filter.c 104.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
L
Linus Torvalds 已提交
36 37
#include <net/ip.h>
#include <net/protocol.h>
38
#include <net/netlink.h>
L
Linus Torvalds 已提交
39 40
#include <linux/skbuff.h>
#include <net/sock.h>
41
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
42 43
#include <linux/errno.h>
#include <linux/timer.h>
44
#include <linux/uaccess.h>
45
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
46
#include <linux/filter.h>
47
#include <linux/ratelimit.h>
48
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
49
#include <linux/if_vlan.h>
50
#include <linux/bpf.h>
51
#include <net/sch_generic.h>
52
#include <net/cls_cgroup.h>
53
#include <net/dst_metadata.h>
54
#include <net/dst.h>
55
#include <net/sock_reuseport.h>
56
#include <net/busy_poll.h>
57
#include <net/tcp.h>
58
#include <linux/bpf_trace.h>
L
Linus Torvalds 已提交
59

S
Stephen Hemminger 已提交
60
/**
61
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
62 63
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
64
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
65
 *
66 67
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
68
 * than pkt_len we keep whole skb->data. This is the socket level
69
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
70 71 72
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
73
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
74 75 76 77
{
	int err;
	struct sk_filter *filter;

78 79 80 81 82
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
83 84
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
85
		return -ENOMEM;
86
	}
87 88 89 90
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
91 92 93 94
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

95 96
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
97
	if (filter) {
98 99 100 101 102 103
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
104
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
105
	}
106
	rcu_read_unlock();
S
Stephen Hemminger 已提交
107 108 109

	return err;
}
110
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
111

112
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
113
{
114
	return skb_get_poff(skb);
115 116
}

117
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
118 119 120 121 122 123
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

124 125 126
	if (skb->len < sizeof(struct nlattr))
		return 0;

127
	if (a > skb->len - sizeof(struct nlattr))
128 129
		return 0;

130
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
131 132 133 134 135 136
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

137
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
138 139 140 141 142 143
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

144 145 146
	if (skb->len < sizeof(struct nlattr))
		return 0;

147
	if (a > skb->len - sizeof(struct nlattr))
148 149
		return 0;

150 151
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
152 153
		return 0;

154
	nla = nla_find_nested(nla, x);
155 156 157 158 159 160
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

161
BPF_CALL_0(__get_raw_cpu_id)
162 163 164 165
{
	return raw_smp_processor_id();
}

166 167 168 169 170 171
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
218 219 220 221 222
	}

	return insn - insn_buf;
}

223
static bool convert_bpf_extensions(struct sock_filter *fp,
224
				   struct bpf_insn **insnp)
225
{
226
	struct bpf_insn *insn = *insnp;
227
	u32 cnt;
228 229 230

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
231 232 233 234 235 236 237
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
238 239 240
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
241 242
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
243 244 245 246 247 248
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
249

250
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
251 252 253 254 255 256 257 258 259 260 261
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
262 263 264
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
265 266
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
267 268 269 270 271
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

272 273
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
274 275 276
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
277 278
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
279 280 281
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
282 283 284 285
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
286

287 288 289 290
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
291 292
		break;

293 294 295 296 297 298 299 300 301 302
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

303 304 305 306
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
307
	case SKF_AD_OFF + SKF_AD_RANDOM:
308
		/* arg1 = CTX */
309
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
310
		/* arg2 = A */
311
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
312
		/* arg3 = X */
313
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
314
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
315 316
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
317
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
318 319
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
320
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
321 322
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
323
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
324 325
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
326
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
327
			break;
C
Chema Gonzalez 已提交
328
		case SKF_AD_OFF + SKF_AD_RANDOM:
329 330
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
331
			break;
332 333 334 335
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
336 337
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
354
 *	bpf_convert_filter - convert filter program
355 356
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
357
 *	@new_prog: allocated 'struct bpf_prog' or NULL
358 359
 *	@new_len: pointer to store length of converted program
 *
360 361
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
362 363 364
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
365
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
366 367 368
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
369
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
370
 */
371
static int bpf_convert_filter(struct sock_filter *prog, int len,
372
			      struct bpf_prog *new_prog, int *new_len)
373
{
374 375
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
376 377 378 379 380
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
381
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
382

383
	if (len <= 0 || len > BPF_MAXINSNS)
384 385 386
		return -EINVAL;

	if (new_prog) {
387
		first_insn = new_prog->insnsi;
388 389
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
390 391 392 393 394
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
395
	new_insn = first_insn;
396 397
	fp = prog;

398
	/* Classic BPF related prologue emission. */
399
	if (new_prog) {
400 401 402 403 404 405 406 407 408 409 410 411 412 413
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
414 415

	for (i = 0; i < len; fp++, i++) {
416 417
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
418 419

		if (addrs)
420
			addrs[i] = new_insn - first_insn;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

460
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
461 462
			break;

463 464 465 466 467 468 469
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
470 471 472 473 474 475 476 477
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

478 479 480 481
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
497
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
498

499 500
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
501 502
				bpf_src = BPF_X;
			} else {
503
				insn->dst_reg = BPF_REG_A;
504 505
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
506
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
507
			}
508 509 510 511 512

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
513
				BPF_EMIT_JMP;
514
				break;
L
Linus Torvalds 已提交
515
			}
516 517 518 519 520

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
521
				BPF_EMIT_JMP;
522
				break;
523
			}
524 525 526 527

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
528
			BPF_EMIT_JMP;
529 530 531 532
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
533
			BPF_EMIT_JMP;
534 535 536 537
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
538
			/* tmp = A */
539
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
540
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
541
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
542
			/* A &= 0xf */
543
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
544
			/* A <<= 2 */
545
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
546
			/* X = A */
547
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
548
			/* A = tmp */
549
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
550 551
			break;

552 553 554
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
555 556
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
557 558 559
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
560
			*insn = BPF_EXIT_INSN();
561 562 563 564 565
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
566
			stack_off = fp->k * 4  + 4;
567 568
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
569 570 571 572 573 574 575
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
576 577 578 579 580
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
581
			stack_off = fp->k * 4  + 4;
582 583
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
584
					    -stack_off);
585 586 587 588 589
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
590 591
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
592 593 594 595
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
596
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
597 598 599 600
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
601
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
602 603 604 605 606
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
607 608 609
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
610 611
			break;

612
		/* Access seccomp_data fields. */
613
		case BPF_LDX | BPF_ABS | BPF_W:
614 615
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
616 617
			break;

S
Stephen Hemminger 已提交
618
		/* Unknown instruction. */
L
Linus Torvalds 已提交
619
		default:
620
			goto err;
L
Linus Torvalds 已提交
621
		}
622 623 624 625 626 627

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
628 629
	}

630 631
	if (!new_prog) {
		/* Only calculating new length. */
632
		*new_len = new_insn - first_insn;
633 634 635 636
		return 0;
	}

	pass++;
637 638
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
639 640 641 642 643 644 645
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
646
	return 0;
647 648 649
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
650 651
}

652 653
/* Security:
 *
654
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
655
 * __bpf_prog_run(), we check that filter loaded by user never try to read
656
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
657
 * a malicious user doesn't try to abuse us.
658
 */
659
static int check_load_and_stores(const struct sock_filter *filter, int flen)
660
{
661
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
662 663 664
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
665

666
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
667 668
	if (!masks)
		return -ENOMEM;
669

670 671 672 673 674 675
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
676 677
		case BPF_ST:
		case BPF_STX:
678 679
			memvalid |= (1 << filter[pc].k);
			break;
680 681
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
682 683 684 685 686
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
687 688
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
689 690 691
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
692 693 694 695 696 697 698 699 700
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
701 702 703 704 705 706 707 708 709 710 711
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

778 779 780 781 782 783 784 785 786 787 788
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
789
/**
790
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
791 792 793 794 795
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
796 797
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
798
 *
799 800 801
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
802
 */
803 804
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
805
{
806
	bool anc_found;
807
	int pc;
L
Linus Torvalds 已提交
808

809
	/* Check the filter code now */
L
Linus Torvalds 已提交
810
	for (pc = 0; pc < flen; pc++) {
811
		const struct sock_filter *ftest = &filter[pc];
812

813 814
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
815
			return -EINVAL;
816

817
		/* Some instructions need special checks */
818 819 820 821
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
822 823 824
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
825 826 827 828 829
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
830 831 832 833 834
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
835 836 837
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
838 839
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
840 841 842
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
843
			if (ftest->k >= (unsigned int)(flen - pc - 1))
844
				return -EINVAL;
845
			break;
846 847 848 849 850 851 852 853 854
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
855
			if (pc + ftest->jt + 1 >= flen ||
856 857
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
858
			break;
859 860 861
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
862
			anc_found = false;
863 864 865
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
866 867
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
868 869
		}
	}
870

871
	/* Last instruction must be a RET code */
872
	switch (filter[flen - 1].code) {
873 874
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
875
		return check_load_and_stores(filter, flen);
876
	}
877

878
	return -EINVAL;
L
Linus Torvalds 已提交
879 880
}

881 882
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
883
{
884
	unsigned int fsize = bpf_classic_proglen(fprog);
885 886 887 888 889 890 891 892
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
893 894 895

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
896 897 898 899 900 901 902 903
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

904
static void bpf_release_orig_filter(struct bpf_prog *fp)
905 906 907 908 909 910 911 912 913
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

914 915
static void __bpf_prog_release(struct bpf_prog *prog)
{
916
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
917 918 919 920 921
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
922 923
}

924 925
static void __sk_filter_release(struct sk_filter *fp)
{
926 927
	__bpf_prog_release(fp->prog);
	kfree(fp);
928 929
}

930
/**
E
Eric Dumazet 已提交
931
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
932 933
 *	@rcu: rcu_head that contains the sk_filter to free
 */
934
static void sk_filter_release_rcu(struct rcu_head *rcu)
935 936 937
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

938
	__sk_filter_release(fp);
939
}
940 941 942 943 944 945 946 947 948

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
949
	if (refcount_dec_and_test(&fp->refcnt))
950 951 952 953 954
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
955
	u32 filter_size = bpf_prog_size(fp->prog->len);
956

957 958
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
959
}
960

961 962 963
/* try to charge the socket memory if there is space available
 * return true on success
 */
964
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
965
{
966
	u32 filter_size = bpf_prog_size(fp->prog->len);
967 968 969 970 971 972

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
973
	}
974
	return false;
975 976
}

977 978 979 980 981 982 983 984
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
	bool ret = __sk_filter_charge(sk, fp);
	if (ret)
		refcount_inc(&fp->refcnt);
	return ret;
}

985
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
986 987
{
	struct sock_filter *old_prog;
988
	struct bpf_prog *old_fp;
989
	int err, new_len, old_len = fp->len;
990 991 992 993 994 995 996

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
997
		     sizeof(struct bpf_insn));
998 999 1000 1001 1002 1003

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1004
			   GFP_KERNEL | __GFP_NOWARN);
1005 1006 1007 1008 1009 1010
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1011
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1012 1013 1014 1015 1016
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1017
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1029
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1030
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1031
	if (err)
1032
		/* 2nd bpf_convert_filter() can fail only if it fails
1033 1034
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1035
		 * by krealloc().
1036 1037 1038
		 */
		goto out_err_free;

1039 1040 1041 1042 1043
	/* We are guaranteed to never error here with cBPF to eBPF
	 * transitions, since there's no issue with type compatibility
	 * checks on program arrays.
	 */
	fp = bpf_prog_select_runtime(fp, &err);
1044

1045 1046 1047 1048 1049 1050
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1051
	__bpf_prog_release(fp);
1052 1053 1054
	return ERR_PTR(err);
}

1055 1056
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1057 1058 1059
{
	int err;

1060
	fp->bpf_func = NULL;
1061
	fp->jited = 0;
1062

1063
	err = bpf_check_classic(fp->insns, fp->len);
1064
	if (err) {
1065
		__bpf_prog_release(fp);
1066
		return ERR_PTR(err);
1067
	}
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1080 1081 1082
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1083
	bpf_jit_compile(fp);
1084 1085 1086 1087

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1088
	if (!fp->jited)
1089
		fp = bpf_migrate_filter(fp);
1090 1091

	return fp;
1092 1093 1094
}

/**
1095
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1096
 *	@pfp: the unattached filter that is created
1097
 *	@fprog: the filter program
1098
 *
R
Randy Dunlap 已提交
1099
 * Create a filter independent of any socket. We first run some
1100 1101 1102 1103
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1104
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1105
{
1106
	unsigned int fsize = bpf_classic_proglen(fprog);
1107
	struct bpf_prog *fp;
1108 1109

	/* Make sure new filter is there and in the right amounts. */
1110
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1111 1112
		return -EINVAL;

1113
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1114 1115
	if (!fp)
		return -ENOMEM;
1116

1117 1118 1119
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1120 1121 1122 1123 1124
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1125

1126
	/* bpf_prepare_filter() already takes care of freeing
1127 1128
	 * memory in case something goes wrong.
	 */
1129
	fp = bpf_prepare_filter(fp, NULL);
1130 1131
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1132 1133 1134 1135

	*pfp = fp;
	return 0;
}
1136
EXPORT_SYMBOL_GPL(bpf_prog_create);
1137

1138 1139 1140 1141 1142
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1143
 *	@save_orig: save classic BPF program
1144 1145 1146 1147 1148 1149
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1150
			      bpf_aux_classic_check_t trans, bool save_orig)
1151 1152 1153
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1154
	int err;
1155 1156

	/* Make sure new filter is there and in the right amounts. */
1157
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1172 1173 1174 1175 1176 1177 1178 1179
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1190
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1191

1192
void bpf_prog_destroy(struct bpf_prog *fp)
1193
{
1194
	__bpf_prog_release(fp);
1195
}
1196
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1197

1198
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1208
	if (!__sk_filter_charge(sk, fp)) {
1209 1210 1211
		kfree(fp);
		return -ENOMEM;
	}
1212
	refcount_set(&fp->refcnt, 1);
1213

1214 1215
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1216
	rcu_assign_pointer(sk->sk_filter, fp);
1217

1218 1219 1220 1221 1222 1223
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1224 1225 1226 1227 1228 1229 1230 1231
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1232
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1250
{
1251
	unsigned int fsize = bpf_classic_proglen(fprog);
1252
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1253 1254
	int err;

1255
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1256
		return ERR_PTR(-EPERM);
1257

L
Linus Torvalds 已提交
1258
	/* Make sure new filter is there and in the right amounts. */
1259
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1260
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1261

1262
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1263
	if (!prog)
1264
		return ERR_PTR(-ENOMEM);
1265

1266
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1267
		__bpf_prog_free(prog);
1268
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1269 1270
	}

1271
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1272

1273
	err = bpf_prog_store_orig_filter(prog, fprog);
1274
	if (err) {
1275
		__bpf_prog_free(prog);
1276
		return ERR_PTR(-ENOMEM);
1277 1278
	}

1279
	/* bpf_prepare_filter() already takes care of freeing
1280 1281
	 * memory in case something goes wrong.
	 */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1295
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1296 1297 1298 1299
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1300 1301 1302
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1303
	err = __sk_attach_prog(prog, sk);
1304
	if (err < 0) {
1305
		__bpf_prog_release(prog);
1306
		return err;
1307 1308
	}

1309
	return 0;
L
Linus Torvalds 已提交
1310
}
1311
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1312

1313
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1314
{
1315
	struct bpf_prog *prog = __get_filter(fprog, sk);
1316
	int err;
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1332
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1333
		return ERR_PTR(-EPERM);
1334

1335
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1346
	err = __sk_attach_prog(prog, sk);
1347
	if (err < 0) {
1348
		bpf_prog_put(prog);
1349
		return err;
1350 1351 1352 1353 1354
	}

	return 0;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1372 1373 1374 1375 1376 1377 1378 1379
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1380

1381 1382 1383 1384 1385 1386
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1387 1388 1389
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1390
	int err = __bpf_try_make_writable(skb, write_len);
1391

1392
	bpf_compute_data_end(skb);
1393 1394 1395
	return err;
}

1396 1397 1398 1399 1400
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1401 1402 1403 1404 1405 1406
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1407 1408 1409 1410 1411 1412
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1413 1414
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1415 1416 1417
{
	void *ptr;

1418
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1419
		return -EINVAL;
1420
	if (unlikely(offset > 0xffff))
1421
		return -EFAULT;
1422
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1423 1424
		return -EFAULT;

1425
	ptr = skb->data + offset;
1426
	if (flags & BPF_F_RECOMPUTE_CSUM)
1427
		__skb_postpull_rcsum(skb, ptr, len, offset);
1428 1429 1430

	memcpy(ptr, from, len);

1431
	if (flags & BPF_F_RECOMPUTE_CSUM)
1432
		__skb_postpush_rcsum(skb, ptr, len, offset);
1433 1434
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1435

1436 1437 1438
	return 0;
}

1439
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1440 1441 1442 1443 1444
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1445 1446
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1447 1448 1449
	.arg5_type	= ARG_ANYTHING,
};

1450 1451
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1452 1453 1454
{
	void *ptr;

1455
	if (unlikely(offset > 0xffff))
1456
		goto err_clear;
1457 1458 1459

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1460
		goto err_clear;
1461 1462 1463 1464
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1465 1466 1467
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1468 1469
}

1470
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1471 1472 1473 1474 1475
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1476 1477
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1478 1479
};

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1502 1503
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1504
{
1505
	__sum16 *ptr;
1506

1507 1508
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1509
	if (unlikely(offset > 0xffff || offset & 1))
1510
		return -EFAULT;
1511
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1512 1513
		return -EFAULT;

1514
	ptr = (__sum16 *)(skb->data + offset);
1515
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1516 1517 1518 1519 1520 1521
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1535
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1546 1547
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1548
{
1549
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1550
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1551
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1552
	__sum16 *ptr;
1553

1554 1555
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1556
		return -EINVAL;
1557
	if (unlikely(offset > 0xffff || offset & 1))
1558
		return -EFAULT;
1559
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1560 1561
		return -EFAULT;

1562
	ptr = (__sum16 *)(skb->data + offset);
1563
	if (is_mmzero && !do_mforce && !*ptr)
1564
		return 0;
1565

1566
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1567 1568 1569 1570 1571 1572
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1583 1584
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1585 1586 1587
	return 0;
}

1588
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1589 1590 1591 1592 1593 1594 1595 1596
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1597 1598
};

1599 1600
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1601
{
1602
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1603
	u32 diff_size = from_size + to_size;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1626
static const struct bpf_func_proto bpf_csum_diff_proto = {
1627 1628
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1629
	.pkt_access	= true,
1630
	.ret_type	= RET_INTEGER,
1631 1632 1633 1634
	.arg1_type	= ARG_PTR_TO_MEM,
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1635 1636 1637
	.arg5_type	= ARG_ANYTHING,
};

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1658 1659 1660 1661 1662
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1719 1720 1721 1722 1723 1724
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1725 1726 1727 1728 1729 1730 1731 1732
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1733
	if (dev_is_mac_header_xmit(dev))
1734
		return __bpf_redirect_common(skb, dev, flags);
1735 1736
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1737 1738
}

1739
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1740 1741
{
	struct net_device *dev;
1742 1743
	struct sk_buff *clone;
	int ret;
1744

1745 1746 1747
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1748 1749 1750 1751
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1752 1753
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1754 1755
		return -ENOMEM;

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1767
	return __bpf_redirect(clone, dev, flags);
1768 1769
}

1770
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1771 1772 1773 1774 1775 1776 1777 1778
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1779 1780 1781
struct redirect_info {
	u32 ifindex;
	u32 flags;
1782
	struct bpf_map *map;
1783
	struct bpf_map *map_to_flush;
1784 1785 1786
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1787

1788
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1789 1790 1791
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1792 1793 1794
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1795 1796
	ri->ifindex = ifindex;
	ri->flags = flags;
1797
	ri->map = NULL;
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1814
	return __bpf_redirect(skb, dev, ri->flags);
1815 1816
}

1817
static const struct bpf_func_proto bpf_redirect_proto = {
1818 1819 1820 1821 1822 1823 1824
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
BPF_CALL_3(bpf_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	ri->map = map;

	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_redirect_map_proto = {
	.func           = bpf_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1848
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1849
{
1850
	return task_get_classid(skb);
1851 1852 1853 1854 1855 1856 1857 1858 1859
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1860
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1861
{
1862
	return dst_tclassid(skb);
1863 1864 1865 1866 1867 1868 1869 1870 1871
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1872
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1873 1874 1875 1876 1877 1878
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
1879
	return skb_get_hash(skb);
1880 1881 1882 1883 1884 1885 1886 1887 1888
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1923 1924
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
1925
{
1926
	int ret;
1927 1928 1929 1930 1931

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

1932
	bpf_push_mac_rcsum(skb);
1933
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1934 1935
	bpf_pull_mac_rcsum(skb);

1936 1937
	bpf_compute_data_end(skb);
	return ret;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1948
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1949

1950
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1951
{
1952
	int ret;
1953

1954
	bpf_push_mac_rcsum(skb);
1955
	ret = skb_vlan_pop(skb);
1956 1957
	bpf_pull_mac_rcsum(skb);

1958 1959
	bpf_compute_data_end(skb);
	return ret;
1960 1961 1962 1963 1964 1965 1966 1967
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1968
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2042
	u32 off = skb_mac_header_len(skb);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
		 * be changed into SKB_GSO_TCPV6.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2078
	u32 off = skb_mac_header_len(skb);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
		 * be changed into SKB_GSO_TCPV4.
		 */
		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
		}

		/* Due to IPv4 header, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2126 2127
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2165
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2166 2167
{
	/* We only allow a restricted subset to be changed for now. */
2168 2169
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* Due to header grow, MSS needs to be downgraded. */
		skb_shinfo(skb)->gso_size -= len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
		/* Due to header shrink, MSS can be upgraded. */
		skb_shinfo(skb)->gso_size += len_diff;
		/* Header must be checked, and gso_segs recomputed. */
		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
		skb_shinfo(skb)->gso_segs = 0;
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
	return skb->dev->mtu + skb->dev->hard_header_len;
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

	bpf_compute_data_end(skb);
	return 0;
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2330 2331
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

	bpf_compute_data_end(skb);
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

	bpf_compute_data_end(skb);
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
	void *data = xdp->data + offset;

	if (unlikely(data < xdp->data_hard_start ||
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2442 2443 2444 2445
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
2446
{
2447 2448 2449 2450 2451
	int err;

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		bpf_warn_invalid_xdp_redirect(dev->ifindex);
		return -EOPNOTSUPP;
2452
	}
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
	if (err)
		return err;

	if (map)
		__dev_map_insert_ctx(map, index);
	else
		dev->netdev_ops->ndo_xdp_flush(dev);

	return err;
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
void xdp_do_flush_map(void)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct bpf_map *map = ri->map_to_flush;

	ri->map = NULL;
	ri->map_to_flush = NULL;

	if (map)
		__dev_map_flush(map);
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

2479 2480 2481 2482 2483
int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
			struct bpf_prog *xdp_prog)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct bpf_map *map = ri->map;
2484
	u32 index = ri->ifindex;
2485 2486 2487 2488 2489 2490
	struct net_device *fwd;
	int err = -EINVAL;

	ri->ifindex = 0;
	ri->map = NULL;

2491
	fwd = __dev_map_lookup_elem(map, index);
2492 2493 2494
	if (!fwd)
		goto out;

2495 2496 2497 2498 2499 2500 2501
	if (ri->map_to_flush && (ri->map_to_flush != map))
		xdp_do_flush_map();

	err = __bpf_tx_xdp(fwd, map, xdp, index);
	if (likely(!err))
		ri->map_to_flush = map;

2502
out:
2503
	trace_xdp_redirect(dev, fwd, xdp_prog, XDP_REDIRECT);
2504 2505 2506
	return err;
}

2507 2508
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
2509 2510
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2511
	struct net_device *fwd;
2512

2513 2514 2515
	if (ri->map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog);

2516
	fwd = dev_get_by_index_rcu(dev_net(dev), ri->ifindex);
2517
	ri->ifindex = 0;
2518
	ri->map = NULL;
2519
	if (unlikely(!fwd)) {
2520 2521 2522 2523
		bpf_warn_invalid_xdp_redirect(ri->ifindex);
		return -EINVAL;
	}

2524 2525
	trace_xdp_redirect(dev, fwd, xdp_prog, XDP_REDIRECT);

2526
	return __bpf_tx_xdp(fwd, NULL, xdp, 0);
2527 2528 2529
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	unsigned int len;

	dev = dev_get_by_index_rcu(dev_net(dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		bpf_warn_invalid_xdp_redirect(ri->ifindex);
		goto err;
	}

	if (unlikely(!(dev->flags & IFF_UP)))
		goto err;

	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
	if (skb->len > len)
		goto err;

	skb->dev = dev;
	return 0;
err:
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

2576
bool bpf_helper_changes_pkt_data(void *func)
2577
{
2578 2579 2580 2581
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
2582
	    func == bpf_skb_change_head ||
2583
	    func == bpf_skb_change_tail ||
2584
	    func == bpf_skb_adjust_room ||
2585
	    func == bpf_skb_pull_data ||
2586
	    func == bpf_clone_redirect ||
2587
	    func == bpf_l3_csum_replace ||
2588 2589
	    func == bpf_l4_csum_replace ||
	    func == bpf_xdp_adjust_head)
2590 2591
		return true;

2592 2593 2594
	return false;
}

2595
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2596
				  unsigned long off, unsigned long len)
2597
{
2598
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2599 2600 2601 2602 2603 2604 2605 2606 2607

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

2608 2609
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2629 2630
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2631 2632
};

2633 2634 2635 2636 2637
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

2638 2639
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
2640
{
2641 2642
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
2643 2644
	void *to_orig = to;
	int err;
2645

2646 2647 2648 2649 2650 2651 2652 2653
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
2654
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2655
		err = -EINVAL;
2656
		switch (size) {
2657
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2658
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2659
			goto set_compat;
2660 2661 2662 2663 2664
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
2665
				goto err_clear;
2666
set_compat:
2667 2668 2669
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
2670
			goto err_clear;
2671 2672
		}
	}
2673 2674

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2675 2676 2677
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

2678
	if (flags & BPF_F_TUNINFO_IPV6) {
2679 2680
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
2681 2682
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
2683
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2684
	}
2685 2686

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2687
		memcpy(to_orig, to, size);
2688 2689

	return 0;
2690 2691 2692
err_clear:
	memset(to_orig, 0, size);
	return err;
2693 2694
}

2695
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2696 2697 2698 2699
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2700 2701
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2702 2703 2704
	.arg4_type	= ARG_ANYTHING,
};

2705
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2706 2707
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2708
	int err;
2709 2710

	if (unlikely(!info ||
2711 2712 2713 2714 2715 2716 2717 2718
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
2719 2720

	ip_tunnel_info_opts_get(to, info);
2721 2722
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
2723 2724

	return info->options_len;
2725 2726 2727
err_clear:
	memset(to, 0, size);
	return err;
2728 2729 2730 2731 2732 2733 2734
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2735 2736
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2737 2738
};

2739 2740
static struct metadata_dst __percpu *md_dst;

2741 2742
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2743 2744
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
2745
	u8 compat[sizeof(struct bpf_tunnel_key)];
2746 2747
	struct ip_tunnel_info *info;

2748 2749
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
			       BPF_F_DONT_FRAGMENT)))
2750
		return -EINVAL;
2751 2752
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
2753
		case offsetof(struct bpf_tunnel_key, tunnel_label):
2754
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2755 2756 2757 2758 2759 2760
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
2761
			from = (const struct bpf_tunnel_key *) compat;
2762 2763 2764 2765 2766
			break;
		default:
			return -EINVAL;
		}
	}
2767 2768
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
2769
		return -EINVAL;
2770 2771 2772 2773 2774 2775 2776

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
2777

2778
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2779 2780 2781
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;

2782
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2783 2784 2785 2786 2787 2788 2789
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
2790 2791
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
2792 2793
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2794 2795
		if (flags & BPF_F_ZERO_CSUM_TX)
			info->key.tun_flags &= ~TUNNEL_CSUM;
2796
	}
2797 2798 2799 2800

	return 0;
}

2801
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2802 2803 2804 2805
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2806 2807
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2808 2809 2810
	.arg4_type	= ARG_ANYTHING,
};

2811 2812
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
2813 2814 2815 2816 2817 2818
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
2819
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
2832 2833
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
2834 2835 2836 2837
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2838 2839
{
	if (!md_dst) {
2840 2841
		/* Race is not possible, since it's called from verifier
		 * that is holding verifier mutex.
2842
		 */
2843
		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2844
						   METADATA_IP_TUNNEL,
2845
						   GFP_KERNEL);
2846 2847 2848
		if (!md_dst)
			return NULL;
	}
2849 2850 2851 2852 2853 2854 2855 2856 2857

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
2858 2859
}

2860 2861
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
2862 2863 2864 2865 2866
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

2867
	sk = skb_to_full_sk(skb);
2868 2869
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
2870
	if (unlikely(idx >= array->map.max_entries))
2871 2872
		return -E2BIG;

2873
	cgrp = READ_ONCE(array->ptrs[idx]);
2874 2875 2876
	if (unlikely(!cgrp))
		return -EAGAIN;

2877
	return sk_under_cgroup_hierarchy(sk, cgrp);
2878 2879
}

2880 2881
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
2882 2883 2884 2885 2886 2887 2888
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

2889 2890 2891 2892 2893 2894 2895
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

2896 2897
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
2898 2899 2900 2901 2902 2903 2904 2905
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
2906 2907
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
2908 2909 2910 2911 2912 2913 2914 2915 2916
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
2917 2918
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
2919 2920
};

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
2995
#ifdef CONFIG_INET
2996 2997
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
			ret = tcp_set_congestion_control(sk, name, false);
			if (!ret && bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
				/* replacing an existing ca */
				tcp_reinit_congestion_control(sk,
					inet_csk(sk)->icsk_ca_ops);
		} else {
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
3024 3025 3026 3027 3028 3029 3030
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
3031
				break;
3032 3033 3034
			default:
				ret = -EINVAL;
			}
3035
		}
3036
		ret = -EINVAL;
3037
#endif
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3055
static const struct bpf_func_proto *
3056
bpf_base_func_proto(enum bpf_func_id func_id)
3057 3058 3059 3060 3061 3062 3063 3064
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
3065 3066
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
3067
	case BPF_FUNC_get_smp_processor_id:
3068
		return &bpf_get_raw_smp_processor_id_proto;
3069 3070
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
3071 3072
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
3073 3074
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
3075
	case BPF_FUNC_trace_printk:
3076 3077
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
3078 3079 3080 3081 3082
	default:
		return NULL;
	}
}

3083 3084 3085 3086 3087 3088
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3089 3090
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3091 3092
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3093 3094 3095 3096 3097
	default:
		return bpf_base_func_proto(func_id);
	}
}

3098 3099 3100 3101 3102 3103
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
3104 3105
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3106 3107
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
3108 3109
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
3110 3111
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
3112 3113 3114 3115
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
3116 3117
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
3118 3119
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
3120 3121 3122 3123
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
3124 3125
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
3126 3127
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
3128 3129
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
3130 3131
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
3132 3133 3134
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
3135 3136 3137 3138 3139
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
3140 3141
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
3142 3143
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
3144 3145
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
3146 3147
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
3148 3149
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
3150
	case BPF_FUNC_perf_event_output:
3151
		return &bpf_skb_event_output_proto;
3152 3153
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3154 3155
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
3156 3157
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3158 3159
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3160
	default:
3161
		return bpf_base_func_proto(func_id);
3162 3163 3164
	}
}

3165 3166 3167
static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)
{
3168 3169 3170
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
3171 3172
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3173 3174
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
3175 3176
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
3177 3178
	case BPF_FUNC_redirect_map:
		return &bpf_redirect_map_proto;
3179
	default:
3180
		return bpf_base_func_proto(func_id);
3181
	}
3182 3183
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
3207
		return bpf_base_func_proto(func_id);
3208 3209 3210
	}
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
static const struct bpf_func_proto *
	sock_ops_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
		return lwt_inout_func_proto(func_id);
	}
}

3257 3258
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
				    struct bpf_insn_access_aux *info)
3259
{
3260
	const int size_default = sizeof(__u32);
3261

3262 3263
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
3264

3265
	/* The verifier guarantees that size > 0. */
3266 3267
	if (off % size != 0)
		return false;
3268 3269

	switch (off) {
3270 3271
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
3272 3273
			return false;
		break;
3274 3275 3276
	case bpf_ctx_range(struct __sk_buff, data):
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
3277
			return false;
3278 3279
		break;
	default:
3280
		/* Only narrow read access allowed for now. */
3281
		if (type == BPF_WRITE) {
3282
			if (size != size_default)
3283 3284
				return false;
		} else {
3285 3286
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3287
				return false;
3288
		}
3289
	}
3290 3291 3292 3293

	return true;
}

3294
static bool sk_filter_is_valid_access(int off, int size,
3295
				      enum bpf_access_type type,
3296
				      struct bpf_insn_access_aux *info)
3297
{
3298
	switch (off) {
3299 3300 3301
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
	case bpf_ctx_range(struct __sk_buff, data_end):
3302
		return false;
3303
	}
3304

3305 3306
	if (type == BPF_WRITE) {
		switch (off) {
3307
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3308 3309 3310 3311 3312 3313
			break;
		default:
			return false;
		}
	}

3314
	return bpf_skb_is_valid_access(off, size, type, info);
3315 3316
}

3317 3318
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
3319
				struct bpf_insn_access_aux *info)
3320 3321
{
	switch (off) {
3322
	case bpf_ctx_range(struct __sk_buff, tc_classid):
3323 3324 3325 3326 3327
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
3328 3329 3330
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3331 3332 3333 3334 3335 3336
			break;
		default:
			return false;
		}
	}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

	return bpf_skb_is_valid_access(off, size, type, info);
3347 3348
}

3349 3350
static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
3351
					struct bpf_insn_access_aux *info)
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock, bound_dev_if):
			break;
		default:
			return false;
		}
	}

	if (off < 0 || off + size > sizeof(struct bpf_sock))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

3412
static bool tc_cls_act_is_valid_access(int off, int size,
3413
				       enum bpf_access_type type,
3414
				       struct bpf_insn_access_aux *info)
3415 3416 3417
{
	if (type == BPF_WRITE) {
		switch (off) {
3418 3419 3420 3421 3422
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3423 3424 3425 3426 3427
			break;
		default:
			return false;
		}
	}
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

	return bpf_skb_is_valid_access(off, size, type, info);
3439 3440
}

3441
static bool __is_valid_xdp_access(int off, int size)
3442 3443 3444 3445 3446
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
3447
	if (size != sizeof(__u32))
3448 3449 3450 3451 3452 3453 3454
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
3455
				struct bpf_insn_access_aux *info)
3456 3457 3458 3459 3460 3461
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
3462
		info->reg_type = PTR_TO_PACKET;
3463 3464
		break;
	case offsetof(struct xdp_md, data_end):
3465
		info->reg_type = PTR_TO_PACKET_END;
3466 3467 3468
		break;
	}

3469
	return __is_valid_xdp_access(off, size);
3470 3471 3472 3473 3474 3475 3476 3477
}

void bpf_warn_invalid_xdp_action(u32 act)
{
	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

3478 3479 3480 3481 3482
void bpf_warn_invalid_xdp_redirect(u32 ifindex)
{
	WARN_ONCE(1, "Illegal XDP redirect to unsupported device ifindex(%i)\n", ifindex);
}

L
Lawrence Brakmo 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static bool __is_valid_sock_ops_access(int off, int size)
{
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;
	if (size != sizeof(__u32))
		return false;

	return true;
}

static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
				     struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct bpf_sock_ops, op) ...
		     offsetof(struct bpf_sock_ops, replylong[3]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_sock_ops_access(off, size);
}

3513 3514 3515
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
3516
				  struct bpf_prog *prog, u32 *target_size)
3517 3518
{
	struct bpf_insn *insn = insn_buf;
3519
	int off;
3520

3521
	switch (si->off) {
3522
	case offsetof(struct __sk_buff, len):
3523
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3524 3525
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
3526 3527
		break;

3528
	case offsetof(struct __sk_buff, protocol):
3529
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3530 3531
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
3532 3533
		break;

3534
	case offsetof(struct __sk_buff, vlan_proto):
3535
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3536 3537
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
3538 3539
		break;

3540
	case offsetof(struct __sk_buff, priority):
3541
		if (type == BPF_WRITE)
3542
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3543 3544
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
3545
		else
3546
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3547 3548
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
3549 3550
		break;

3551
	case offsetof(struct __sk_buff, ingress_ifindex):
3552
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3553 3554
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
3555 3556 3557
		break;

	case offsetof(struct __sk_buff, ifindex):
3558
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3559
				      si->dst_reg, si->src_reg,
3560
				      offsetof(struct sk_buff, dev));
3561 3562
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3563 3564
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
3565 3566
		break;

3567
	case offsetof(struct __sk_buff, hash):
3568
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3569 3570
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
3571 3572
		break;

3573
	case offsetof(struct __sk_buff, mark):
3574
		if (type == BPF_WRITE)
3575
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3576 3577
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
3578
		else
3579
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3580 3581
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
3582
		break;
3583 3584

	case offsetof(struct __sk_buff, pkt_type):
3585 3586 3587 3588 3589 3590 3591 3592
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
3593 3594

	case offsetof(struct __sk_buff, queue_mapping):
3595 3596 3597 3598
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
3599 3600 3601

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
3615 3616

	case offsetof(struct __sk_buff, cb[0]) ...
3617
	     offsetofend(struct __sk_buff, cb[4]) - 1:
3618
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3619 3620 3621
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
3622

3623
		prog->cb_access = 1;
3624 3625 3626 3627
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
3628
		if (type == BPF_WRITE)
3629
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3630
					      si->src_reg, off);
3631
		else
3632
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3633
					      si->src_reg, off);
3634 3635
		break;

3636
	case offsetof(struct __sk_buff, tc_classid):
3637 3638 3639 3640 3641 3642
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
3643
		*target_size = 2;
3644
		if (type == BPF_WRITE)
3645 3646
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3647
		else
3648 3649
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
3650 3651
		break;

3652
	case offsetof(struct __sk_buff, data):
3653
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3654
				      si->dst_reg, si->src_reg,
3655 3656 3657 3658
				      offsetof(struct sk_buff, data));
		break;

	case offsetof(struct __sk_buff, data_end):
3659 3660 3661 3662 3663 3664
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
3665 3666
		break;

3667 3668 3669
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
3670
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3671 3672
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
3673
		else
3674
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3675 3676
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
3677 3678
#else
		if (type == BPF_WRITE)
3679
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3680
		else
3681
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3682 3683 3684 3685 3686 3687
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3688 3689
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
3690 3691 3692 3693
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3694
#endif
3695
		break;
3696 3697 3698
	}

	return insn - insn_buf;
3699 3700
}

3701
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3702
					  const struct bpf_insn *si,
3703
					  struct bpf_insn *insn_buf,
3704
					  struct bpf_prog *prog, u32 *target_size)
3705 3706 3707
{
	struct bpf_insn *insn = insn_buf;

3708
	switch (si->off) {
3709 3710 3711 3712
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
3713
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3714 3715
					offsetof(struct sock, sk_bound_dev_if));
		else
3716
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3717 3718
				      offsetof(struct sock, sk_bound_dev_if));
		break;
3719 3720 3721 3722

	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

3723
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3724 3725 3726 3727
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
3728
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3729
				      offsetof(struct sock, __sk_flags_offset));
3730 3731
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3732 3733 3734
		break;

	case offsetof(struct bpf_sock, protocol):
3735
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3736
				      offsetof(struct sock, __sk_flags_offset));
3737 3738
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3739
		break;
3740 3741 3742 3743 3744
	}

	return insn - insn_buf;
}

3745 3746
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
3747
					 struct bpf_insn *insn_buf,
3748
					 struct bpf_prog *prog, u32 *target_size)
3749 3750 3751
{
	struct bpf_insn *insn = insn_buf;

3752
	switch (si->off) {
3753 3754
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3755
				      si->dst_reg, si->src_reg,
3756
				      offsetof(struct sk_buff, dev));
3757
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3758 3759
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
3760 3761
		break;
	default:
3762 3763
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
3764 3765 3766 3767 3768
	}

	return insn - insn_buf;
}

3769 3770
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
3771
				  struct bpf_insn *insn_buf,
3772
				  struct bpf_prog *prog, u32 *target_size)
3773 3774 3775
{
	struct bpf_insn *insn = insn_buf;

3776
	switch (si->off) {
3777
	case offsetof(struct xdp_md, data):
3778
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3779
				      si->dst_reg, si->src_reg,
3780 3781 3782
				      offsetof(struct xdp_buff, data));
		break;
	case offsetof(struct xdp_md, data_end):
3783
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3784
				      si->dst_reg, si->src_reg,
3785 3786 3787 3788 3789 3790 3791
				      offsetof(struct xdp_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
3792 3793 3794
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
3795 3796
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
	}
	return insn - insn_buf;
}

3925
const struct bpf_verifier_ops sk_filter_prog_ops = {
3926 3927
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
3928
	.convert_ctx_access	= bpf_convert_ctx_access,
3929 3930
};

3931
const struct bpf_verifier_ops tc_cls_act_prog_ops = {
3932 3933
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
3934
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3935
	.gen_prologue		= tc_cls_act_prologue,
3936
	.test_run		= bpf_prog_test_run_skb,
3937 3938
};

3939
const struct bpf_verifier_ops xdp_prog_ops = {
3940 3941 3942
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
3943
	.test_run		= bpf_prog_test_run_xdp,
3944 3945
};

3946
const struct bpf_verifier_ops cg_skb_prog_ops = {
3947
	.get_func_proto		= sk_filter_func_proto,
3948
	.is_valid_access	= sk_filter_is_valid_access,
3949
	.convert_ctx_access	= bpf_convert_ctx_access,
3950
	.test_run		= bpf_prog_test_run_skb,
3951 3952
};

3953
const struct bpf_verifier_ops lwt_inout_prog_ops = {
3954 3955
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3956
	.convert_ctx_access	= bpf_convert_ctx_access,
3957
	.test_run		= bpf_prog_test_run_skb,
3958 3959
};

3960
const struct bpf_verifier_ops lwt_xmit_prog_ops = {
3961 3962
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
3963
	.convert_ctx_access	= bpf_convert_ctx_access,
3964
	.gen_prologue		= tc_cls_act_prologue,
3965
	.test_run		= bpf_prog_test_run_skb,
3966 3967
};

3968
const struct bpf_verifier_ops cg_sock_prog_ops = {
3969
	.get_func_proto		= bpf_base_func_proto,
3970 3971 3972 3973
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

L
Lawrence Brakmo 已提交
3974
const struct bpf_verifier_ops sock_ops_prog_ops = {
3975
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
3976 3977 3978 3979
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

3980
int sk_detach_filter(struct sock *sk)
3981 3982 3983 3984
{
	int ret = -ENOENT;
	struct sk_filter *filter;

3985 3986 3987
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

3988 3989
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
3990
	if (filter) {
3991
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
3992
		sk_filter_uncharge(sk, filter);
3993 3994
		ret = 0;
	}
3995

3996 3997
	return ret;
}
3998
EXPORT_SYMBOL_GPL(sk_detach_filter);
3999

4000 4001
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
4002
{
4003
	struct sock_fprog_kern *fprog;
4004
	struct sk_filter *filter;
4005
	int ret = 0;
4006 4007 4008

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
4009
					   lockdep_sock_is_held(sk));
4010 4011
	if (!filter)
		goto out;
4012 4013

	/* We're copying the filter that has been originally attached,
4014 4015
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
4016
	 */
4017
	ret = -EACCES;
4018
	fprog = filter->prog->orig_prog;
4019 4020
	if (!fprog)
		goto out;
4021 4022

	ret = fprog->len;
4023
	if (!len)
4024
		/* User space only enquires number of filter blocks. */
4025
		goto out;
4026

4027
	ret = -EINVAL;
4028
	if (len < fprog->len)
4029 4030 4031
		goto out;

	ret = -EFAULT;
4032
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4033
		goto out;
4034

4035 4036 4037 4038
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
4039 4040 4041 4042
out:
	release_sock(sk);
	return ret;
}