filter.c 149.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
A
Andrey Ignatov 已提交
36
#include <net/inet_common.h>
L
Linus Torvalds 已提交
37 38
#include <net/ip.h>
#include <net/protocol.h>
39
#include <net/netlink.h>
L
Linus Torvalds 已提交
40 41
#include <linux/skbuff.h>
#include <net/sock.h>
42
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
43 44
#include <linux/errno.h>
#include <linux/timer.h>
45
#include <linux/uaccess.h>
46
#include <asm/unaligned.h>
47
#include <asm/cmpxchg.h>
L
Linus Torvalds 已提交
48
#include <linux/filter.h>
49
#include <linux/ratelimit.h>
50
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
51
#include <linux/if_vlan.h>
52
#include <linux/bpf.h>
53
#include <net/sch_generic.h>
54
#include <net/cls_cgroup.h>
55
#include <net/dst_metadata.h>
56
#include <net/dst.h>
57
#include <net/sock_reuseport.h>
58
#include <net/busy_poll.h>
59
#include <net/tcp.h>
60
#include <linux/bpf_trace.h>
L
Linus Torvalds 已提交
61

S
Stephen Hemminger 已提交
62
/**
63
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
64 65
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
66
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
67
 *
68 69
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
70
 * than pkt_len we keep whole skb->data. This is the socket level
71
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
72 73 74
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
75
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
76 77 78 79
{
	int err;
	struct sk_filter *filter;

80 81 82 83 84
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
85 86
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
87
		return -ENOMEM;
88
	}
89 90 91 92
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
93 94 95 96
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

97 98
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
99
	if (filter) {
100 101 102 103 104 105
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
106
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
107
	}
108
	rcu_read_unlock();
S
Stephen Hemminger 已提交
109 110 111

	return err;
}
112
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
113

114
BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
115
{
116
	return skb_get_poff(skb);
117 118
}

119
BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
120 121 122 123 124 125
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

126 127 128
	if (skb->len < sizeof(struct nlattr))
		return 0;

129
	if (a > skb->len - sizeof(struct nlattr))
130 131
		return 0;

132
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
133 134 135 136 137 138
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

139
BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
140 141 142 143 144 145
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

146 147 148
	if (skb->len < sizeof(struct nlattr))
		return 0;

149
	if (a > skb->len - sizeof(struct nlattr))
150 151
		return 0;

152 153
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
154 155
		return 0;

156
	nla = nla_find_nested(nla, x);
157 158 159 160 161 162
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

163
BPF_CALL_0(__get_raw_cpu_id)
164 165 166 167
{
	return raw_smp_processor_id();
}

168 169 170 171 172 173
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
	.func		= __get_raw_cpu_id,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
220 221 222 223 224
	}

	return insn - insn_buf;
}

225
static bool convert_bpf_extensions(struct sock_filter *fp,
226
				   struct bpf_insn **insnp)
227
{
228
	struct bpf_insn *insn = *insnp;
229
	u32 cnt;
230 231 232

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
233 234 235 236 237 238 239
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
240 241 242
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
243 244
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
245 246 247 248 249 250
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
251

252
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
253 254 255 256 257 258 259 260 261 262 263
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
264 265 266
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
267 268
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
269 270 271 272 273
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

274 275
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
276 277 278
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
279 280
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
281 282 283
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
284 285 286 287
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
288

289 290 291 292
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
293 294
		break;

295 296 297 298 299 300 301 302 303 304
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

305 306 307 308
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
309
	case SKF_AD_OFF + SKF_AD_RANDOM:
310
		/* arg1 = CTX */
311
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
312
		/* arg2 = A */
313
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
314
		/* arg3 = X */
315
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
316
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
317 318
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
319
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
320 321
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
322
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
323 324
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
325
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
326 327
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
328
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
329
			break;
C
Chema Gonzalez 已提交
330
		case SKF_AD_OFF + SKF_AD_RANDOM:
331 332
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
333
			break;
334 335 336 337
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
338 339
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
356
 *	bpf_convert_filter - convert filter program
357 358
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
359
 *	@new_prog: allocated 'struct bpf_prog' or NULL
360 361
 *	@new_len: pointer to store length of converted program
 *
362 363
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
364 365 366
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
367
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
368 369 370
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
371
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
372
 */
373
static int bpf_convert_filter(struct sock_filter *prog, int len,
374
			      struct bpf_prog *new_prog, int *new_len)
375
{
376 377
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
378 379 380 381 382
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
383
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
384

385
	if (len <= 0 || len > BPF_MAXINSNS)
386 387 388
		return -EINVAL;

	if (new_prog) {
389
		first_insn = new_prog->insnsi;
390 391
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
392 393 394 395 396
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
397
	new_insn = first_insn;
398 399
	fp = prog;

400
	/* Classic BPF related prologue emission. */
401
	if (new_prog) {
402 403 404
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
405 406
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
407 408 409 410 411 412 413 414 415

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
416 417

	for (i = 0; i < len; fp++, i++) {
418 419
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
420 421

		if (addrs)
422
			addrs[i] = new_insn - first_insn;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

462
			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
463
			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
464
				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
465 466 467 468 469 470 471
				/* Error with exception code on div/mod by 0.
				 * For cBPF programs, this was always return 0.
				 */
				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
				*insn++ = BPF_EXIT_INSN();
			}
472

473
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
474 475
			break;

476 477 478 479 480 481 482
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
483 484 485 486 487 488 489 490
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

491 492 493 494
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
510
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
511

512 513
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
514 515
				bpf_src = BPF_X;
			} else {
516
				insn->dst_reg = BPF_REG_A;
517 518
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
519
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
520
			}
521 522 523 524 525

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
526
				BPF_EMIT_JMP;
527
				break;
L
Linus Torvalds 已提交
528
			}
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
			/* Convert some jumps when 'jump_true' is next insn. */
			if (fp->jt == 0) {
				switch (BPF_OP(fp->code)) {
				case BPF_JEQ:
					insn->code = BPF_JMP | BPF_JNE | bpf_src;
					break;
				case BPF_JGT:
					insn->code = BPF_JMP | BPF_JLE | bpf_src;
					break;
				case BPF_JGE:
					insn->code = BPF_JMP | BPF_JLT | bpf_src;
					break;
				default:
					goto jmp_rest;
				}

546
				target = i + fp->jf + 1;
547
				BPF_EMIT_JMP;
548
				break;
549
			}
550
jmp_rest:
551 552 553
			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
554
			BPF_EMIT_JMP;
555 556 557 558
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
559
			BPF_EMIT_JMP;
560 561 562 563
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
564
			/* tmp = A */
565
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
566
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
567
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
568
			/* A &= 0xf */
569
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
570
			/* A <<= 2 */
571
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
572
			/* X = A */
573
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
574
			/* A = tmp */
575
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
576 577
			break;

578 579 580
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
581 582
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
583 584 585
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
586
			*insn = BPF_EXIT_INSN();
587 588 589 590 591
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
592
			stack_off = fp->k * 4  + 4;
593 594
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
595 596 597 598 599 600 601
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
602 603 604 605 606
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
607
			stack_off = fp->k * 4  + 4;
608 609
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
610
					    -stack_off);
611 612 613 614 615
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
616 617
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
618 619 620 621
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
622
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
623 624 625 626
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
627
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
628 629 630 631 632
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
633 634 635
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
636 637
			break;

638
		/* Access seccomp_data fields. */
639
		case BPF_LDX | BPF_ABS | BPF_W:
640 641
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
642 643
			break;

S
Stephen Hemminger 已提交
644
		/* Unknown instruction. */
L
Linus Torvalds 已提交
645
		default:
646
			goto err;
L
Linus Torvalds 已提交
647
		}
648 649 650 651 652 653

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
654 655
	}

656 657
	if (!new_prog) {
		/* Only calculating new length. */
658
		*new_len = new_insn - first_insn;
659 660 661 662
		return 0;
	}

	pass++;
663 664
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
665 666 667 668 669 670 671
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
672
	return 0;
673 674 675
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
676 677
}

678 679
/* Security:
 *
680
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
681
 * __bpf_prog_run(), we check that filter loaded by user never try to read
682
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
683
 * a malicious user doesn't try to abuse us.
684
 */
685
static int check_load_and_stores(const struct sock_filter *filter, int flen)
686
{
687
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
688 689 690
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
691

692
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
693 694
	if (!masks)
		return -ENOMEM;
695

696 697 698 699 700 701
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
702 703
		case BPF_ST:
		case BPF_STX:
704 705
			memvalid |= (1 << filter[pc].k);
			break;
706 707
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
708 709 710 711 712
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
713 714
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
715 716 717
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
718 719 720 721 722 723 724 725 726
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
727 728 729 730 731 732 733 734 735 736 737
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

804 805 806 807 808 809 810 811 812 813 814
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
815
/**
816
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
817 818 819 820 821
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
822 823
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
824
 *
825 826 827
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
828
 */
829 830
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
831
{
832
	bool anc_found;
833
	int pc;
L
Linus Torvalds 已提交
834

835
	/* Check the filter code now */
L
Linus Torvalds 已提交
836
	for (pc = 0; pc < flen; pc++) {
837
		const struct sock_filter *ftest = &filter[pc];
838

839 840
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
841
			return -EINVAL;
842

843
		/* Some instructions need special checks */
844 845 846 847
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
848 849 850
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
851 852 853 854 855
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
856 857 858 859 860
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
861 862 863
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
864 865
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
866 867 868
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
869
			if (ftest->k >= (unsigned int)(flen - pc - 1))
870
				return -EINVAL;
871
			break;
872 873 874 875 876 877 878 879 880
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
881
			if (pc + ftest->jt + 1 >= flen ||
882 883
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
884
			break;
885 886 887
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
888
			anc_found = false;
889 890 891
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
892 893
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
894 895
		}
	}
896

897
	/* Last instruction must be a RET code */
898
	switch (filter[flen - 1].code) {
899 900
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
901
		return check_load_and_stores(filter, flen);
902
	}
903

904
	return -EINVAL;
L
Linus Torvalds 已提交
905 906
}

907 908
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
909
{
910
	unsigned int fsize = bpf_classic_proglen(fprog);
911 912 913 914 915 916 917 918
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
919 920 921

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
922 923 924 925 926 927 928 929
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

930
static void bpf_release_orig_filter(struct bpf_prog *fp)
931 932 933 934 935 936 937 938 939
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

940 941
static void __bpf_prog_release(struct bpf_prog *prog)
{
942
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
943 944 945 946 947
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
948 949
}

950 951
static void __sk_filter_release(struct sk_filter *fp)
{
952 953
	__bpf_prog_release(fp->prog);
	kfree(fp);
954 955
}

956
/**
E
Eric Dumazet 已提交
957
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
958 959
 *	@rcu: rcu_head that contains the sk_filter to free
 */
960
static void sk_filter_release_rcu(struct rcu_head *rcu)
961 962 963
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

964
	__sk_filter_release(fp);
965
}
966 967 968 969 970 971 972 973 974

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
975
	if (refcount_dec_and_test(&fp->refcnt))
976 977 978 979 980
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
981
	u32 filter_size = bpf_prog_size(fp->prog->len);
982

983 984
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
985
}
986

987 988 989
/* try to charge the socket memory if there is space available
 * return true on success
 */
990
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
991
{
992
	u32 filter_size = bpf_prog_size(fp->prog->len);
993 994 995 996 997 998

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
999
	}
1000
	return false;
1001 1002
}

1003 1004
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
1005 1006 1007 1008 1009 1010 1011 1012
	if (!refcount_inc_not_zero(&fp->refcnt))
		return false;

	if (!__sk_filter_charge(sk, fp)) {
		sk_filter_release(fp);
		return false;
	}
	return true;
1013 1014
}

1015
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1016 1017
{
	struct sock_filter *old_prog;
1018
	struct bpf_prog *old_fp;
1019
	int err, new_len, old_len = fp->len;
1020 1021 1022 1023 1024 1025 1026

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1027
		     sizeof(struct bpf_insn));
1028 1029 1030 1031 1032 1033

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1034
			   GFP_KERNEL | __GFP_NOWARN);
1035 1036 1037 1038 1039 1040
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1041
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1042 1043 1044 1045 1046
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1047
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1059
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1060
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1061
	if (err)
1062
		/* 2nd bpf_convert_filter() can fail only if it fails
1063 1064
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1065
		 * by krealloc().
1066 1067 1068
		 */
		goto out_err_free;

1069
	fp = bpf_prog_select_runtime(fp, &err);
1070 1071
	if (err)
		goto out_err_free;
1072

1073 1074 1075 1076 1077 1078
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1079
	__bpf_prog_release(fp);
1080 1081 1082
	return ERR_PTR(err);
}

1083 1084
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1085 1086 1087
{
	int err;

1088
	fp->bpf_func = NULL;
1089
	fp->jited = 0;
1090

1091
	err = bpf_check_classic(fp->insns, fp->len);
1092
	if (err) {
1093
		__bpf_prog_release(fp);
1094
		return ERR_PTR(err);
1095
	}
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1108 1109 1110
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1111
	bpf_jit_compile(fp);
1112 1113 1114 1115

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1116
	if (!fp->jited)
1117
		fp = bpf_migrate_filter(fp);
1118 1119

	return fp;
1120 1121 1122
}

/**
1123
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1124
 *	@pfp: the unattached filter that is created
1125
 *	@fprog: the filter program
1126
 *
R
Randy Dunlap 已提交
1127
 * Create a filter independent of any socket. We first run some
1128 1129 1130 1131
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1132
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1133
{
1134
	unsigned int fsize = bpf_classic_proglen(fprog);
1135
	struct bpf_prog *fp;
1136 1137

	/* Make sure new filter is there and in the right amounts. */
1138
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1139 1140
		return -EINVAL;

1141
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1142 1143
	if (!fp)
		return -ENOMEM;
1144

1145 1146 1147
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1148 1149 1150 1151 1152
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1153

1154
	/* bpf_prepare_filter() already takes care of freeing
1155 1156
	 * memory in case something goes wrong.
	 */
1157
	fp = bpf_prepare_filter(fp, NULL);
1158 1159
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1160 1161 1162 1163

	*pfp = fp;
	return 0;
}
1164
EXPORT_SYMBOL_GPL(bpf_prog_create);
1165

1166 1167 1168 1169 1170
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1171
 *	@save_orig: save classic BPF program
1172 1173 1174 1175 1176 1177
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1178
			      bpf_aux_classic_check_t trans, bool save_orig)
1179 1180 1181
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1182
	int err;
1183 1184

	/* Make sure new filter is there and in the right amounts. */
1185
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1200 1201 1202 1203 1204 1205 1206 1207
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1218
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1219

1220
void bpf_prog_destroy(struct bpf_prog *fp)
1221
{
1222
	__bpf_prog_release(fp);
1223
}
1224
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1225

1226
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1236
	if (!__sk_filter_charge(sk, fp)) {
1237 1238 1239
		kfree(fp);
		return -ENOMEM;
	}
1240
	refcount_set(&fp->refcnt, 1);
1241

1242 1243
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1244
	rcu_assign_pointer(sk->sk_filter, fp);
1245

1246 1247 1248 1249 1250 1251
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1252 1253 1254 1255 1256 1257 1258 1259
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1260
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1278
{
1279
	unsigned int fsize = bpf_classic_proglen(fprog);
1280
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1281 1282
	int err;

1283
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1284
		return ERR_PTR(-EPERM);
1285

L
Linus Torvalds 已提交
1286
	/* Make sure new filter is there and in the right amounts. */
1287
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1288
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1289

1290
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1291
	if (!prog)
1292
		return ERR_PTR(-ENOMEM);
1293

1294
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1295
		__bpf_prog_free(prog);
1296
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1297 1298
	}

1299
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1300

1301
	err = bpf_prog_store_orig_filter(prog, fprog);
1302
	if (err) {
1303
		__bpf_prog_free(prog);
1304
		return ERR_PTR(-ENOMEM);
1305 1306
	}

1307
	/* bpf_prepare_filter() already takes care of freeing
1308 1309
	 * memory in case something goes wrong.
	 */
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1323
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1324 1325 1326 1327
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1328 1329 1330
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1331
	err = __sk_attach_prog(prog, sk);
1332
	if (err < 0) {
1333
		__bpf_prog_release(prog);
1334
		return err;
1335 1336
	}

1337
	return 0;
L
Linus Torvalds 已提交
1338
}
1339
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1340

1341
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1342
{
1343
	struct bpf_prog *prog = __get_filter(fprog, sk);
1344
	int err;
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1360
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1361
		return ERR_PTR(-EPERM);
1362

1363
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1374
	err = __sk_attach_prog(prog, sk);
1375
	if (err < 0) {
1376
		bpf_prog_put(prog);
1377
		return err;
1378 1379 1380 1381 1382
	}

	return 0;
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1400 1401 1402 1403 1404 1405 1406 1407
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1408

1409 1410 1411 1412 1413 1414
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1415 1416 1417
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1418
	int err = __bpf_try_make_writable(skb, write_len);
1419

1420
	bpf_compute_data_pointers(skb);
1421 1422 1423
	return err;
}

1424 1425 1426 1427 1428
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1429 1430 1431 1432 1433 1434
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1435 1436 1437 1438 1439 1440
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1441 1442
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1443 1444 1445
{
	void *ptr;

1446
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1447
		return -EINVAL;
1448
	if (unlikely(offset > 0xffff))
1449
		return -EFAULT;
1450
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1451 1452
		return -EFAULT;

1453
	ptr = skb->data + offset;
1454
	if (flags & BPF_F_RECOMPUTE_CSUM)
1455
		__skb_postpull_rcsum(skb, ptr, len, offset);
1456 1457 1458

	memcpy(ptr, from, len);

1459
	if (flags & BPF_F_RECOMPUTE_CSUM)
1460
		__skb_postpush_rcsum(skb, ptr, len, offset);
1461 1462
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1463

1464 1465 1466
	return 0;
}

1467
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1468 1469 1470 1471 1472
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1473 1474
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1475 1476 1477
	.arg5_type	= ARG_ANYTHING,
};

1478 1479
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1480 1481 1482
{
	void *ptr;

1483
	if (unlikely(offset > 0xffff))
1484
		goto err_clear;
1485 1486 1487

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1488
		goto err_clear;
1489 1490 1491 1492
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1493 1494 1495
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1496 1497
}

1498
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1499 1500 1501 1502 1503
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1504 1505
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1506 1507
};

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1530 1531
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1532
{
1533
	__sum16 *ptr;
1534

1535 1536
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1537
	if (unlikely(offset > 0xffff || offset & 1))
1538
		return -EFAULT;
1539
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1540 1541
		return -EFAULT;

1542
	ptr = (__sum16 *)(skb->data + offset);
1543
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1544 1545 1546 1547 1548 1549
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1563
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1574 1575
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1576
{
1577
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1578
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1579
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1580
	__sum16 *ptr;
1581

1582 1583
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1584
		return -EINVAL;
1585
	if (unlikely(offset > 0xffff || offset & 1))
1586
		return -EFAULT;
1587
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1588 1589
		return -EFAULT;

1590
	ptr = (__sum16 *)(skb->data + offset);
1591
	if (is_mmzero && !do_mforce && !*ptr)
1592
		return 0;
1593

1594
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1595 1596 1597 1598 1599 1600
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1611 1612
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1613 1614 1615
	return 0;
}

1616
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1617 1618 1619 1620 1621 1622 1623 1624
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1625 1626
};

1627 1628
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1629
{
1630
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1631
	u32 diff_size = from_size + to_size;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1654
static const struct bpf_func_proto bpf_csum_diff_proto = {
1655 1656
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1657
	.pkt_access	= true,
1658
	.ret_type	= RET_INTEGER,
1659
	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1660
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1661
	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1662
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1663 1664 1665
	.arg5_type	= ARG_ANYTHING,
};

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1686 1687 1688 1689 1690
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
1747 1748 1749 1750 1751 1752
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

1753 1754 1755 1756 1757 1758 1759 1760
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
1761
	if (dev_is_mac_header_xmit(dev))
1762
		return __bpf_redirect_common(skb, dev, flags);
1763 1764
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
1765 1766
}

1767
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1768 1769
{
	struct net_device *dev;
1770 1771
	struct sk_buff *clone;
	int ret;
1772

1773 1774 1775
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1776 1777 1778 1779
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

1780 1781
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
1782 1783
		return -ENOMEM;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

1795
	return __bpf_redirect(clone, dev, flags);
1796 1797
}

1798
static const struct bpf_func_proto bpf_clone_redirect_proto = {
1799 1800 1801 1802 1803 1804 1805 1806
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1807 1808 1809
struct redirect_info {
	u32 ifindex;
	u32 flags;
1810
	struct bpf_map *map;
1811
	struct bpf_map *map_to_flush;
1812
	unsigned long   map_owner;
1813 1814 1815
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1816

1817
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1818 1819 1820
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1821 1822 1823
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1824 1825
	ri->ifindex = ifindex;
	ri->flags = flags;
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1842
	return __bpf_redirect(skb, dev, ri->flags);
1843 1844
}

1845
static const struct bpf_func_proto bpf_redirect_proto = {
1846 1847 1848 1849 1850 1851 1852
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1853 1854
BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
	   struct bpf_map *, map, u32, key, u64, flags)
1855
{
1856
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1857

1858
	/* If user passes invalid input drop the packet. */
1859
	if (unlikely(flags & ~(BPF_F_INGRESS)))
1860
		return SK_DROP;
1861

1862 1863 1864
	tcb->bpf.key = key;
	tcb->bpf.flags = flags;
	tcb->bpf.map = map;
1865

1866
	return SK_PASS;
1867 1868
}

1869
struct sock *do_sk_redirect_map(struct sk_buff *skb)
1870
{
1871
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1872 1873
	struct sock *sk = NULL;

1874 1875
	if (tcb->bpf.map) {
		sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1876

1877 1878
		tcb->bpf.key = 0;
		tcb->bpf.map = NULL;
1879 1880 1881 1882 1883 1884 1885 1886 1887
	}

	return sk;
}

static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
	.func           = bpf_sk_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
1888 1889
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
1890
	.arg3_type      = ARG_ANYTHING,
1891
	.arg4_type      = ARG_ANYTHING,
1892 1893
};

1894 1895 1896 1897
BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, u32, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
1898
	if (unlikely(flags & ~(BPF_F_INGRESS)))
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		return SK_DROP;

	msg->key = key;
	msg->flags = flags;
	msg->map = map;

	return SK_PASS;
}

struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
{
	struct sock *sk = NULL;

	if (msg->map) {
		sk = __sock_map_lookup_elem(msg->map, msg->key);

		msg->key = 0;
		msg->map = NULL;
	}

	return sk;
}

static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
	.func           = bpf_msg_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_ANYTHING,
	.arg4_type      = ARG_ANYTHING,
};

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->apply_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
	.func           = bpf_msg_apply_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->cork_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
	.func           = bpf_msg_cork_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
BPF_CALL_4(bpf_msg_pull_data,
	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
{
	unsigned int len = 0, offset = 0, copy = 0;
	struct scatterlist *sg = msg->sg_data;
	int first_sg, last_sg, i, shift;
	unsigned char *p, *to, *from;
	int bytes = end - start;
	struct page *page;

	if (unlikely(flags || end <= start))
		return -EINVAL;

	/* First find the starting scatterlist element */
	i = msg->sg_start;
	do {
		len = sg[i].length;
		offset += len;
		if (start < offset + len)
			break;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != msg->sg_end);

	if (unlikely(start >= offset + len))
		return -EINVAL;

	if (!msg->sg_copy[i] && bytes <= len)
		goto out;

	first_sg = i;

	/* At this point we need to linearize multiple scatterlist
	 * elements or a single shared page. Either way we need to
	 * copy into a linear buffer exclusively owned by BPF. Then
	 * place the buffer in the scatterlist and fixup the original
	 * entries by removing the entries now in the linear buffer
	 * and shifting the remaining entries. For now we do not try
	 * to copy partial entries to avoid complexity of running out
	 * of sg_entry slots. The downside is reading a single byte
	 * will copy the entire sg entry.
	 */
	do {
		copy += sg[i].length;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
		if (bytes < copy)
			break;
	} while (i != msg->sg_end);
	last_sg = i;

	if (unlikely(copy < end - start))
		return -EINVAL;

	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
	if (unlikely(!page))
		return -ENOMEM;
	p = page_address(page);
	offset = 0;

	i = first_sg;
	do {
		from = sg_virt(&sg[i]);
		len = sg[i].length;
		to = p + offset;

		memcpy(to, from, len);
		offset += len;
		sg[i].length = 0;
		put_page(sg_page(&sg[i]));

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != last_sg);

	sg[first_sg].length = copy;
	sg_set_page(&sg[first_sg], page, copy, 0);

	/* To repair sg ring we need to shift entries. If we only
	 * had a single entry though we can just replace it and
	 * be done. Otherwise walk the ring and shift the entries.
	 */
	shift = last_sg - first_sg - 1;
	if (!shift)
		goto out;

	i = first_sg + 1;
	do {
		int move_from;

		if (i + shift >= MAX_SKB_FRAGS)
			move_from = i + shift - MAX_SKB_FRAGS;
		else
			move_from = i + shift;

		if (move_from == msg->sg_end)
			break;

		sg[i] = sg[move_from];
		sg[move_from].length = 0;
		sg[move_from].page_link = 0;
		sg[move_from].offset = 0;

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (1);
	msg->sg_end -= shift;
	if (msg->sg_end < 0)
		msg->sg_end += MAX_SKB_FRAGS;
out:
	msg->data = sg_virt(&sg[i]) + start - offset;
	msg->data_end = msg->data + bytes;

	return 0;
}

static const struct bpf_func_proto bpf_msg_pull_data_proto = {
	.func		= bpf_msg_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2090
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2091
{
2092
	return task_get_classid(skb);
2093 2094 2095 2096 2097 2098 2099 2100 2101
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2102
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2103
{
2104
	return dst_tclassid(skb);
2105 2106 2107 2108 2109 2110 2111 2112 2113
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2114
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2115 2116 2117 2118 2119 2120
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
2121
	return skb_get_hash(skb);
2122 2123 2124 2125 2126 2127 2128 2129 2130
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2165 2166
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
2167
{
2168
	int ret;
2169 2170 2171 2172 2173

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

2174
	bpf_push_mac_rcsum(skb);
2175
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2176 2177
	bpf_pull_mac_rcsum(skb);

2178
	bpf_compute_data_pointers(skb);
2179
	return ret;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
2190
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
2191

2192
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2193
{
2194
	int ret;
2195

2196
	bpf_push_mac_rcsum(skb);
2197
	ret = skb_vlan_pop(skb);
2198 2199
	bpf_pull_mac_rcsum(skb);

2200
	bpf_compute_data_pointers(skb);
2201
	return ret;
2202 2203 2204 2205 2206 2207 2208 2209
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
2210
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2284
	u32 off = skb_mac_header_len(skb);
2285 2286
	int ret;

2287 2288 2289 2290
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2291 2292 2293 2294 2295 2296 2297 2298 2299
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2300 2301
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2302 2303
		/* SKB_GSO_TCPV4 needs to be changed into
		 * SKB_GSO_TCPV6.
2304
		 */
2305 2306 2307
		if (shinfo->gso_type & SKB_GSO_TCPV4) {
			shinfo->gso_type &= ~SKB_GSO_TCPV4;
			shinfo->gso_type |=  SKB_GSO_TCPV6;
2308 2309 2310
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
2311
		skb_decrease_gso_size(shinfo, len_diff);
2312
		/* Header must be checked, and gso_segs recomputed. */
2313 2314
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2326
	u32 off = skb_mac_header_len(skb);
2327 2328
	int ret;

2329 2330 2331 2332
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2333 2334 2335 2336 2337 2338 2339 2340 2341
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2342 2343
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2344 2345
		/* SKB_GSO_TCPV6 needs to be changed into
		 * SKB_GSO_TCPV4.
2346
		 */
2347 2348 2349
		if (shinfo->gso_type & SKB_GSO_TCPV6) {
			shinfo->gso_type &= ~SKB_GSO_TCPV6;
			shinfo->gso_type |=  SKB_GSO_TCPV4;
2350 2351 2352
		}

		/* Due to IPv4 header, MSS can be upgraded. */
2353
		skb_increase_gso_size(shinfo, len_diff);
2354
		/* Header must be checked, and gso_segs recomputed. */
2355 2356
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2380 2381
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
2406
	bpf_compute_data_pointers(skb);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2419
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2420 2421
{
	/* We only allow a restricted subset to be changed for now. */
2422 2423
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2455 2456 2457 2458
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2459 2460 2461 2462 2463 2464 2465 2466 2467
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2468 2469
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2470
		/* Due to header grow, MSS needs to be downgraded. */
2471
		skb_decrease_gso_size(shinfo, len_diff);
2472
		/* Header must be checked, and gso_segs recomputed. */
2473 2474
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2485 2486 2487 2488
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2489 2490 2491 2492 2493 2494 2495 2496 2497
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2498 2499
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2500
		/* Due to header shrink, MSS can be upgraded. */
2501
		skb_increase_gso_size(shinfo, len_diff);
2502
		/* Header must be checked, and gso_segs recomputed. */
2503 2504
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
	return skb->dev->mtu + skb->dev->hard_header_len;
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

2543
	bpf_compute_data_pointers(skb);
2544
	return ret;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2596 2597
BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}

2634
	bpf_compute_data_pointers(skb);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

2674
	bpf_compute_data_pointers(skb);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2687 2688 2689 2690 2691 2692
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
{
	return xdp_data_meta_unsupported(xdp) ? 0 :
	       xdp->data - xdp->data_meta;
}

2693 2694
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
2695
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2696
	unsigned long metalen = xdp_get_metalen(xdp);
2697
	void *data_start = xdp_frame_end + metalen;
2698 2699
	void *data = xdp->data + offset;

2700
	if (unlikely(data < data_start ||
2701 2702 2703
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

2704 2705 2706 2707
	if (metalen)
		memmove(xdp->data_meta + offset,
			xdp->data_meta, metalen);
	xdp->data_meta += offset;
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
{
	void *data_end = xdp->data_end + offset;

	/* only shrinking is allowed for now. */
	if (unlikely(offset >= 0))
		return -EINVAL;

	if (unlikely(data_end < xdp->data + ETH_HLEN))
		return -EINVAL;

	xdp->data_end = data_end;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
	.func		= bpf_xdp_adjust_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2745 2746
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
{
2747
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2748 2749 2750 2751 2752
	void *meta = xdp->data_meta + offset;
	unsigned long metalen = xdp->data - meta;

	if (xdp_data_meta_unsupported(xdp))
		return -ENOTSUPP;
2753
	if (unlikely(meta < xdp_frame_end ||
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		     meta > xdp->data))
		return -EINVAL;
	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
		     (metalen > 32)))
		return -EACCES;

	xdp->data_meta = meta;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
	.func		= bpf_xdp_adjust_meta,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2773 2774 2775 2776
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
2777
{
2778
	struct xdp_frame *xdpf;
2779 2780 2781 2782
	int err;

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		return -EOPNOTSUPP;
2783
	}
2784

2785 2786 2787 2788 2789
	xdpf = convert_to_xdp_frame(xdp);
	if (unlikely(!xdpf))
		return -EOVERFLOW;

	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
2790 2791
	if (err)
		return err;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	dev->netdev_ops->ndo_xdp_flush(dev);
	return 0;
}

static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
			    struct bpf_map *map,
			    struct xdp_buff *xdp,
			    u32 index)
{
	int err;

	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
		struct net_device *dev = fwd;
2805
		struct xdp_frame *xdpf;
2806 2807 2808 2809

		if (!dev->netdev_ops->ndo_xdp_xmit)
			return -EOPNOTSUPP;

2810 2811 2812 2813 2814 2815 2816 2817
		xdpf = convert_to_xdp_frame(xdp);
		if (unlikely(!xdpf))
			return -EOVERFLOW;

		/* TODO: move to inside map code instead, for bulk support
		 * err = dev_map_enqueue(dev, xdp);
		 */
		err = dev->netdev_ops->ndo_xdp_xmit(dev, xdpf);
2818 2819
		if (err)
			return err;
2820
		__dev_map_insert_ctx(map, index);
2821 2822 2823 2824 2825 2826 2827 2828 2829

	} else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
		struct bpf_cpu_map_entry *rcpu = fwd;

		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
		if (err)
			return err;
		__cpu_map_insert_ctx(map, index);
	}
2830
	return 0;
2831 2832
}

2833 2834 2835 2836 2837 2838
void xdp_do_flush_map(void)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct bpf_map *map = ri->map_to_flush;

	ri->map_to_flush = NULL;
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	if (map) {
		switch (map->map_type) {
		case BPF_MAP_TYPE_DEVMAP:
			__dev_map_flush(map);
			break;
		case BPF_MAP_TYPE_CPUMAP:
			__cpu_map_flush(map);
			break;
		default:
			break;
		}
	}
2851 2852 2853
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
{
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP:
		return __dev_map_lookup_elem(map, index);
	case BPF_MAP_TYPE_CPUMAP:
		return __cpu_map_lookup_elem(map, index);
	default:
		return NULL;
	}
}

2866 2867 2868 2869 2870 2871
static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
				   unsigned long aux)
{
	return (unsigned long)xdp_prog->aux != aux;
}

2872 2873
static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
			       struct bpf_prog *xdp_prog)
2874 2875
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2876
	unsigned long map_owner = ri->map_owner;
2877
	struct bpf_map *map = ri->map;
2878
	u32 index = ri->ifindex;
2879
	void *fwd = NULL;
2880
	int err;
2881 2882 2883

	ri->ifindex = 0;
	ri->map = NULL;
2884
	ri->map_owner = 0;
2885

2886
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2887 2888 2889 2890
		err = -EFAULT;
		map = NULL;
		goto err;
	}
2891

2892
	fwd = __xdp_map_lookup_elem(map, index);
2893 2894
	if (!fwd) {
		err = -EINVAL;
2895
		goto err;
2896
	}
2897
	if (ri->map_to_flush && ri->map_to_flush != map)
2898 2899
		xdp_do_flush_map();

2900
	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2901 2902 2903 2904
	if (unlikely(err))
		goto err;

	ri->map_to_flush = map;
2905
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2906 2907
	return 0;
err:
2908
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2909 2910 2911
	return err;
}

2912 2913
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
2914 2915
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2916
	struct net_device *fwd;
W
William Tu 已提交
2917
	u32 index = ri->ifindex;
2918
	int err;
2919

2920 2921 2922
	if (ri->map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog);

W
William Tu 已提交
2923
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2924
	ri->ifindex = 0;
2925
	if (unlikely(!fwd)) {
2926
		err = -EINVAL;
2927
		goto err;
2928 2929
	}

2930
	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2931 2932 2933 2934 2935 2936 2937
	if (unlikely(err))
		goto err;

	_trace_xdp_redirect(dev, xdp_prog, index);
	return 0;
err:
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2938
	return err;
2939 2940 2941
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
{
	unsigned int len;

	if (unlikely(!(fwd->flags & IFF_UP)))
		return -ENETDOWN;

	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
	if (skb->len > len)
		return -EMSGSIZE;

	return 0;
}

2956 2957 2958
static int xdp_do_generic_redirect_map(struct net_device *dev,
				       struct sk_buff *skb,
				       struct bpf_prog *xdp_prog)
2959 2960
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2961
	unsigned long map_owner = ri->map_owner;
2962 2963
	struct bpf_map *map = ri->map;
	struct net_device *fwd = NULL;
W
William Tu 已提交
2964
	u32 index = ri->ifindex;
2965
	int err = 0;
2966 2967

	ri->ifindex = 0;
2968
	ri->map = NULL;
2969
	ri->map_owner = 0;
2970

2971 2972 2973 2974
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
		err = -EFAULT;
		map = NULL;
		goto err;
2975
	}
2976
	fwd = __xdp_map_lookup_elem(map, index);
2977 2978
	if (unlikely(!fwd)) {
		err = -EINVAL;
2979
		goto err;
2980 2981
	}

2982 2983 2984 2985 2986 2987 2988
	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
		if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
			goto err;
		skb->dev = fwd;
	} else {
		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
		err = -EBADRQC;
2989
		goto err;
2990
	}
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
	return 0;
err:
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
	return err;
}

int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
			    struct bpf_prog *xdp_prog)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	u32 index = ri->ifindex;
	struct net_device *fwd;
	int err = 0;

	if (ri->map)
		return xdp_do_generic_redirect_map(dev, skb, xdp_prog);

	ri->ifindex = 0;
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
	if (unlikely(!fwd)) {
		err = -EINVAL;
3014
		goto err;
3015 3016
	}

3017 3018 3019
	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
		goto err;

3020
	skb->dev = fwd;
3021
	_trace_xdp_redirect(dev, xdp_prog, index);
3022 3023
	return 0;
err:
3024
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3025
	return err;
3026 3027 3028
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

3029 3030 3031 3032 3033 3034 3035 3036 3037
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
3038
	ri->map = NULL;
3039
	ri->map_owner = 0;
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

3052
BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3053
	   unsigned long, map_owner)
3054 3055 3056 3057 3058 3059 3060 3061 3062
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	ri->map = map;
3063
	ri->map_owner = map_owner;
3064 3065 3066 3067

	return XDP_REDIRECT;
}

3068 3069 3070
/* Note, arg4 is hidden from users and populated by the verifier
 * with the right pointer.
 */
3071 3072 3073 3074 3075 3076 3077 3078 3079
static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
	.func           = bpf_xdp_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

3080
bool bpf_helper_changes_pkt_data(void *func)
3081
{
3082 3083 3084 3085
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
3086
	    func == bpf_skb_change_head ||
3087
	    func == bpf_skb_change_tail ||
3088
	    func == bpf_skb_adjust_room ||
3089
	    func == bpf_skb_pull_data ||
3090
	    func == bpf_clone_redirect ||
3091
	    func == bpf_l3_csum_replace ||
3092
	    func == bpf_l4_csum_replace ||
3093
	    func == bpf_xdp_adjust_head ||
3094
	    func == bpf_xdp_adjust_meta ||
3095 3096
	    func == bpf_msg_pull_data ||
	    func == bpf_xdp_adjust_tail)
3097 3098
		return true;

3099 3100 3101
	return false;
}

3102
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3103
				  unsigned long off, unsigned long len)
3104
{
3105
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3106 3107 3108 3109 3110 3111 3112 3113 3114

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

3115 3116
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3136
	.arg4_type	= ARG_PTR_TO_MEM,
3137
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3138 3139
};

3140 3141 3142 3143 3144
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

3145 3146
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
3147
{
3148 3149
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
3150 3151
	void *to_orig = to;
	int err;
3152

3153 3154 3155 3156 3157 3158 3159 3160
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
3161
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3162
		err = -EINVAL;
3163
		switch (size) {
3164
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3165
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3166
			goto set_compat;
3167 3168 3169 3170 3171
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
3172
				goto err_clear;
3173
set_compat:
3174 3175 3176
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
3177
			goto err_clear;
3178 3179
		}
	}
3180 3181

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3182 3183 3184
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

3185
	if (flags & BPF_F_TUNINFO_IPV6) {
3186 3187
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
3188 3189
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
3190
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3191
	}
3192 3193

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3194
		memcpy(to_orig, to, size);
3195 3196

	return 0;
3197 3198 3199
err_clear:
	memset(to_orig, 0, size);
	return err;
3200 3201
}

3202
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3203 3204 3205 3206
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3207 3208
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3209 3210 3211
	.arg4_type	= ARG_ANYTHING,
};

3212
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3213 3214
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3215
	int err;
3216 3217

	if (unlikely(!info ||
3218 3219 3220 3221 3222 3223 3224 3225
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
3226 3227

	ip_tunnel_info_opts_get(to, info);
3228 3229
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
3230 3231

	return info->options_len;
3232 3233 3234
err_clear:
	memset(to, 0, size);
	return err;
3235 3236 3237 3238 3239 3240 3241
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3242 3243
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3244 3245
};

3246 3247
static struct metadata_dst __percpu *md_dst;

3248 3249
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3250 3251
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
3252
	u8 compat[sizeof(struct bpf_tunnel_key)];
3253 3254
	struct ip_tunnel_info *info;

3255
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3256
			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3257
		return -EINVAL;
3258 3259
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
3260
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3261
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3262 3263 3264 3265 3266 3267
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
3268
			from = (const struct bpf_tunnel_key *) compat;
3269 3270 3271 3272 3273
			break;
		default:
			return -EINVAL;
		}
	}
3274 3275
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
3276
		return -EINVAL;
3277 3278 3279 3280 3281 3282 3283

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
3284

3285
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3286 3287
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
W
William Tu 已提交
3288 3289
	if (flags & BPF_F_ZERO_CSUM_TX)
		info->key.tun_flags &= ~TUNNEL_CSUM;
3290 3291
	if (flags & BPF_F_SEQ_NUMBER)
		info->key.tun_flags |= TUNNEL_SEQ;
3292

3293
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3294 3295 3296 3297 3298 3299 3300
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
3301 3302
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
3303 3304 3305
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
3306 3307 3308 3309

	return 0;
}

3310
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3311 3312 3313 3314
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3315 3316
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3317 3318 3319
	.arg4_type	= ARG_ANYTHING,
};

3320 3321
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
3322 3323 3324 3325 3326 3327
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
3328
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		return -ENOMEM;

	ip_tunnel_info_opts_set(info, from, size);

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3341 3342
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3343 3344 3345 3346
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3347 3348
{
	if (!md_dst) {
3349 3350 3351 3352 3353 3354
		struct metadata_dst __percpu *tmp;

		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
						METADATA_IP_TUNNEL,
						GFP_KERNEL);
		if (!tmp)
3355
			return NULL;
3356 3357
		if (cmpxchg(&md_dst, NULL, tmp))
			metadata_dst_free_percpu(tmp);
3358
	}
3359 3360 3361 3362 3363 3364 3365 3366 3367

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
3368 3369
}

3370 3371
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
3372 3373 3374 3375 3376
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

3377
	sk = skb_to_full_sk(skb);
3378 3379
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
3380
	if (unlikely(idx >= array->map.max_entries))
3381 3382
		return -E2BIG;

3383
	cgrp = READ_ONCE(array->ptrs[idx]);
3384 3385 3386
	if (unlikely(!cgrp))
		return -EAGAIN;

3387
	return sk_under_cgroup_hierarchy(sk, cgrp);
3388 3389
}

3390 3391
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
3392 3393 3394 3395 3396 3397 3398
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

3399 3400 3401 3402 3403 3404 3405
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

3406 3407
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3408 3409 3410 3411 3412 3413 3414 3415
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
3416 3417
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
3418 3419 3420 3421 3422 3423 3424 3425 3426
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3427
	.arg4_type	= ARG_PTR_TO_MEM,
3428
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3429 3430
};

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
3505
#ifdef CONFIG_INET
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	} else if (level == SOL_IP) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct inet_sock *inet = inet_sk(sk);

				if (val == -1)
					val = 0;
				inet->tos = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct ipv6_pinfo *np = inet6_sk(sk);

				if (val == -1)
					val = 0;
				np->tclass = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
#endif
3550 3551
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3552 3553
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];
3554
			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3555 3556 3557 3558

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
3559 3560
			ret = tcp_set_congestion_control(sk, name, false,
							 reinit);
3561
		} else {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
3576 3577 3578 3579 3580 3581 3582
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
3583
				break;
3584 3585 3586
			default:
				ret = -EINVAL;
			}
3587 3588
		}
#endif
3589 3590 3591 3592 3593 3594 3595 3596
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
3597
	.gpl_only	= false,
3598 3599 3600 3601 3602 3603 3604 3605
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;

	if (!sk_fullsock(sk))
		goto err_clear;

#ifdef CONFIG_INET
	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
		if (optname == TCP_CONGESTION) {
			struct inet_connection_sock *icsk = inet_csk(sk);

			if (!icsk->icsk_ca_ops || optlen <= 1)
				goto err_clear;
			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
			optval[optlen - 1] = 0;
		} else {
			goto err_clear;
		}
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	} else if (level == SOL_IP) {
		struct inet_sock *inet = inet_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			*((int *)optval) = (int)inet->tos;
			break;
		default:
			goto err_clear;
		}
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		struct ipv6_pinfo *np = inet6_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			*((int *)optval) = (int)np->tclass;
			break;
		default:
			goto err_clear;
		}
#endif
3656 3657 3658
	} else {
		goto err_clear;
	}
3659
	return 0;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
#endif
err_clear:
	memset(optval, 0, optlen);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_getsockopt_proto = {
	.func		= bpf_getsockopt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3677 3678 3679 3680 3681 3682
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
	   int, argval)
{
	struct sock *sk = bpf_sock->sk;
	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;

3683
	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
		return -EINVAL;

	if (val)
		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;

	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
}

static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
	.func		= bpf_sock_ops_cb_flags_set,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

A
Andrey Ignatov 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
EXPORT_SYMBOL_GPL(ipv6_bpf_stub);

BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
	   int, addr_len)
{
#ifdef CONFIG_INET
	struct sock *sk = ctx->sk;
	int err;

	/* Binding to port can be expensive so it's prohibited in the helper.
	 * Only binding to IP is supported.
	 */
	err = -EINVAL;
	if (addr->sa_family == AF_INET) {
		if (addr_len < sizeof(struct sockaddr_in))
			return err;
		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
			return err;
		return __inet_bind(sk, addr, addr_len, true, false);
#if IS_ENABLED(CONFIG_IPV6)
	} else if (addr->sa_family == AF_INET6) {
		if (addr_len < SIN6_LEN_RFC2133)
			return err;
		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
			return err;
		/* ipv6_bpf_stub cannot be NULL, since it's called from
		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
		 */
		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
#endif /* CONFIG_IPV6 */
	}
#endif /* CONFIG_INET */

	return -EAFNOSUPPORT;
}

static const struct bpf_func_proto bpf_bind_proto = {
	.func		= bpf_bind,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
};

3746
static const struct bpf_func_proto *
3747
bpf_base_func_proto(enum bpf_func_id func_id)
3748 3749 3750 3751 3752 3753 3754 3755
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
3756 3757
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
3758
	case BPF_FUNC_get_smp_processor_id:
3759
		return &bpf_get_raw_smp_processor_id_proto;
3760 3761
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
3762 3763
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
3764 3765
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
3766
	case BPF_FUNC_trace_printk:
3767 3768
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
3769 3770 3771 3772 3773
	default:
		return NULL;
	}
}

3774
static const struct bpf_func_proto *
3775
sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

A
Andrey Ignatov 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796
static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
A
Andrey Ignatov 已提交
3797 3798 3799 3800 3801 3802 3803 3804
	case BPF_FUNC_bind:
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_CONNECT:
		case BPF_CGROUP_INET6_CONNECT:
			return &bpf_bind_proto;
		default:
			return NULL;
		}
A
Andrey Ignatov 已提交
3805 3806 3807 3808 3809
	default:
		return bpf_base_func_proto(func_id);
	}
}

3810
static const struct bpf_func_proto *
3811
sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3812 3813 3814 3815
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3816 3817
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3818 3819
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3820 3821 3822 3823 3824
	default:
		return bpf_base_func_proto(func_id);
	}
}

3825
static const struct bpf_func_proto *
3826
tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3827 3828 3829 3830
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
3831 3832
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3833 3834
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
3835 3836
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
3837 3838
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
3839 3840 3841 3842
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
3843 3844
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
3845 3846
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
3847 3848 3849 3850
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
3851 3852
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
3853 3854
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
3855 3856
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
3857 3858
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
3859 3860 3861
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
3862 3863 3864 3865 3866
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
3867 3868
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
3869 3870
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
3871 3872
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
3873 3874
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
3875 3876
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
3877
	case BPF_FUNC_perf_event_output:
3878
		return &bpf_skb_event_output_proto;
3879 3880
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3881 3882
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
3883 3884
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
3885 3886
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3887
	default:
3888
		return bpf_base_func_proto(func_id);
3889 3890 3891
	}
}

3892
static const struct bpf_func_proto *
3893
xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3894
{
3895 3896 3897
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
3898 3899
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
3900 3901
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
3902 3903
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
3904 3905
	case BPF_FUNC_xdp_adjust_meta:
		return &bpf_xdp_adjust_meta_proto;
3906 3907
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
3908
	case BPF_FUNC_redirect_map:
3909
		return &bpf_xdp_redirect_map_proto;
3910 3911
	case BPF_FUNC_xdp_adjust_tail:
		return &bpf_xdp_adjust_tail_proto;
3912
	default:
3913
		return bpf_base_func_proto(func_id);
3914
	}
3915 3916
}

3917
static const struct bpf_func_proto *
3918
lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
3940
		return bpf_base_func_proto(func_id);
3941 3942 3943
	}
}

3944
static const struct bpf_func_proto *
3945
sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3946 3947 3948 3949
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
3950 3951
	case BPF_FUNC_getsockopt:
		return &bpf_getsockopt_proto;
3952 3953
	case BPF_FUNC_sock_ops_cb_flags_set:
		return &bpf_sock_ops_cb_flags_set_proto;
3954 3955
	case BPF_FUNC_sock_map_update:
		return &bpf_sock_map_update_proto;
3956 3957 3958 3959 3960
	default:
		return bpf_base_func_proto(func_id);
	}
}

3961 3962
static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3963 3964 3965 3966
{
	switch (func_id) {
	case BPF_FUNC_msg_redirect_map:
		return &bpf_msg_redirect_map_proto;
3967 3968
	case BPF_FUNC_msg_apply_bytes:
		return &bpf_msg_apply_bytes_proto;
3969 3970
	case BPF_FUNC_msg_cork_bytes:
		return &bpf_msg_cork_bytes_proto;
3971 3972
	case BPF_FUNC_msg_pull_data:
		return &bpf_msg_pull_data_proto;
3973 3974 3975 3976 3977
	default:
		return bpf_base_func_proto(func_id);
	}
}

3978 3979
static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3980 3981
{
	switch (func_id) {
3982 3983
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
3984 3985
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
3986 3987 3988 3989 3990 3991
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
3992 3993 3994 3995
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
3996 3997
	case BPF_FUNC_sk_redirect_map:
		return &bpf_sk_redirect_map_proto;
3998 3999 4000 4001 4002
	default:
		return bpf_base_func_proto(func_id);
	}
}

4003
static const struct bpf_func_proto *
4004
lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
4034
		return lwt_inout_func_proto(func_id, prog);
4035 4036 4037
	}
}

4038
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
4039
				    const struct bpf_prog *prog,
4040
				    struct bpf_insn_access_aux *info)
4041
{
4042
	const int size_default = sizeof(__u32);
4043

4044 4045
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
4046

4047
	/* The verifier guarantees that size > 0. */
4048 4049
	if (off % size != 0)
		return false;
4050 4051

	switch (off) {
4052 4053
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
4054 4055
			return false;
		break;
4056 4057 4058 4059
	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
4060
	case bpf_ctx_range(struct __sk_buff, data):
4061
	case bpf_ctx_range(struct __sk_buff, data_meta):
4062 4063
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
4064
			return false;
4065 4066
		break;
	default:
4067
		/* Only narrow read access allowed for now. */
4068
		if (type == BPF_WRITE) {
4069
			if (size != size_default)
4070 4071
				return false;
		} else {
4072 4073
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4074
				return false;
4075
		}
4076
	}
4077 4078 4079 4080

	return true;
}

4081
static bool sk_filter_is_valid_access(int off, int size,
4082
				      enum bpf_access_type type,
4083
				      const struct bpf_prog *prog,
4084
				      struct bpf_insn_access_aux *info)
4085
{
4086
	switch (off) {
4087 4088
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
4089
	case bpf_ctx_range(struct __sk_buff, data_meta):
4090
	case bpf_ctx_range(struct __sk_buff, data_end):
4091
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4092
		return false;
4093
	}
4094

4095 4096
	if (type == BPF_WRITE) {
		switch (off) {
4097
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4098 4099 4100 4101 4102 4103
			break;
		default:
			return false;
		}
	}

4104
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4105 4106
}

4107 4108
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
4109
				const struct bpf_prog *prog,
4110
				struct bpf_insn_access_aux *info)
4111 4112
{
	switch (off) {
4113
	case bpf_ctx_range(struct __sk_buff, tc_classid):
4114
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4115
	case bpf_ctx_range(struct __sk_buff, data_meta):
4116 4117 4118 4119 4120
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
4121 4122 4123
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4124 4125 4126 4127 4128 4129
			break;
		default:
			return false;
		}
	}

4130 4131 4132 4133 4134 4135 4136 4137 4138
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

4139
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4140 4141
}

A
Andrey Ignatov 已提交
4142 4143 4144 4145 4146

/* Attach type specific accesses */
static bool __sock_filter_check_attach_type(int off,
					    enum bpf_access_type access_type,
					    enum bpf_attach_type attach_type)
4147
{
A
Andrey Ignatov 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	switch (off) {
	case offsetof(struct bpf_sock, bound_dev_if):
	case offsetof(struct bpf_sock, mark):
	case offsetof(struct bpf_sock, priority):
		switch (attach_type) {
		case BPF_CGROUP_INET_SOCK_CREATE:
			goto full_access;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_ip4):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		switch (attach_type) {
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_port):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
4177 4178 4179 4180
		default:
			return false;
		}
	}
A
Andrey Ignatov 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
read_only:
	return access_type == BPF_READ;
full_access:
	return true;
}

static bool __sock_filter_check_size(int off, int size,
				     struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);
4191

A
Andrey Ignatov 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	switch (off) {
	case bpf_ctx_range(struct bpf_sock, src_ip4):
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		bpf_ctx_record_field_size(info, size_default);
		return bpf_ctx_narrow_access_ok(off, size, size_default);
	}

	return size == size_default;
}

static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
					const struct bpf_prog *prog,
					struct bpf_insn_access_aux *info)
{
	if (off < 0 || off >= sizeof(struct bpf_sock))
4208 4209 4210
		return false;
	if (off % size != 0)
		return false;
A
Andrey Ignatov 已提交
4211 4212 4213 4214
	if (!__sock_filter_check_attach_type(off, type,
					     prog->expected_attach_type))
		return false;
	if (!__sock_filter_check_size(off, size, info))
4215 4216 4217 4218
		return false;
	return true;
}

4219 4220
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
				const struct bpf_prog *prog, int drop_verdict)
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
4247
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

4258 4259 4260 4261 4262 4263
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
}

4264
static bool tc_cls_act_is_valid_access(int off, int size,
4265
				       enum bpf_access_type type,
4266
				       const struct bpf_prog *prog,
4267
				       struct bpf_insn_access_aux *info)
4268 4269 4270
{
	if (type == BPF_WRITE) {
		switch (off) {
4271 4272 4273 4274 4275
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4276 4277 4278 4279 4280
			break;
		default:
			return false;
		}
	}
4281

4282 4283 4284 4285
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
4286 4287 4288
	case bpf_ctx_range(struct __sk_buff, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
4289 4290 4291
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
4292 4293
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
		return false;
4294 4295
	}

4296
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4297 4298
}

4299
static bool __is_valid_xdp_access(int off, int size)
4300 4301 4302 4303 4304
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
4305
	if (size != sizeof(__u32))
4306 4307 4308 4309 4310 4311 4312
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
4313
				const struct bpf_prog *prog,
4314
				struct bpf_insn_access_aux *info)
4315 4316 4317 4318 4319 4320
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct xdp_md, data):
4321
		info->reg_type = PTR_TO_PACKET;
4322
		break;
4323 4324 4325
	case offsetof(struct xdp_md, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
4326
	case offsetof(struct xdp_md, data_end):
4327
		info->reg_type = PTR_TO_PACKET_END;
4328 4329 4330
		break;
	}

4331
	return __is_valid_xdp_access(off, size);
4332 4333 4334 4335
}

void bpf_warn_invalid_xdp_action(u32 act)
{
4336 4337 4338 4339 4340
	const u32 act_max = XDP_REDIRECT;

	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
		  act > act_max ? "Illegal" : "Driver unsupported",
		  act);
4341 4342 4343
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

A
Andrey Ignatov 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
static bool sock_addr_is_valid_access(int off, int size,
				      enum bpf_access_type type,
				      const struct bpf_prog *prog,
				      struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);

	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
		return false;
	if (off % size != 0)
		return false;

	/* Disallow access to IPv6 fields from IPv4 contex and vise
	 * versa.
	 */
	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_BIND:
A
Andrey Ignatov 已提交
4363
		case BPF_CGROUP_INET4_CONNECT:
A
Andrey Ignatov 已提交
4364 4365 4366 4367 4368 4369 4370 4371
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET6_BIND:
A
Andrey Ignatov 已提交
4372
		case BPF_CGROUP_INET6_CONNECT:
A
Andrey Ignatov 已提交
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
			break;
		default:
			return false;
		}
		break;
	}

	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		/* Only narrow read access allowed for now. */
		if (type == BPF_READ) {
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
				return false;
		} else {
			if (size != size_default)
				return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, user_port):
		if (size != size_default)
			return false;
		break;
	default:
		if (type == BPF_READ) {
			if (size != size_default)
				return false;
		} else {
			return false;
		}
	}

	return true;
}

4409 4410
static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
4411
				     const struct bpf_prog *prog,
4412
				     struct bpf_insn_access_aux *info)
L
Lawrence Brakmo 已提交
4413
{
4414 4415
	const int size_default = sizeof(__u32);

L
Lawrence Brakmo 已提交
4416 4417
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
4418

L
Lawrence Brakmo 已提交
4419 4420 4421 4422 4423 4424
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;

	if (type == BPF_WRITE) {
		switch (off) {
4425
		case offsetof(struct bpf_sock_ops, reply):
4426
		case offsetof(struct bpf_sock_ops, sk_txhash):
4427 4428
			if (size != size_default)
				return false;
L
Lawrence Brakmo 已提交
4429 4430 4431 4432
			break;
		default:
			return false;
		}
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	} else {
		switch (off) {
		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
					bytes_acked):
			if (size != sizeof(__u64))
				return false;
			break;
		default:
			if (size != size_default)
				return false;
			break;
		}
L
Lawrence Brakmo 已提交
4445 4446
	}

4447
	return true;
L
Lawrence Brakmo 已提交
4448 4449
}

4450 4451 4452
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
			   const struct bpf_prog *prog)
{
4453
	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
4454 4455
}

4456 4457
static bool sk_skb_is_valid_access(int off, int size,
				   enum bpf_access_type type,
4458
				   const struct bpf_prog *prog,
4459 4460
				   struct bpf_insn_access_aux *info)
{
4461 4462 4463 4464 4465 4466
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data_meta):
		return false;
	}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	if (type == BPF_WRITE) {
		switch (off) {
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
			break;
		default:
			return false;
		}
	}

4477
	switch (off) {
4478
	case bpf_ctx_range(struct __sk_buff, mark):
4479
		return false;
4480 4481 4482 4483 4484 4485 4486 4487
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

4488
	return bpf_skb_is_valid_access(off, size, type, prog, info);
4489 4490
}

4491 4492
static bool sk_msg_is_valid_access(int off, int size,
				   enum bpf_access_type type,
4493
				   const struct bpf_prog *prog,
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
				   struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct sk_msg_md, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case offsetof(struct sk_msg_md, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

	if (off < 0 || off >= sizeof(struct sk_msg_md))
		return false;
	if (off % size != 0)
		return false;
	if (size != sizeof(__u64))
		return false;

	return true;
}

4518 4519 4520
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
4521
				  struct bpf_prog *prog, u32 *target_size)
4522 4523
{
	struct bpf_insn *insn = insn_buf;
4524
	int off;
4525

4526
	switch (si->off) {
4527
	case offsetof(struct __sk_buff, len):
4528
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4529 4530
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
4531 4532
		break;

4533
	case offsetof(struct __sk_buff, protocol):
4534
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4535 4536
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
4537 4538
		break;

4539
	case offsetof(struct __sk_buff, vlan_proto):
4540
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4541 4542
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
4543 4544
		break;

4545
	case offsetof(struct __sk_buff, priority):
4546
		if (type == BPF_WRITE)
4547
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4548 4549
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
4550
		else
4551
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4552 4553
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
4554 4555
		break;

4556
	case offsetof(struct __sk_buff, ingress_ifindex):
4557
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4558 4559
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
4560 4561 4562
		break;

	case offsetof(struct __sk_buff, ifindex):
4563
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4564
				      si->dst_reg, si->src_reg,
4565
				      offsetof(struct sk_buff, dev));
4566 4567
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4568 4569
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
4570 4571
		break;

4572
	case offsetof(struct __sk_buff, hash):
4573
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4574 4575
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
4576 4577
		break;

4578
	case offsetof(struct __sk_buff, mark):
4579
		if (type == BPF_WRITE)
4580
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4581 4582
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
4583
		else
4584
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4585 4586
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
4587
		break;
4588 4589

	case offsetof(struct __sk_buff, pkt_type):
4590 4591 4592 4593 4594 4595 4596 4597
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
4598 4599

	case offsetof(struct __sk_buff, queue_mapping):
4600 4601 4602 4603
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
4604 4605 4606

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
4620 4621

	case offsetof(struct __sk_buff, cb[0]) ...
4622
	     offsetofend(struct __sk_buff, cb[4]) - 1:
4623
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
4624 4625 4626
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
4627

4628
		prog->cb_access = 1;
4629 4630 4631 4632
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
4633
		if (type == BPF_WRITE)
4634
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
4635
					      si->src_reg, off);
4636
		else
4637
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
4638
					      si->src_reg, off);
4639 4640
		break;

4641
	case offsetof(struct __sk_buff, tc_classid):
4642 4643 4644 4645 4646 4647
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
4648
		*target_size = 2;
4649
		if (type == BPF_WRITE)
4650 4651
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
4652
		else
4653 4654
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
4655 4656
		break;

4657
	case offsetof(struct __sk_buff, data):
4658
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
4659
				      si->dst_reg, si->src_reg,
4660 4661 4662
				      offsetof(struct sk_buff, data));
		break;

4663 4664 4665 4666 4667 4668 4669 4670 4671
	case offsetof(struct __sk_buff, data_meta):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_meta);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_meta);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;

4672
	case offsetof(struct __sk_buff, data_end):
4673 4674 4675 4676 4677 4678
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
4679 4680
		break;

4681 4682 4683
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
4684
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
4685 4686
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
4687
		else
4688
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4689 4690
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
4691
#else
4692
		*target_size = 2;
4693
		if (type == BPF_WRITE)
4694
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
4695
		else
4696
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4697 4698 4699 4700 4701 4702
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4703 4704
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
4705 4706 4707
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
4708
		*target_size = 4;
4709
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4710
#endif
4711
		break;
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	case offsetof(struct __sk_buff, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_family,
						     2, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_daddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_rcv_saddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip6[0]) ...
	     offsetof(struct __sk_buff, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, remote_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;
	case offsetof(struct __sk_buff, local_ip6[0]) ...
	     offsetof(struct __sk_buff, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, local_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct __sk_buff, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_dport,
						     2, target_size));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct __sk_buff, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_num, 2, target_size));
		break;
4812 4813 4814
	}

	return insn - insn_buf;
4815 4816
}

4817
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4818
					  const struct bpf_insn *si,
4819
					  struct bpf_insn *insn_buf,
4820
					  struct bpf_prog *prog, u32 *target_size)
4821 4822
{
	struct bpf_insn *insn = insn_buf;
A
Andrey Ignatov 已提交
4823
	int off;
4824

4825
	switch (si->off) {
4826 4827 4828 4829
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
4830
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4831 4832
					offsetof(struct sock, sk_bound_dev_if));
		else
4833
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4834 4835
				      offsetof(struct sock, sk_bound_dev_if));
		break;
4836

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	case offsetof(struct bpf_sock, mark):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_mark));
		break;

	case offsetof(struct bpf_sock, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_priority));
		break;

4859 4860 4861
	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

4862
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4863 4864 4865 4866
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
4867
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4868
				      offsetof(struct sock, __sk_flags_offset));
4869 4870
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4871 4872 4873
		break;

	case offsetof(struct bpf_sock, protocol):
4874
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4875
				      offsetof(struct sock, __sk_flags_offset));
4876 4877
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4878
		break;
A
Andrey Ignatov 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

	case offsetof(struct bpf_sock, src_ip4):
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_rcv_saddr,
				       FIELD_SIZEOF(struct sock_common,
						    skc_rcv_saddr),
				       target_size));
		break;

	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		off = si->off;
		off -= offsetof(struct bpf_sock, src_ip6[0]);
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(
				struct sock_common,
				skc_v6_rcv_saddr.s6_addr32[0],
				FIELD_SIZEOF(struct sock_common,
					     skc_v6_rcv_saddr.s6_addr32[0]),
				target_size) + off);
#else
		(void)off;
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock, src_port):
		*insn++ = BPF_LDX_MEM(
			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
			si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_num,
				       FIELD_SIZEOF(struct sock_common,
						    skc_num),
				       target_size));
		break;
4916 4917 4918 4919 4920
	}

	return insn - insn_buf;
}

4921 4922
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
4923
					 struct bpf_insn *insn_buf,
4924
					 struct bpf_prog *prog, u32 *target_size)
4925 4926 4927
{
	struct bpf_insn *insn = insn_buf;

4928
	switch (si->off) {
4929 4930
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4931
				      si->dst_reg, si->src_reg,
4932
				      offsetof(struct sk_buff, dev));
4933
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4934 4935
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
4936 4937
		break;
	default:
4938 4939
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
4940 4941 4942 4943 4944
	}

	return insn - insn_buf;
}

4945 4946
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
4947
				  struct bpf_insn *insn_buf,
4948
				  struct bpf_prog *prog, u32 *target_size)
4949 4950 4951
{
	struct bpf_insn *insn = insn_buf;

4952
	switch (si->off) {
4953
	case offsetof(struct xdp_md, data):
4954
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4955
				      si->dst_reg, si->src_reg,
4956 4957
				      offsetof(struct xdp_buff, data));
		break;
4958 4959 4960 4961 4962
	case offsetof(struct xdp_md, data_meta):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, data_meta));
		break;
4963
	case offsetof(struct xdp_md, data_end):
4964
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4965
				      si->dst_reg, si->src_reg,
4966 4967
				      offsetof(struct xdp_buff, data_end));
		break;
4968 4969 4970 4971 4972 4973 4974 4975
	case offsetof(struct xdp_md, ingress_ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
				      si->dst_reg, si->dst_reg,
				      offsetof(struct xdp_rxq_info, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4976
				      offsetof(struct net_device, ifindex));
4977 4978 4979 4980 4981 4982
		break;
	case offsetof(struct xdp_md, rx_queue_index):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4983 4984
				      offsetof(struct xdp_rxq_info,
					       queue_index));
4985
		break;
4986 4987 4988 4989 4990
	}

	return insn - insn_buf;
}

A
Andrey Ignatov 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
 * context Structure, F is Field in context structure that contains a pointer
 * to Nested Structure of type NS that has the field NF.
 *
 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
 * sure that SIZE is not greater than actual size of S.F.NF.
 *
 * If offset OFF is provided, the load happens from that offset relative to
 * offset of NF.
 */
#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
	do {								       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
				      si->src_reg, offsetof(S, F));	       \
		*insn++ = BPF_LDX_MEM(					       \
			SIZE, si->dst_reg, si->dst_reg,			       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
	} while (0)

#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
					     BPF_FIELD_SIZEOF(NS, NF), 0)

/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
 *
 * It doesn't support SIZE argument though since narrow stores are not
 * supported for now.
 *
 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
 * "register" since two registers available in convert_ctx_access are not
 * enough: we can't override neither SRC, since it contains value to store, nor
 * DST since it contains pointer to context that may be used by later
 * instructions. But we need a temporary place to save pointer to nested
 * structure whose field we want to store to.
 */
#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
	do {								       \
		int tmp_reg = BPF_REG_9;				       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
				      offsetof(S, TF));			       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
				      si->dst_reg, offsetof(S, F));	       \
		*insn++ = BPF_STX_MEM(					       \
			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
				      offsetof(S, TF));			       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
						      TF)		       \
	do {								       \
		if (type == BPF_WRITE) {				       \
			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
							 TF);		       \
		} else {						       \
			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
				S, NS, F, NF, SIZE, OFF);  \
		}							       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)

static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
					const struct bpf_insn *si,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_addr, user_family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sockaddr, uaddr, sa_family);
		break;

	case offsetof(struct bpf_sock_addr, user_ip4):
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
			tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, user_port):
		/* To get port we need to know sa_family first and then treat
		 * sockaddr as either sockaddr_in or sockaddr_in6.
		 * Though we can simplify since port field has same offset and
		 * size in both structures.
		 * Here we check this invariant and use just one of the
		 * structures if it's true.
		 */
		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
			     offsetof(struct sockaddr_in6, sin6_port));
		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
						     struct sockaddr_in6, uaddr,
						     sin6_port, tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sock, sk, sk_family);
		break;

	case offsetof(struct bpf_sock_addr, type):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
		break;

	case offsetof(struct bpf_sock_addr, protocol):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
					SK_FL_PROTO_SHIFT);
		break;
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
5137 5138 5139
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
5140 5141
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275

	case offsetof(struct bpf_sock_ops, is_fullsock):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern,
						is_fullsock),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern,
					       is_fullsock));
		break;

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	case offsetof(struct bpf_sock_ops, state):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_state));
		break;

	case offsetof(struct bpf_sock_ops, rtt_min):
		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
			     sizeof(struct minmax));
		BUILD_BUG_ON(sizeof(struct minmax) <
			     sizeof(struct minmax_sample));

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct tcp_sock, rtt_min) +
				      FIELD_SIZEOF(struct minmax_sample, t));
		break;

5302 5303
/* Helper macro for adding read access to tcp_sock or sock fields. */
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
5304
	do {								      \
5305 5306
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
5318 5319 5320 5321
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
						       OBJ_FIELD),	      \
				      si->dst_reg, si->dst_reg,		      \
				      offsetof(OBJ, OBJ_FIELD));	      \
5322 5323
	} while (0)

5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
/* Helper macro for adding write access to tcp_sock or sock fields.
 * The macro is called with two registers, dst_reg which contains a pointer
 * to ctx (context) and src_reg which contains the value that should be
 * stored. However, we need an additional register since we cannot overwrite
 * dst_reg because it may be used later in the program.
 * Instead we "borrow" one of the other register. We first save its value
 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
 * it at the end of the macro.
 */
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
	do {								      \
		int reg = BPF_REG_9;					      \
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
				      reg, si->src_reg,			      \
				      offsetof(OBJ, OBJ_FIELD));	      \
		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
	} while (0)

#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
	do {								      \
		if (TYPE == BPF_WRITE)					      \
			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
		else							      \
			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
	} while (0)

5372
	case offsetof(struct bpf_sock_ops, snd_cwnd):
5373
		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
5374 5375 5376
		break;

	case offsetof(struct bpf_sock_ops, srtt_us):
5377
		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
5378
		break;
5379 5380 5381 5382 5383

	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
				   struct tcp_sock);
		break;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457

	case offsetof(struct bpf_sock_ops, snd_ssthresh):
		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rcv_nxt):
		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_nxt):
		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_una):
		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, mss_cache):
		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, ecn_flags):
		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_delivered):
		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_interval_us):
		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, packets_out):
		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, retrans_out):
		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, total_retrans):
		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_in):
		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_in):
		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_out):
		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_out):
		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, lost_out):
		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sacked_out):
		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sk_txhash):
5458 5459
		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
					  struct sock, type);
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
		break;

	case offsetof(struct bpf_sock_ops, bytes_received):
		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, bytes_acked):
		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
		break;
5470

L
Lawrence Brakmo 已提交
5471 5472 5473 5474
	}
	return insn - insn_buf;
}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct __sk_buff, data_end):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct tcp_skb_cb, bpf.data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;
	default:
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
	}

	return insn - insn_buf;
}

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;

	switch (si->off) {
	case offsetof(struct sk_msg_md, data):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data));
		break;
	case offsetof(struct sk_msg_md, data_end):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data_end));
		break;
	}

	return insn - insn_buf;
}

5523
const struct bpf_verifier_ops sk_filter_verifier_ops = {
5524 5525
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
5526
	.convert_ctx_access	= bpf_convert_ctx_access,
5527 5528
};

5529
const struct bpf_prog_ops sk_filter_prog_ops = {
5530
	.test_run		= bpf_prog_test_run_skb,
5531 5532 5533
};

const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
5534 5535
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
5536
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
5537
	.gen_prologue		= tc_cls_act_prologue,
5538 5539 5540
};

const struct bpf_prog_ops tc_cls_act_prog_ops = {
5541
	.test_run		= bpf_prog_test_run_skb,
5542 5543
};

5544
const struct bpf_verifier_ops xdp_verifier_ops = {
5545 5546 5547
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
5548 5549 5550
};

const struct bpf_prog_ops xdp_prog_ops = {
5551
	.test_run		= bpf_prog_test_run_xdp,
5552 5553
};

5554
const struct bpf_verifier_ops cg_skb_verifier_ops = {
5555
	.get_func_proto		= sk_filter_func_proto,
5556
	.is_valid_access	= sk_filter_is_valid_access,
5557
	.convert_ctx_access	= bpf_convert_ctx_access,
5558 5559 5560
};

const struct bpf_prog_ops cg_skb_prog_ops = {
5561
	.test_run		= bpf_prog_test_run_skb,
5562 5563
};

5564
const struct bpf_verifier_ops lwt_inout_verifier_ops = {
5565 5566
	.get_func_proto		= lwt_inout_func_proto,
	.is_valid_access	= lwt_is_valid_access,
5567
	.convert_ctx_access	= bpf_convert_ctx_access,
5568 5569 5570
};

const struct bpf_prog_ops lwt_inout_prog_ops = {
5571
	.test_run		= bpf_prog_test_run_skb,
5572 5573
};

5574
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
5575 5576
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
5577
	.convert_ctx_access	= bpf_convert_ctx_access,
5578
	.gen_prologue		= tc_cls_act_prologue,
5579 5580 5581
};

const struct bpf_prog_ops lwt_xmit_prog_ops = {
5582
	.test_run		= bpf_prog_test_run_skb,
5583 5584
};

5585
const struct bpf_verifier_ops cg_sock_verifier_ops = {
5586
	.get_func_proto		= sock_filter_func_proto,
5587 5588 5589 5590
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

5591 5592 5593
const struct bpf_prog_ops cg_sock_prog_ops = {
};

A
Andrey Ignatov 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602
const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
	.get_func_proto		= sock_addr_func_proto,
	.is_valid_access	= sock_addr_is_valid_access,
	.convert_ctx_access	= sock_addr_convert_ctx_access,
};

const struct bpf_prog_ops cg_sock_addr_prog_ops = {
};

5603
const struct bpf_verifier_ops sock_ops_verifier_ops = {
5604
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
5605 5606 5607 5608
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

5609 5610 5611 5612
const struct bpf_prog_ops sock_ops_prog_ops = {
};

const struct bpf_verifier_ops sk_skb_verifier_ops = {
5613 5614
	.get_func_proto		= sk_skb_func_proto,
	.is_valid_access	= sk_skb_is_valid_access,
5615
	.convert_ctx_access	= sk_skb_convert_ctx_access,
5616
	.gen_prologue		= sk_skb_prologue,
5617 5618
};

5619 5620 5621
const struct bpf_prog_ops sk_skb_prog_ops = {
};

5622 5623 5624 5625 5626 5627 5628 5629 5630
const struct bpf_verifier_ops sk_msg_verifier_ops = {
	.get_func_proto		= sk_msg_func_proto,
	.is_valid_access	= sk_msg_is_valid_access,
	.convert_ctx_access	= sk_msg_convert_ctx_access,
};

const struct bpf_prog_ops sk_msg_prog_ops = {
};

5631
int sk_detach_filter(struct sock *sk)
5632 5633 5634 5635
{
	int ret = -ENOENT;
	struct sk_filter *filter;

5636 5637 5638
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

5639 5640
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
5641
	if (filter) {
5642
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
5643
		sk_filter_uncharge(sk, filter);
5644 5645
		ret = 0;
	}
5646

5647 5648
	return ret;
}
5649
EXPORT_SYMBOL_GPL(sk_detach_filter);
5650

5651 5652
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
5653
{
5654
	struct sock_fprog_kern *fprog;
5655
	struct sk_filter *filter;
5656
	int ret = 0;
5657 5658 5659

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
5660
					   lockdep_sock_is_held(sk));
5661 5662
	if (!filter)
		goto out;
5663 5664

	/* We're copying the filter that has been originally attached,
5665 5666
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
5667
	 */
5668
	ret = -EACCES;
5669
	fprog = filter->prog->orig_prog;
5670 5671
	if (!fprog)
		goto out;
5672 5673

	ret = fprog->len;
5674
	if (!len)
5675
		/* User space only enquires number of filter blocks. */
5676
		goto out;
5677

5678
	ret = -EINVAL;
5679
	if (len < fprog->len)
5680 5681 5682
		goto out;

	ret = -EFAULT;
5683
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
5684
		goto out;
5685

5686 5687 5688 5689
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
5690 5691 5692 5693
out:
	release_sock(sk);
	return ret;
}