filter_ops = {
2837 2838
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
2839
	.convert_ctx_access	= sk_filter_convert_ctx_access,
2840 2841
};

2842
static const struct bpf_verifier_ops tc_cls_act_ops = {
2843 2844
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
2845
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
2846 2847
};

2848 2849 2850 2851 2852 2853
static const struct bpf_verifier_ops xdp_ops = {
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
};

2854
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
2855 2856
	.ops	= &sk_filter_ops,
	.type	= BPF_PROG_TYPE_SOCKET_FILTER,
2857 2858
};

2859
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
2860 2861
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_CLS,
2862 2863
};

2864
static struct bpf_prog_type_list sched_act_type __read_mostly = {
2865 2866
	.ops	= &tc_cls_act_ops,
	.type	= BPF_PROG_TYPE_SCHED_ACT,
2867 2868
};

2869 2870 2871 2872 2873
static struct bpf_prog_type_list xdp_type __read_mostly = {
	.ops	= &xdp_ops,
	.type	= BPF_PROG_TYPE_XDP,
};

2874
static int __init register_sk_filter_ops(void)
2875
{
2876
	bpf_register_prog_type(&sk_filter_type);
2877
	bpf_register_prog_type(&sched_cls_type);
2878
	bpf_register_prog_type(&sched_act_type);
2879
	bpf_register_prog_type(&xdp_type);
2880

2881 2882
	return 0;
}
2883 2884
late_initcall(register_sk_filter_ops);

2885
int sk_detach_filter(struct sock *sk)
2886 2887 2888 2889
{
	int ret = -ENOENT;
	struct sk_filter *filter;

2890 2891 2892
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

2893 2894
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
2895
	if (filter) {
2896
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
2897
		sk_filter_uncharge(sk, filter);
2898 2899
		ret = 0;
	}
2900

2901 2902
	return ret;
}
2903
EXPORT_SYMBOL_GPL(sk_detach_filter);
2904

2905 2906
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
2907
{
2908
	struct sock_fprog_kern *fprog;
2909
	struct sk_filter *filter;
2910
	int ret = 0;
2911 2912 2913

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
2914
					   lockdep_sock_is_held(sk));
2915 2916
	if (!filter)
		goto out;
2917 2918

	/* We're copying the filter that has been originally attached,
2919 2920
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
2921
	 */
2922
	ret = -EACCES;
2923
	fprog = filter->prog->orig_prog;
2924 2925
	if (!fprog)
		goto out;
2926 2927

	ret = fprog->len;
2928
	if (!len)
2929
		/* User space only enquires number of filter blocks. */
2930
		goto out;
2931

2932
	ret = -EINVAL;
2933
	if (len < fprog->len)
2934 2935 2936
		goto out;

	ret = -EFAULT;
2937
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
2938
		goto out;
2939

2940 2941 2942 2943
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
2944 2945 2946 2947
out:
	release_sock(sk);
	return ret;
}