filter.c 56.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
51
#include <net/dst_metadata.h>
52
#include <net/dst.h>
53
#include <net/sock_reuseport.h>
L
Linus Torvalds 已提交
54

S
Stephen Hemminger 已提交
55 56 57 58 59
/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
60 61
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
62
 * than pkt_len we keep whole skb->data. This is the socket level
63
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
64 65 66 67 68 69 70 71
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

72 73 74 75 76 77 78 79
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
80 81 82 83
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

84 85
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
86
	if (filter) {
87
		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
88

S
Stephen Hemminger 已提交
89 90
		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
91
	rcu_read_unlock();
S
Stephen Hemminger 已提交
92 93 94 95 96

	return err;
}
EXPORT_SYMBOL(sk_filter);

97
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
98
{
99
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
100 101
}

102
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
103
{
104
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
105 106 107 108 109
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

110 111 112
	if (skb->len < sizeof(struct nlattr))
		return 0;

113
	if (a > skb->len - sizeof(struct nlattr))
114 115
		return 0;

116
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
117 118 119 120 121 122
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

123
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
124
{
125
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
126 127 128 129 130
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

131 132 133
	if (skb->len < sizeof(struct nlattr))
		return 0;

134
	if (a > skb->len - sizeof(struct nlattr))
135 136
		return 0;

137 138
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
139 140
		return 0;

141
	nla = nla_find_nested(nla, x);
142 143 144 145 146 147
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

148
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 150 151 152
{
	return raw_smp_processor_id();
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
199 200 201 202 203
	}

	return insn - insn_buf;
}

204
static bool convert_bpf_extensions(struct sock_filter *fp,
205
				   struct bpf_insn **insnp)
206
{
207
	struct bpf_insn *insn = *insnp;
208
	u32 cnt;
209 210 211

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
212 213 214 215 216 217 218
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
219 220 221
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
222 223
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
224 225 226 227 228 229
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
230 231 232 233 234 235 236 237 238 239 240 241 242 243
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
244 245 246
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
247 248
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
249 250 251 252 253
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

254 255
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
256 257 258
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
259 260
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
261 262 263
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
264 265 266 267
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
268

269 270 271 272
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
273 274
		break;

275 276 277 278 279 280 281 282 283 284
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

285 286 287 288
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
289
	case SKF_AD_OFF + SKF_AD_RANDOM:
290
		/* arg1 = CTX */
291
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
292
		/* arg2 = A */
293
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
294
		/* arg3 = X */
295
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
296
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
297 298
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
299
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
300 301
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
302
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
303 304
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
305
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
306 307
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
308
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
309
			break;
C
Chema Gonzalez 已提交
310
		case SKF_AD_OFF + SKF_AD_RANDOM:
311 312
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
313
			break;
314 315 316 317
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
318 319
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
336
 *	bpf_convert_filter - convert filter program
337 338 339 340 341 342 343 344 345
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
346
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
347 348 349
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
350
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
351
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
352
 */
353 354
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
355 356
{
	int new_flen = 0, pass = 0, target, i;
357
	struct bpf_insn *new_insn;
358 359 360 361 362
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
363
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
364

365
	if (len <= 0 || len > BPF_MAXINSNS)
366 367 368
		return -EINVAL;

	if (new_prog) {
369 370
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
371 372 373 374 375 376 377 378
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	/* Classic BPF related prologue emission. */
	if (new_insn) {
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
	} else {
		new_insn += 3;
	}
395 396

	for (i = 0; i < len; fp++, i++) {
397 398
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

441
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
442 443
			break;

444 445 446 447 448 449 450
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
451 452 453 454 455 456 457 458
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

459 460 461 462
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
478
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
479

480 481
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
482 483
				bpf_src = BPF_X;
			} else {
484
				insn->dst_reg = BPF_REG_A;
485 486
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
487
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
488
			}
489 490 491 492 493

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
494
				BPF_EMIT_JMP;
495
				break;
L
Linus Torvalds 已提交
496
			}
497 498 499 500 501

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
502
				BPF_EMIT_JMP;
503
				break;
504
			}
505 506 507 508

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
509
			BPF_EMIT_JMP;
510 511 512 513
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
514
			BPF_EMIT_JMP;
515 516 517 518
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
519
			/* tmp = A */
520
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
521
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
522
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
523
			/* A &= 0xf */
524
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
525
			/* A <<= 2 */
526
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
527
			/* X = A */
528
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
529
			/* A = tmp */
530
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
531 532 533 534 535
			break;

		/* RET_K, RET_A are remaped into 2 insns. */
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
536 537 538
			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
						BPF_K : BPF_X, BPF_REG_0,
						BPF_REG_A, fp->k);
539
			*insn = BPF_EXIT_INSN();
540 541 542 543 544
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
545 546 547
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
548 549 550 551 552
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
553 554 555
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
556 557 558 559 560
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
561 562
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
563 564 565 566
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
567
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
568 569 570 571
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
572
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
573 574 575 576 577
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
578 579 580
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
581 582
			break;

583
		/* Access seccomp_data fields. */
584
		case BPF_LDX | BPF_ABS | BPF_W:
585 586
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
587 588
			break;

S
Stephen Hemminger 已提交
589
		/* Unknown instruction. */
L
Linus Torvalds 已提交
590
		default:
591
			goto err;
L
Linus Torvalds 已提交
592
		}
593 594 595 596 597 598

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
599 600
	}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
617
	return 0;
618 619 620
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
621 622
}

623 624
/* Security:
 *
625
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
626
 * __bpf_prog_run(), we check that filter loaded by user never try to read
627
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
628
 * a malicious user doesn't try to abuse us.
629
 */
630
static int check_load_and_stores(const struct sock_filter *filter, int flen)
631
{
632
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
633 634 635
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
636

637
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
638 639
	if (!masks)
		return -ENOMEM;
640

641 642 643 644 645 646
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
647 648
		case BPF_ST:
		case BPF_STX:
649 650
			memvalid |= (1 << filter[pc].k);
			break;
651 652
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
653 654 655 656 657
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
658 659
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
660 661 662
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
663 664 665 666 667 668 669 670 671
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
672 673 674 675 676 677 678 679 680 681 682
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

L
Linus Torvalds 已提交
749
/**
750
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
751 752 753 754 755
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
756 757
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
758
 *
759 760 761
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
762
 */
763 764
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
765
{
766
	bool anc_found;
767
	int pc;
L
Linus Torvalds 已提交
768

769
	if (flen == 0 || flen > BPF_MAXINSNS)
L
Linus Torvalds 已提交
770 771
		return -EINVAL;

772
	/* Check the filter code now */
L
Linus Torvalds 已提交
773
	for (pc = 0; pc < flen; pc++) {
774
		const struct sock_filter *ftest = &filter[pc];
775

776 777
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
778
			return -EINVAL;
779

780
		/* Some instructions need special checks */
781 782 783 784
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
785 786 787
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
788 789 790 791 792
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
793 794 795 796 797
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
798 799 800
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
801 802
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
803 804 805
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
806
			if (ftest->k >= (unsigned int)(flen - pc - 1))
807
				return -EINVAL;
808
			break;
809 810 811 812 813 814 815 816 817
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
818
			if (pc + ftest->jt + 1 >= flen ||
819 820
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
821
			break;
822 823 824
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
825
			anc_found = false;
826 827 828
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
829 830
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
831 832
		}
	}
833

834
	/* Last instruction must be a RET code */
835
	switch (filter[flen - 1].code) {
836 837
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
838
		return check_load_and_stores(filter, flen);
839
	}
840

841
	return -EINVAL;
L
Linus Torvalds 已提交
842 843
}

844 845
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
846
{
847
	unsigned int fsize = bpf_classic_proglen(fprog);
848 849 850 851 852 853 854 855
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
856 857 858

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
859 860 861 862 863 864 865 866
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

867
static void bpf_release_orig_filter(struct bpf_prog *fp)
868 869 870 871 872 873 874 875 876
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

877 878
static void __bpf_prog_release(struct bpf_prog *prog)
{
879
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
880 881 882 883 884
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
885 886
}

887 888
static void __sk_filter_release(struct sk_filter *fp)
{
889 890
	__bpf_prog_release(fp->prog);
	kfree(fp);
891 892
}

893
/**
E
Eric Dumazet 已提交
894
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
895 896
 *	@rcu: rcu_head that contains the sk_filter to free
 */
897
static void sk_filter_release_rcu(struct rcu_head *rcu)
898 899 900
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

901
	__sk_filter_release(fp);
902
}
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
918
	u32 filter_size = bpf_prog_size(fp->prog->len);
919

920 921
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
922
}
923

924 925 926 927
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
928
{
929
	u32 filter_size = bpf_prog_size(fp->prog->len);
930 931 932 933 934 935 936

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
937
	}
938
	return false;
939 940
}

941
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
942 943
{
	struct sock_filter *old_prog;
944
	struct bpf_prog *old_fp;
945
	int err, new_len, old_len = fp->len;
946 947 948 949 950 951 952

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
953
		     sizeof(struct bpf_insn));
954 955 956 957 958 959

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
960
			   GFP_KERNEL | __GFP_NOWARN);
961 962 963 964 965 966
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
967
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
968 969 970 971 972
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
973
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
974 975 976 977 978 979 980 981 982 983 984
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

985
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
986
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
987
	if (err)
988
		/* 2nd bpf_convert_filter() can fail only if it fails
989 990
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
991
		 * by krealloc().
992 993 994
		 */
		goto out_err_free;

995
	bpf_prog_select_runtime(fp);
996

997 998 999 1000 1001 1002
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1003
	__bpf_prog_release(fp);
1004 1005 1006
	return ERR_PTR(err);
}

1007 1008
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1009 1010 1011
{
	int err;

1012
	fp->bpf_func = NULL;
1013
	fp->jited = 0;
1014

1015
	err = bpf_check_classic(fp->insns, fp->len);
1016
	if (err) {
1017
		__bpf_prog_release(fp);
1018
		return ERR_PTR(err);
1019
	}
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1032 1033 1034
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1035
	bpf_jit_compile(fp);
1036 1037 1038 1039

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1040
	if (!fp->jited)
1041
		fp = bpf_migrate_filter(fp);
1042 1043

	return fp;
1044 1045 1046
}

/**
1047
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1048
 *	@pfp: the unattached filter that is created
1049
 *	@fprog: the filter program
1050
 *
R
Randy Dunlap 已提交
1051
 * Create a filter independent of any socket. We first run some
1052 1053 1054 1055
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1056
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1057
{
1058
	unsigned int fsize = bpf_classic_proglen(fprog);
1059
	struct bpf_prog *fp;
1060 1061 1062 1063 1064

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

1065
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1066 1067
	if (!fp)
		return -ENOMEM;
1068

1069 1070 1071
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1072 1073 1074 1075 1076
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1077

1078
	/* bpf_prepare_filter() already takes care of freeing
1079 1080
	 * memory in case something goes wrong.
	 */
1081
	fp = bpf_prepare_filter(fp, NULL);
1082 1083
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1084 1085 1086 1087

	*pfp = fp;
	return 0;
}
1088
EXPORT_SYMBOL_GPL(bpf_prog_create);
1089

1090 1091 1092 1093 1094
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1095
 *	@save_orig: save classic BPF program
1096 1097 1098 1099 1100 1101
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1102
			      bpf_aux_classic_check_t trans, bool save_orig)
1103 1104 1105
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1106
	int err;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1124 1125 1126 1127 1128 1129 1130 1131
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1142
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1143

1144
void bpf_prog_destroy(struct bpf_prog *fp)
1145
{
1146
	__bpf_prog_release(fp);
1147
}
1148
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1176 1177 1178 1179 1180 1181 1182 1183
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1184
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1202
{
1203
	unsigned int fsize = bpf_classic_proglen(fprog);
1204 1205
	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1206 1207
	int err;

1208
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1209
		return ERR_PTR(-EPERM);
1210

L
Linus Torvalds 已提交
1211
	/* Make sure new filter is there and in the right amounts. */
1212
	if (fprog->filter == NULL)
1213
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1214

1215
	prog = bpf_prog_alloc(bpf_fsize, 0);
1216
	if (!prog)
1217
		return ERR_PTR(-ENOMEM);
1218

1219
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1220
		__bpf_prog_free(prog);
1221
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1222 1223
	}

1224
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1225

1226
	err = bpf_prog_store_orig_filter(prog, fprog);
1227
	if (err) {
1228
		__bpf_prog_free(prog);
1229
		return ERR_PTR(-ENOMEM);
1230 1231
	}

1232
	/* bpf_prepare_filter() already takes care of freeing
1233 1234
	 * memory in case something goes wrong.
	 */
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1253 1254 1255
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1256 1257
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1258
		__bpf_prog_release(prog);
1259
		return err;
1260 1261
	}

1262
	return 0;
L
Linus Torvalds 已提交
1263
}
1264
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1265

1266
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1267
{
1268
	struct bpf_prog *prog = __get_filter(fprog, sk);
1269
	int err;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog;

1287
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1288
		return ERR_PTR(-EPERM);
1289 1290

	prog = bpf_prog_get(ufd);
1291
	if (IS_ERR(prog))
1292
		return prog;
1293

1294
	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1295
		bpf_prog_put(prog);
1296
		return ERR_PTR(-EINVAL);
1297 1298
	}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	return prog;
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1310 1311
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1312
		bpf_prog_put(prog);
1313
		return err;
1314 1315 1316 1317 1318
	}

	return 0;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1336 1337 1338 1339 1340 1341 1342 1343
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1344 1345

static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1346
{
1347
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1348
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1349
	int offset = (int) r2;
1350 1351 1352 1353
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1354 1355 1356
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM)))
		return -EINVAL;

1357 1358 1359 1360 1361 1362 1363 1364
	/* bpf verifier guarantees that:
	 * 'from' pointer points to bpf program stack
	 * 'len' bytes of it were initialized
	 * 'len' > 0
	 * 'skb' is a valid pointer to 'struct sk_buff'
	 *
	 * so check for invalid 'offset' and too large 'len'
	 */
1365
	if (unlikely((u32) offset > 0xffff || len > sizeof(sp->buff)))
1366 1367
		return -EFAULT;

1368
	if (unlikely(skb_cloned(skb) &&
1369
		     !skb_clone_writable(skb, offset + len)))
1370 1371
		return -EFAULT;

1372
	ptr = skb_header_pointer(skb, offset, len, sp->buff);
1373 1374 1375
	if (unlikely(!ptr))
		return -EFAULT;

1376
	if (flags & BPF_F_RECOMPUTE_CSUM)
1377
		skb_postpull_rcsum(skb, ptr, len);
1378 1379 1380

	memcpy(ptr, from, len);

1381
	if (ptr == sp->buff)
1382 1383 1384
		/* skb_store_bits cannot return -EFAULT here */
		skb_store_bits(skb, offset, ptr, len);

1385
	if (flags & BPF_F_RECOMPUTE_CSUM)
1386 1387
		skb_postpush_rcsum(skb, ptr, len);

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	return 0;
}

const struct bpf_func_proto bpf_skb_store_bytes_proto = {
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1399 1400 1401
	.arg5_type	= ARG_ANYTHING,
};

1402 1403 1404 1405 1406 1407 1408 1409
static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
	int offset = (int) r2;
	void *to = (void *)(unsigned long) r3;
	unsigned int len = (unsigned int) r4;
	void *ptr;

1410
	if (unlikely((u32) offset > 0xffff || len > MAX_BPF_STACK))
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
		return -EFAULT;
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
}

const struct bpf_func_proto bpf_skb_load_bytes_proto = {
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
};

1432
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1433 1434
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1435
	int offset = (int) r2;
1436 1437
	__sum16 sum, *ptr;

1438 1439
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1440
	if (unlikely((u32) offset > 0xffff))
1441 1442
		return -EFAULT;

1443
	if (unlikely(skb_cloned(skb) &&
1444
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1445 1446 1447 1448 1449 1450
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

1451
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l3_csum_replace_proto = {
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1480
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1481 1482
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1483
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1484
	int offset = (int) r2;
1485 1486
	__sum16 sum, *ptr;

1487 1488
	if (unlikely(flags & ~(BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1489
	if (unlikely((u32) offset > 0xffff))
1490 1491
		return -EFAULT;

1492
	if (unlikely(skb_cloned(skb) &&
1493
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1494 1495 1496 1497 1498 1499
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

1500
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1501 1502 1503 1504 1505 1506
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l4_csum_replace_proto = {
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1533 1534
};

1535 1536
static u64 bpf_csum_diff(u64 r1, u64 from_size, u64 r3, u64 to_size, u64 seed)
{
1537
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	u64 diff_size = from_size + to_size;
	__be32 *from = (__be32 *) (long) r1;
	__be32 *to   = (__be32 *) (long) r3;
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

const struct bpf_func_proto bpf_csum_diff_proto = {
	.func		= bpf_csum_diff,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_STACK,
	.arg2_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
	.arg5_type	= ARG_ANYTHING,
};

1574 1575 1576 1577 1578
static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
	struct net_device *dev;

1579 1580 1581
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

1582 1583 1584 1585 1586 1587 1588 1589
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

	skb2 = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb2))
		return -ENOMEM;

1590
	if (flags & BPF_F_INGRESS) {
1591 1592 1593
		if (skb_at_tc_ingress(skb2))
			skb_postpush_rcsum(skb2, skb_mac_header(skb2),
					   skb2->mac_len);
1594
		return dev_forward_skb(dev, skb2);
1595
	}
1596 1597

	skb2->dev = dev;
1598
	skb_sender_cpu_clear(skb2);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	return dev_queue_xmit(skb2);
}

const struct bpf_func_proto bpf_clone_redirect_proto = {
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1611 1612 1613 1614 1615 1616
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1617

1618 1619 1620 1621
static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

1622 1623 1624
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

1625 1626
	ri->ifindex = ifindex;
	ri->flags = flags;
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

1643
	if (ri->flags & BPF_F_INGRESS) {
1644 1645 1646
		if (skb_at_tc_ingress(skb))
			skb_postpush_rcsum(skb, skb_mac_header(skb),
					   skb->mac_len);
1647
		return dev_forward_skb(dev, skb);
1648
	}
1649 1650

	skb->dev = dev;
1651
	skb_sender_cpu_clear(skb);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	return dev_queue_xmit(skb);
}

const struct bpf_func_proto bpf_redirect_proto = {
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
#ifdef CONFIG_IP_ROUTE_CLASSID
	const struct dst_entry *dst;

	dst = skb_dst((struct sk_buff *) (unsigned long) r1);
	if (dst)
		return dst->tclassid;
#endif
	return 0;
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

	return skb_vlan_push(skb, vlan_proto, vlan_tci);
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1714
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;

	return skb_vlan_pop(skb);
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1729
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
	return false;
}

1740 1741 1742 1743 1744
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

1745 1746 1747 1748
static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1749 1750
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
1751

1752
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6))))
1753
		return -EINVAL;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags))
		return -EPROTO;
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
				return -EINVAL;
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
			return -EINVAL;
		}
	}
1770 1771

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;

	if (flags & BPF_F_TUNINFO_IPV6)
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
	else
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
		memcpy((void *)(long) r2, to, size);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

	return 0;
}

const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static struct metadata_dst __percpu *md_dst;

static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
	struct metadata_dst *md = this_cpu_ptr(md_dst);
1804
	u8 compat[sizeof(struct bpf_tunnel_key)];
1805 1806
	struct ip_tunnel_info *info;

1807
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6)))
1808
		return -EINVAL;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
			from = (struct bpf_tunnel_key *)compat;
			break;
		default:
			return -EINVAL;
		}
	}
1823 1824 1825 1826 1827 1828 1829

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
1830

1831
	info->key.tun_flags = TUNNEL_KEY;
1832
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	return 0;
}

const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
{
	if (!md_dst) {
		/* race is not possible, since it's called from
		 * verifier that is holding verifier mutex
		 */
		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
		if (!md_dst)
			return NULL;
	}
	return &bpf_skb_set_tunnel_key_proto;
}

1870 1871
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
1872 1873 1874 1875 1876 1877 1878 1879
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
1880 1881
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
1882 1883
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
1884 1885
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
1886 1887
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
1888
	case BPF_FUNC_trace_printk:
1889 1890
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
1891 1892 1893 1894 1895
	default:
		return NULL;
	}
}

1896 1897 1898 1899 1900 1901
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
1902 1903
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
1904 1905
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
1906 1907 1908 1909
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
1910 1911
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
1912 1913
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
1914 1915 1916 1917
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
1918 1919 1920 1921
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_key_proto();
1922 1923
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
1924 1925
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
1926 1927 1928 1929 1930
	default:
		return sk_filter_func_proto(func_id);
	}
}

1931
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1932
{
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	/* check bounds */
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;

	/* disallow misaligned access */
	if (off % size != 0)
		return false;

	/* all __sk_buff fields are __u32 */
	if (size != 4)
		return false;

	return true;
}

1948 1949 1950
static bool sk_filter_is_valid_access(int off, int size,
				      enum bpf_access_type type)
{
1951 1952 1953
	if (off == offsetof(struct __sk_buff, tc_classid))
		return false;

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
				       enum bpf_access_type type)
{
1970 1971 1972
	if (off == offsetof(struct __sk_buff, tc_classid))
		return type == BPF_WRITE ? true : false;

1973 1974 1975 1976
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
1977
		case offsetof(struct __sk_buff, priority):
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}
	return __is_valid_access(off, size, type);
}

static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				      int src_reg, int ctx_off,
1990 1991
				      struct bpf_insn *insn_buf,
				      struct bpf_prog *prog)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

2003 2004 2005 2006 2007 2008 2009
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

2010 2011 2012 2013 2014 2015 2016
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

2017 2018 2019
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

2020 2021 2022 2023 2024 2025
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
2026 2027
		break;

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

2046 2047 2048 2049 2050 2051 2052
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

2053
	case offsetof(struct __sk_buff, mark):
2054 2055 2056 2057 2058 2059 2060 2061 2062
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
2063 2064 2065 2066 2067 2068

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
2069 2070 2071 2072 2073 2074 2075 2076

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
2077 2078 2079 2080 2081

	case offsetof(struct __sk_buff, cb[0]) ...
		offsetof(struct __sk_buff, cb[4]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

2082
		prog->cb_access = 1;
2083 2084 2085 2086 2087 2088 2089 2090 2091
		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

2092 2093 2094 2095 2096 2097 2098 2099
	case offsetof(struct __sk_buff, tc_classid):
		ctx_off -= offsetof(struct __sk_buff, tc_classid);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
		WARN_ON(type != BPF_WRITE);
		*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
		break;

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
2118 2119 2120
	}

	return insn - insn_buf;
2121 2122
}

2123 2124 2125
static const struct bpf_verifier_ops sk_filter_ops = {
	.get_func_proto = sk_filter_func_proto,
	.is_valid_access = sk_filter_is_valid_access,
2126
	.convert_ctx_access = bpf_net_convert_ctx_access,
2127 2128
};

2129 2130
static const struct bpf_verifier_ops tc_cls_act_ops = {
	.get_func_proto = tc_cls_act_func_proto,
2131 2132
	.is_valid_access = tc_cls_act_is_valid_access,
	.convert_ctx_access = bpf_net_convert_ctx_access,
2133 2134
};

2135 2136
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
	.ops = &sk_filter_ops,
2137 2138 2139
	.type = BPF_PROG_TYPE_SOCKET_FILTER,
};

2140
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
2141
	.ops = &tc_cls_act_ops,
2142 2143 2144
	.type = BPF_PROG_TYPE_SCHED_CLS,
};

2145
static struct bpf_prog_type_list sched_act_type __read_mostly = {
2146
	.ops = &tc_cls_act_ops,
2147 2148 2149
	.type = BPF_PROG_TYPE_SCHED_ACT,
};

2150
static int __init register_sk_filter_ops(void)
2151
{
2152
	bpf_register_prog_type(&sk_filter_type);
2153
	bpf_register_prog_type(&sched_cls_type);
2154
	bpf_register_prog_type(&sched_act_type);
2155

2156 2157
	return 0;
}
2158 2159
late_initcall(register_sk_filter_ops);

2160 2161 2162 2163 2164
int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

2165 2166 2167
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

2168 2169
	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
2170
	if (filter) {
2171
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
2172
		sk_filter_uncharge(sk, filter);
2173 2174
		ret = 0;
	}
2175

2176 2177
	return ret;
}
2178
EXPORT_SYMBOL_GPL(sk_detach_filter);
2179

2180 2181
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
2182
{
2183
	struct sock_fprog_kern *fprog;
2184
	struct sk_filter *filter;
2185
	int ret = 0;
2186 2187 2188

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
2189
					   sock_owned_by_user(sk));
2190 2191
	if (!filter)
		goto out;
2192 2193

	/* We're copying the filter that has been originally attached,
2194 2195
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
2196
	 */
2197
	ret = -EACCES;
2198
	fprog = filter->prog->orig_prog;
2199 2200
	if (!fprog)
		goto out;
2201 2202

	ret = fprog->len;
2203
	if (!len)
2204
		/* User space only enquires number of filter blocks. */
2205
		goto out;
2206

2207
	ret = -EINVAL;
2208
	if (len < fprog->len)
2209 2210 2211
		goto out;

	ret = -EFAULT;
2212
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
2213
		goto out;
2214

2215 2216 2217 2218
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
2219 2220 2221 2222
out:
	release_sock(sk);
	return ret;
}