gadget.c 133.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
12
 */
13 14 15 16 17 18 19

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/of_platform.h>
26 27 28

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
29
#include <linux/usb/phy.h>
30

31
#include "core.h"
32
#include "hw.h"
33 34

/* conversion functions */
35
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36
{
37
	return container_of(req, struct dwc2_hsotg_req, req);
38 39
}

40
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41
{
42
	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 44
}

45
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46
{
47
	return container_of(gadget, struct dwc2_hsotg, gadget);
48 49
}

50
static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51
{
52
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 54
}

55
static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56
{
57
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 59
}

60
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 62 63 64 65 66 67 68
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

69
/* forward declaration of functions */
70
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
89
 * g_using_dma is set depending on dts flag.
90
 */
91
static inline bool using_dma(struct dwc2_hsotg *hsotg)
92
{
93
	return hsotg->params.g_dma;
94 95
}

96 97 98 99 100 101 102 103 104 105 106
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118
		hs_ep->frame_overrun = true;
119 120
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
121
		hs_ep->frame_overrun = false;
122 123 124
	}
}

125
/**
126
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
127 128 129
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
130
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
131
{
132
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
133 134 135 136 137 138
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
139
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
140 141 142 143
	}
}

/**
144
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
145 146 147
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
148
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149
{
150
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
151 152 153 154 155
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
156
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
157 158 159
}

/**
160
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
161 162 163 164 165 166 167 168
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
169
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
170
				  unsigned int ep, unsigned int dir_in,
171 172 173 174 175 176 177 178 179 180
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
181
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
182 183 184 185
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
186
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
187 188 189
	local_irq_restore(flags);
}

190 191
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
192 193
 *
 * @hsotg: Programming view of the DWC_otg controller
194 195 196 197 198
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
199
		return hsotg->hw_params.num_dev_in_eps;
200 201 202 203 204 205 206 207
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
208 209
 *
 * @hsotg: Programming view of the DWC_otg controller
210 211 212 213 214 215 216 217 218 219 220
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
221
	tx_addr_max = hsotg->hw_params.total_fifo_size;
222 223 224 225 226 227 228 229 230 231 232

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
233 234
 *
 * @hsotg: Programming view of the DWC_otg controller
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

251
/**
252
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
253 254
 * @hsotg: The device instance.
 */
255
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
256
{
257
	unsigned int ep;
258
	unsigned int addr;
259
	int timeout;
260

261
	u32 val;
262
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
263

264 265 266 267
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

268
	/* set RX/NPTX FIFO sizes */
269 270 271 272
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
273

274 275
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
276 277
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
278 279
	 * known values.
	 */
280 281

	/* start at the end of the GNPTXFSIZ, rounded up */
282
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
283

284
	/*
285
	 * Configure fifos sizes from provided configuration and assign
286 287
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
288
	 */
289
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
290
		if (!txfsz[ep])
291 292
			continue;
		val = addr;
293 294
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
295
			  "insufficient fifo memory");
296
		addr += txfsz[ep];
297

298
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
299
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
300
	}
301

302 303 304
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
305 306 307 308
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
309

310
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
311
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
312 313 314 315

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
316
		val = dwc2_readl(hsotg->regs + GRSTCTL);
317

318
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
319 320 321 322 323 324
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
325
			break;
326 327 328 329 330 331
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
332 333 334
}

/**
335
 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
336 337 338 339 340
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
341
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
342
						       gfp_t flags)
343
{
344
	struct dwc2_hsotg_req *req;
345

J
John Youn 已提交
346
	req = kzalloc(sizeof(*req), flags);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
362
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
363 364 365 366 367
{
	return hs_ep->periodic;
}

/**
368
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
369 370 371 372
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
373
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
374
 * of a request to ensure the buffer is ready for access by the caller.
375
 */
376
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
377
				 struct dwc2_hsotg_ep *hs_ep,
378
				struct dwc2_hsotg_req *hs_req)
379 380
{
	struct usb_request *req = &hs_req->req;
381

382
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
383 384
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

433
/**
434
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
435 436 437 438 439 440 441 442 443 444 445 446 447
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
448
 */
449
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
450
				 struct dwc2_hsotg_ep *hs_ep,
451
				struct dwc2_hsotg_req *hs_req)
452 453
{
	bool periodic = is_ep_periodic(hs_ep);
454
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
455 456 457 458 459
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
460
	int max_transfer;
461 462 463 464 465 466 467

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

468
	if (periodic && !hsotg->dedicated_fifos) {
469
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
470 471 472
		int size_left;
		int size_done;

473 474 475 476
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
477

478
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
479

480 481
		/*
		 * if shared fifo, we cannot write anything until the
482 483 484
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
485
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
486 487 488
			return -ENOSPC;
		}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
506
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
507 508
			return -ENOSPC;
		}
509
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
510 511
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
512 513 514

		can_write &= 0xffff;
		can_write *= 4;
515
	} else {
516
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
517 518 519 520
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

521
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
522 523 524
			return -ENOSPC;
		}

525
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
526
		can_write *= 4;	/* fifo size is in 32bit quantities. */
527 528
	}

529 530 531
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
532
		__func__, gnptxsts, can_write, to_write, max_transfer);
533

534 535
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
536 537 538
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
539
	if (can_write > 512 && !periodic)
540 541
		can_write = 512;

542 543
	/*
	 * limit the write to one max-packet size worth of data, but allow
544
	 * the transfer to return that it did not run out of fifo space
545 546
	 * doing it.
	 */
547 548
	if (to_write > max_transfer) {
		to_write = max_transfer;
549

550 551
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
552
			dwc2_hsotg_en_gsint(hsotg,
553
					    periodic ? GINTSTS_PTXFEMP :
554
					   GINTSTS_NPTXFEMP);
555 556
	}

557 558 559 560
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
561
		pkt_round = to_write % max_transfer;
562

563 564
		/*
		 * Round the write down to an
565 566 567 568 569 570 571 572 573
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

574 575 576 577
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
578

579 580
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
581
			dwc2_hsotg_en_gsint(hsotg,
582
					    periodic ? GINTSTS_PTXFEMP :
583
					   GINTSTS_NPTXFEMP);
584 585 586
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
587
		to_write, hs_req->req.length, can_write, buf_pos);
588 589 590 591 592 593 594 595 596 597 598 599 600

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

601
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
602 603 604 605 606 607 608 609 610 611 612

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
613
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
614 615
{
	int index = hs_ep->index;
616 617
	unsigned int maxsize;
	unsigned int maxpkt;
618 619

	if (index != 0) {
620 621
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
622
	} else {
623
		maxsize = 64 + 64;
624
		if (hs_ep->dir_in)
625
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
626
		else
627 628 629 630 631 632 633
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

634 635 636 637
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
638 639 640 641 642 643 644

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

645
/**
646 647 648 649 650
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
651 652 653 654 655 656 657 658 659 660 661
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

796 797 798 799 800 801
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
802
 * Fills next free descriptor with the data of the arrived usb request,
803 804 805 806 807 808 809 810 811 812 813 814
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;
815
	u8 pid = 0;
816 817 818

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

819 820
	index = hs_ep->next_desc;
	desc = &hs_ep->desc_list[index];
821

822 823 824 825 826
	/* Check if descriptor chain full */
	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
	    DEV_DMA_BUFF_STS_HREADY) {
		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
		return 1;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	}

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
844 845 846 847 848
		if (len)
			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
		else
			pid = 1;
		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
849 850 851 852 853 854 855 856 857 858 859
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

860 861 862 863
	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

864 865
	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;
866 867
	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
		hs_ep->next_desc = 0;
868 869 870 871 872 873 874 875

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
876
 * Prepare descriptor chain for isochronous endpoints. Afterwards
877 878 879 880 881 882 883 884
 * write DMA address to HW and enable the endpoint.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
885
	int i;
886 887 888
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;
889
	struct dwc2_dma_desc *desc;
890 891

	if (list_empty(&hs_ep->queue)) {
892
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
893 894 895 896
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

897 898 899 900 901 902 903 904 905
	/* Initialize descriptor chain by Host Busy status */
	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
		desc = &hs_ep->desc_list[i];
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				    << DEV_DMA_BUFF_STS_SHIFT);
	}

	hs_ep->next_desc = 0;
906 907 908
	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
909
		if (ret)
910 911 912
			break;
	}

913
	hs_ep->compl_desc = 0;
914 915 916 917 918 919 920 921 922 923 924
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);
}

925
/**
926
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
927 928 929 930 931 932 933 934
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
935
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
936
				 struct dwc2_hsotg_ep *hs_ep,
937
				struct dwc2_hsotg_req *hs_req,
938 939 940 941 942 943 944 945 946
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
947 948 949
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
950
	unsigned int dma_reg;
951 952 953 954 955 956 957 958 959 960 961 962 963 964

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

965
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
966 967
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
968 969

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
970
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
971 972
		hs_ep->dir_in ? "in" : "out");

973
	/* If endpoint is stalled, we will restart request later */
974
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
975

976
	if (index && ctrl & DXEPCTL_STALL) {
977 978 979 980
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

981
	length = ureq->length - ureq->actual;
982 983
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
984

985 986 987 988 989
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1008 1009 1010 1011 1012
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1013
	if (dir_in && index != 0)
1014
		if (hs_ep->isochronous)
1015
			epsize = DXEPTSIZ_MC(packets);
1016
		else
1017
			epsize = DXEPTSIZ_MC(1);
1018 1019 1020
	else
		epsize = 0;

1021 1022 1023 1024 1025 1026 1027
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1028
		    !(ureq->length % hs_ep->ep.maxpacket))
1029
			hs_ep->send_zlp = 1;
1030 1031
	}

1032 1033
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1034 1035 1036 1037 1038 1039 1040

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1052

1053
		/*
1054 1055 1056
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1057
		 */
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1068

1069 1070 1071 1072 1073 1074
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1075
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1076 1077 1078 1079
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1080

1081 1082 1083 1084 1085
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1086 1087
	}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1098
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1099

1100
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1101 1102

	/* For Setup request do not clear NAK */
1103
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1104
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1105

1106
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1107
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1108

1109 1110
	/*
	 * set these, it seems that DMA support increments past the end
1111
	 * of the packet buffer so we need to calculate the length from
1112 1113
	 * this information.
	 */
1114 1115 1116 1117 1118 1119 1120
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1121
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1122 1123
	}

1124 1125 1126 1127
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1128 1129

	/* check ep is enabled */
1130
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1131
		dev_dbg(hsotg->dev,
1132
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1133
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1134

1135
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1136
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1137 1138

	/* enable ep interrupts */
1139
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1140 1141 1142
}

/**
1143
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1144 1145 1146 1147 1148 1149 1150 1151 1152
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1153
 */
1154
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1155
			      struct dwc2_hsotg_ep *hs_ep,
1156 1157
			     struct usb_request *req)
{
1158
	int ret;
1159

1160 1161 1162
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1173
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1174 1175
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1186
		hs_ep->ep.name, req_buf, hs_req->req.length);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1205 1206 1207 1208
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1220
		       hs_req->req.actual);
1221 1222 1223 1224 1225 1226 1227 1228

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
1240
	u32 current_frame = hsotg->frame_number;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1288
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1289
			       gfp_t gfp_flags)
1290
{
1291 1292
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1293
	struct dwc2_hsotg *hs = hs_ep->parent;
1294
	bool first;
1295
	int ret;
1296 1297 1298
	u32 maxsize = 0;
	u32 mask = 0;

1299 1300 1301 1302 1303

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1304
	/* Prevent new request submission when controller is suspended */
1305 1306
	if (hs->lx_state != DWC2_L0) {
		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1307
			__func__);
1308 1309 1310
		return -EAGAIN;
	}

1311 1312 1313 1314 1315
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	/* In DDMA mode for ISOC's don't queue request if length greater
	 * than descriptor limits.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous) {
		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
		if (hs_ep->dir_in && req->length > maxsize) {
			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
				req->length, maxsize);
			return -EINVAL;
		}

		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
				req->length, hs_ep->ep.maxpacket);
			return -EINVAL;
		}
	}

1334
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1335 1336 1337
	if (ret)
		return ret;

1338 1339
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1340
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1341 1342 1343
		if (ret)
			return ret;
	}
1344 1345 1346 1347 1348 1349
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1350 1351 1352 1353

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1354 1355
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
1356
	 * to the descriptor chain.
1357 1358 1359
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
1360 1361 1362 1363 1364
	if (using_desc_dma(hs) && hs_ep->isochronous) {
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
			dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						   hs_req->req.length);
		}
1365 1366 1367
		return 0;
	}

1368 1369 1370 1371 1372 1373
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

1374 1375 1376
		/* Update current frame number value. */
		hs->frame_number = dwc2_hsotg_read_frameno(hs);
		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1377
			dwc2_gadget_incr_frame_num(hs_ep);
1378 1379 1380 1381 1382
			/* Update current frame number value once more as it
			 * changes here.
			 */
			hs->frame_number = dwc2_hsotg_read_frameno(hs);
		}
1383

1384 1385 1386
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1387 1388 1389
	return 0;
}

1390
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1391
				    gfp_t gfp_flags)
1392
{
1393
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1394
	struct dwc2_hsotg *hs = hs_ep->parent;
1395 1396 1397 1398
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1399
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1400 1401 1402 1403 1404
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1405
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1406
				       struct usb_request *req)
1407
{
1408
	struct dwc2_hsotg_req *hs_req = our_req(req);
1409 1410 1411 1412 1413

	kfree(hs_req);
}

/**
1414
 * dwc2_hsotg_complete_oursetup - setup completion callback
1415 1416 1417 1418 1419 1420
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1421
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1422
					 struct usb_request *req)
1423
{
1424
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1425
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1426 1427 1428

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1429
	dwc2_hsotg_ep_free_request(ep, req);
1430 1431 1432 1433 1434 1435 1436 1437 1438
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1439
 */
1440
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1441
					    u32 windex)
1442
{
1443
	struct dwc2_hsotg_ep *ep;
1444 1445 1446 1447 1448 1449
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1450
	if (idx > hsotg->num_of_eps)
1451 1452
		return NULL;

1453 1454
	ep = index_to_ep(hsotg, idx, dir);

1455 1456 1457 1458 1459 1460
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1461
/**
1462
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1463 1464 1465 1466
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1467
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1468
{
1469
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1483
	dwc2_writel(dctl, hsotg->regs + DCTL);
1484 1485 1486
	return 0;
}

1487
/**
1488
 * dwc2_hsotg_send_reply - send reply to control request
1489 1490 1491 1492 1493 1494 1495 1496
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1497
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1498
				 struct dwc2_hsotg_ep *ep,
1499 1500 1501 1502 1503 1504 1505 1506
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1507
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1508 1509 1510 1511 1512 1513 1514 1515
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1516 1517 1518 1519 1520
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1521
	req->complete = dwc2_hsotg_complete_oursetup;
1522 1523 1524 1525

	if (length)
		memcpy(req->buf, buff, length);

1526
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1527 1528 1529 1530 1531 1532 1533 1534 1535
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1536
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1537 1538 1539
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1540
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1541
					 struct usb_ctrlrequest *ctrl)
1542
{
1543 1544
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1557 1558 1559 1560 1561
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1584
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1585 1586 1587 1588 1589 1590 1591 1592
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1593
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1594

1595 1596 1597 1598 1599 1600
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1601
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1602
{
1603 1604
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1643
/**
1644
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1645 1646 1647
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1648
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1649
					  struct usb_ctrlrequest *ctrl)
1650
{
1651 1652
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1653
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1654
	struct dwc2_hsotg_ep *ep;
1655
	int ret;
1656
	bool halted;
1657 1658 1659
	u32 recip;
	u32 wValue;
	u32 wIndex;
1660 1661 1662 1663

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1664 1665 1666 1667 1668 1669 1670
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
1671 1672 1673 1674
		case USB_DEVICE_REMOTE_WAKEUP:
			hsotg->remote_wakeup_allowed = 1;
			break;

1675 1676 1677 1678 1679 1680 1681
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1682
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1696 1697
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1698
				__func__, wIndex);
1699 1700 1701
			return -ENOENT;
		}

1702
		switch (wValue) {
1703
		case USB_ENDPOINT_HALT:
1704 1705
			halted = ep->halted;

1706
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1707

1708
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1709 1710 1711 1712 1713
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1714

1715 1716 1717 1718 1719 1720
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1721 1722 1723 1724 1725 1726 1727 1728
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1729 1730 1731 1732 1733 1734
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1735 1736 1737
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1738
				if (!ep->req)
1739
					dwc2_gadget_start_next_request(ep);
1740 1741
			}

1742 1743 1744 1745 1746
			break;

		default:
			return -ENOENT;
		}
1747 1748 1749 1750
		break;
	default:
		return -ENOENT;
	}
1751 1752 1753
	return 1;
}

1754
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1755

1756
/**
1757
 * dwc2_hsotg_stall_ep0 - stall ep0
1758 1759 1760 1761
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1762
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1763
{
1764
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1776
	ctrl = dwc2_readl(hsotg->regs + reg);
1777 1778
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1779
	dwc2_writel(ctrl, hsotg->regs + reg);
1780 1781

	dev_dbg(hsotg->dev,
1782
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1783
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1784 1785 1786 1787 1788

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1789
	 dwc2_hsotg_enqueue_setup(hsotg);
1790 1791
}

1792
/**
1793
 * dwc2_hsotg_process_control - process a control request
1794 1795 1796 1797 1798 1799 1800
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1801
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1802
				       struct usb_ctrlrequest *ctrl)
1803
{
1804
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1805 1806 1807
	int ret = 0;
	u32 dcfg;

1808 1809 1810 1811
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1812

1813 1814 1815 1816
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1817
		ep0->dir_in = 1;
1818 1819 1820 1821 1822
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1823 1824 1825 1826

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1827
			hsotg->connected = 1;
1828
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1829
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1830 1831
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1832
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1833 1834 1835

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1836
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837 1838 1839
			return;

		case USB_REQ_GET_STATUS:
1840
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1841 1842 1843 1844
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1845
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1846 1847 1848 1849 1850 1851 1852
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1853
		spin_unlock(&hsotg->lock);
1854
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1855
		spin_lock(&hsotg->lock);
1856 1857 1858 1859
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1860 1861
	/*
	 * the request is either unhandlable, or is not formatted correctly
1862 1863 1864
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1865
	if (ret < 0)
1866
		dwc2_hsotg_stall_ep0(hsotg);
1867 1868 1869
}

/**
1870
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1871 1872 1873 1874 1875 1876
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1877
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1878
				      struct usb_request *req)
1879
{
1880
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1881
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1882 1883 1884 1885 1886 1887

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1888
	spin_lock(&hsotg->lock);
1889
	if (req->actual == 0)
1890
		dwc2_hsotg_enqueue_setup(hsotg);
1891
	else
1892
		dwc2_hsotg_process_control(hsotg, req->buf);
1893
	spin_unlock(&hsotg->lock);
1894 1895 1896
}

/**
1897
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1898 1899 1900 1901 1902
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1903
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1904 1905
{
	struct usb_request *req = hsotg->ctrl_req;
1906
	struct dwc2_hsotg_req *hs_req = our_req(req);
1907 1908 1909 1910 1911 1912 1913
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1914
	req->complete = dwc2_hsotg_complete_setup;
1915 1916 1917 1918 1919 1920

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1921
	hsotg->eps_out[0]->dir_in = 0;
1922
	hsotg->eps_out[0]->send_zlp = 0;
1923
	hsotg->ep0_state = DWC2_EP0_SETUP;
1924

1925
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1926 1927
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1928 1929 1930 1931
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1932 1933 1934
	}
}

1935
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1936
				   struct dwc2_hsotg_ep *hs_ep)
1937 1938 1939 1940 1941 1942
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1943 1944
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1945
			index);
1946 1947
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1948 1949 1950 1951
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1952

1953 1954 1955
		if (!index)
			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);

1956 1957 1958 1959 1960 1961
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1962

1963
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1964 1965 1966
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1967
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1968 1969
}

1970
/**
1971
 * dwc2_hsotg_complete_request - complete a request given to us
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1982
 */
1983
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1984
					struct dwc2_hsotg_ep *hs_ep,
1985
				       struct dwc2_hsotg_req *hs_req,
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1996 1997 1998 1999
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
2000 2001 2002 2003

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

2004 2005 2006
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

2007
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2008

2009 2010 2011
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

2012 2013 2014 2015
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
2016 2017

	if (hs_req->req.complete) {
2018
		spin_unlock(&hsotg->lock);
2019
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2020
		spin_lock(&hsotg->lock);
2021 2022
	}

2023 2024 2025 2026
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

2027 2028
	/*
	 * Look to see if there is anything else to do. Note, the completion
2029
	 * of the previous request may have caused a new request to be started
2030 2031
	 * so be careful when doing this.
	 */
2032

J
John Youn 已提交
2033
	if (!hs_ep->req && result >= 0)
2034
		dwc2_gadget_start_next_request(hs_ep);
2035 2036
}

2037 2038 2039 2040 2041
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
2042 2043 2044
 * happened. SW discovers which descriptor currently in use by HW, adjusts
 * dma_address and calculates index of completed descriptor based on the value
 * of DEPDMA register. Update actual length of request, giveback to gadget.
2045 2046 2047 2048 2049 2050 2051 2052 2053
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	u32 desc_sts;
	u32 mask;

2054
	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2055

2056 2057 2058
	/* Process only descriptors with buffer status set to DMA done */
	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		hs_req = get_ep_head(hs_ep);
		if (!hs_req) {
			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
			return;
		}
		ureq = &hs_req->req;

		/* Check completion status */
		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
			DEV_DMA_STS_SUCC) {
			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
				DEV_DMA_ISOC_RX_NBYTES_MASK;
			ureq->actual = ureq->length - ((desc_sts & mask) >>
				DEV_DMA_ISOC_NBYTES_SHIFT);

			/* Adjust actual len for ISOC Out if len is
			 * not align of 4
			 */
			if (!hs_ep->dir_in && ureq->length & 0x3)
				ureq->actual += 4 - (ureq->length & 0x3);
		}
2081

2082
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2083

2084 2085 2086 2087 2088
		hs_ep->compl_desc++;
		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
			hs_ep->compl_desc = 0;
		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
	}
2089 2090 2091
}

/*
2092 2093
 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
 * @hs_ep: The isochronous endpoint.
2094
 *
2095 2096 2097 2098
 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
 * interrupt. Reset target frame and next_desc to allow to start
 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
 * interrupt for OUT direction.
2099
 */
2100
static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2101 2102 2103
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;

2104 2105 2106
	if (!hs_ep->dir_in)
		dwc2_flush_rx_fifo(hsotg);
	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2107

2108 2109 2110
	hs_ep->target_frame = TARGET_FRAME_INITIAL;
	hs_ep->next_desc = 0;
	hs_ep->compl_desc = 0;
2111 2112
}

2113
/**
2114
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115 2116 2117 2118 2119 2120 2121 2122
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2123
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2124
{
2125 2126
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2127
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2128 2129 2130 2131 2132
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2133
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2134 2135
		int ptr;

2136
		dev_dbg(hsotg->dev,
2137
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 2139 2140 2141
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2142
			(void)dwc2_readl(fifo);
2143 2144 2145 2146 2147 2148 2149 2150

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2151 2152 2153
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2154
	if (to_read > max_req) {
2155 2156
		/*
		 * more data appeared than we where willing
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2168 2169 2170 2171
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2172
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2173 2174 2175
}

/**
2176
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177
 * @hsotg: The device instance
2178
 * @dir_in: If IN zlp
2179 2180 2181 2182 2183
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2184
 * currently believed that we do not need to wait for any space in
2185 2186
 * the TxFIFO.
 */
2187
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2188
{
2189
	/* eps_out[0] is used in both directions */
2190 2191
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2192

2193
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2194 2195
}

2196
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2197
					    u32 epctl_reg)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2239
/**
2240
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241 2242 2243 2244 2245 2246
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2247
 */
2248
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2249
{
2250
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2251 2252
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2253
	struct usb_request *req = &hs_req->req;
2254
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2255 2256 2257 2258 2259 2260 2261
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2262 2263
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2264 2265
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2266 2267 2268
		return;
	}

2269 2270 2271
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2272
	if (using_dma(hsotg)) {
2273
		unsigned int size_done;
2274

2275 2276
		/*
		 * Calculate the size of the transfer by checking how much
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2290 2291
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2292
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2293 2294 2295
		return;
	}

2296 2297 2298 2299
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2300 2301 2302 2303
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2304 2305
	}

2306 2307 2308
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2309
		/* Move to STATUS IN */
2310
		dwc2_hsotg_ep0_zlp(hsotg, true);
2311
		return;
2312 2313
	}

2314 2315 2316 2317 2318 2319 2320
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2321 2322
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2323 2324
	}

2325
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2326 2327 2328
}

/**
2329
 * dwc2_hsotg_handle_rx - RX FIFO has data
2330 2331 2332 2333 2334 2335
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2336
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337 2338 2339 2340 2341 2342 2343
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2344
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2345
{
2346
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2347 2348 2349 2350
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2351 2352
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2353

2354 2355
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2356

2357
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358
		__func__, grxstsr, size, epnum);
2359

2360 2361 2362
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2363 2364
		break;

2365
	case GRXSTS_PKTSTS_OUTDONE:
2366
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2367
			dwc2_hsotg_read_frameno(hsotg));
2368 2369

		if (!using_dma(hsotg))
2370
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2371 2372
		break;

2373
	case GRXSTS_PKTSTS_SETUPDONE:
2374 2375
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376
			dwc2_hsotg_read_frameno(hsotg),
2377
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2378
		/*
2379
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 2381 2382 2383
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2384
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2385 2386
		break;

2387
	case GRXSTS_PKTSTS_OUTRX:
2388
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2389 2390
		break;

2391
	case GRXSTS_PKTSTS_SETUPRX:
2392 2393
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394
			dwc2_hsotg_read_frameno(hsotg),
2395
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2396

2397 2398
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2399
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2400 2401 2402 2403 2404 2405
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2406
		dwc2_hsotg_dump(hsotg);
2407 2408 2409 2410 2411
		break;
	}
}

/**
2412
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413
 * @mps: The maximum packet size in bytes.
2414
 */
2415
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2416 2417 2418
{
	switch (mps) {
	case 64:
2419
		return D0EPCTL_MPS_64;
2420
	case 32:
2421
		return D0EPCTL_MPS_32;
2422
	case 16:
2423
		return D0EPCTL_MPS_16;
2424
	case 8:
2425
		return D0EPCTL_MPS_8;
2426 2427 2428 2429 2430 2431 2432 2433
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2434
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435 2436 2437
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2438
 * @mc: The multicount value
2439
 * @dir_in: True if direction is in.
2440 2441 2442 2443
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2444
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2445 2446
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2447
{
2448
	struct dwc2_hsotg_ep *hs_ep;
2449 2450 2451
	void __iomem *regs = hsotg->regs;
	u32 reg;

2452 2453 2454 2455
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2456
	if (ep == 0) {
2457 2458
		u32 mps_bytes = mps;

2459
		/* EP0 is a special case */
2460 2461
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2462
			goto bad_mps;
2463
		hs_ep->ep.maxpacket = mps_bytes;
2464
		hs_ep->mc = 1;
2465
	} else {
2466
		if (mps > 1024)
2467
			goto bad_mps;
2468 2469
		hs_ep->mc = mc;
		if (mc > 3)
2470
			goto bad_mps;
2471
		hs_ep->ep.maxpacket = mps;
2472 2473
	}

2474
	if (dir_in) {
2475
		reg = dwc2_readl(regs + DIEPCTL(ep));
2476
		reg &= ~DXEPCTL_MPS_MASK;
2477
		reg |= mps;
2478
		dwc2_writel(reg, regs + DIEPCTL(ep));
2479
	} else {
2480
		reg = dwc2_readl(regs + DOEPCTL(ep));
2481
		reg &= ~DXEPCTL_MPS_MASK;
2482
		reg |= mps;
2483
		dwc2_writel(reg, regs + DOEPCTL(ep));
2484
	}
2485 2486 2487 2488 2489 2490 2491

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2492
/**
2493
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494 2495 2496
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2497
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498
{
2499 2500
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2501 2502

	/* wait until the fifo is flushed */
2503 2504 2505
	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
			 __func__);
2506
}
2507 2508

/**
2509
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510 2511 2512 2513 2514 2515
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2516
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517
			    struct dwc2_hsotg_ep *hs_ep)
2518
{
2519
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520

2521 2522 2523 2524 2525 2526
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2527
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528
					      hs_ep->dir_in, 0);
2529
		return 0;
2530
	}
2531 2532 2533 2534

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2535
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 2537 2538 2539 2540 2541
	}

	return 0;
}

/**
2542
 * dwc2_hsotg_complete_in - complete IN transfer
2543 2544 2545 2546 2547 2548
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2549
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550
				   struct dwc2_hsotg_ep *hs_ep)
2551
{
2552
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2554 2555 2556 2557 2558 2559 2560
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2561
	/* Finish ZLP handling for IN EP0 transactions */
2562 2563
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2564 2565 2566 2567 2568 2569 2570

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2571
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 2573 2574
		if (hsotg->test_mode) {
			int ret;

2575
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 2577
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578
					hsotg->test_mode);
2579
				dwc2_hsotg_stall_ep0(hsotg);
2580 2581 2582
				return;
			}
		}
2583
		dwc2_hsotg_enqueue_setup(hsotg);
2584 2585 2586
		return;
	}

2587 2588
	/*
	 * Calculate the size of the transfer by checking how much is left
2589 2590 2591 2592 2593 2594 2595
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2596 2597 2598 2599 2600 2601 2602 2603
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2604 2605 2606 2607 2608 2609 2610 2611 2612

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2613 2614 2615
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2616 2617
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 2620 2621
		return;
	}

2622
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623
	if (hs_ep->send_zlp) {
2624
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625
		hs_ep->send_zlp = 0;
2626 2627 2628 2629
		/* transfer will be completed on next complete interrupt */
		return;
	}

2630 2631
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2632
		dwc2_hsotg_ep0_zlp(hsotg, false);
2633 2634 2635
		return;
	}

2636
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
2730 2731
		/* Update current frame number value. */
		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2732 2733 2734 2735 2736
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2737 2738
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2739
 * @ep: The endpoint on which interrupt is asserted.
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2753
	u32 tmp;
2754 2755 2756 2757

	if (dir_in || !ep->isochronous)
		return;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2811 2812 2813 2814
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
2815
	u32 tmp;
2816 2817 2818 2819 2820

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2821

2822
		tmp = dwc2_hsotg_read_frameno(hsotg);
2823
		if (using_desc_dma(hsotg)) {
2824 2825
			hs_ep->target_frame = tmp;
			dwc2_gadget_incr_frame_num(hs_ep);
2826 2827 2828 2829
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2830
		hs_ep->target_frame = tmp;
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

2846 2847
	if (!using_desc_dma(hsotg))
		dwc2_gadget_incr_frame_num(hs_ep);
2848 2849
}

2850
/**
2851
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2852 2853 2854 2855 2856
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2857
 */
2858
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2859
			     int dir_in)
2860
{
2861
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2862 2863 2864
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2865
	u32 ints;
2866
	u32 ctrl;
2867

2868
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2869
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2870

2871
	/* Clear endpoint interrupts */
2872
	dwc2_writel(ints, hsotg->regs + epint_reg);
2873

2874 2875
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2876
			__func__, idx, dir_in ? "in" : "out");
2877 2878 2879
		return;
	}

2880 2881 2882
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2883 2884 2885 2886
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2897
	if (ints & DXEPINT_XFERCOMPL) {
2898
		dev_dbg(hsotg->dev,
2899
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2900 2901
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2902

2903 2904
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2905 2906 2907
			/* XferCompl set along with BNA */
			if (!(ints & DXEPINT_BNAINTR))
				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2908 2909 2910 2911 2912 2913
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2914 2915 2916
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2917
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2918 2919
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2920

2921
			if (idx == 0 && !hs_ep->req)
2922
				dwc2_hsotg_enqueue_setup(hsotg);
2923
		} else if (using_dma(hsotg)) {
2924 2925 2926 2927
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2928 2929
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2930

2931
			dwc2_hsotg_handle_outdone(hsotg, idx);
2932 2933 2934
		}
	}

2935 2936
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2937

2938 2939 2940 2941 2942 2943
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2944
	if (ints & DXEPINT_AHBERR)
2945 2946
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2947
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2948 2949 2950
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2951 2952
			/*
			 * this is the notification we've received a
2953 2954
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2955 2956
			 * the setup here.
			 */
2957 2958 2959 2960

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2961
				dwc2_hsotg_handle_outdone(hsotg, 0);
2962 2963 2964
		}
	}

2965
	if (ints & DXEPINT_STSPHSERCVD) {
2966 2967
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2968 2969 2970 2971 2972 2973 2974
		/* Safety check EP0 state when STSPHSERCVD asserted */
		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
			/* Move to STATUS IN for DDMA */
			if (using_desc_dma(hsotg))
				dwc2_hsotg_ep0_zlp(hsotg, true);
		}

2975 2976
	}

2977
	if (ints & DXEPINT_BACK2BACKSETUP)
2978 2979
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2980 2981 2982
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
		if (hs_ep->isochronous)
2983
			dwc2_gadget_handle_isoc_bna(hs_ep);
2984 2985
	}

2986
	if (dir_in && !hs_ep->isochronous) {
2987
		/* not sure if this is important, but we'll clear it anyway */
2988
		if (ints & DXEPINT_INTKNTXFEMP) {
2989 2990 2991 2992 2993
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2994
		if (ints & DXEPINT_INTKNEPMIS) {
2995 2996 2997
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2998 2999 3000

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3001
		    ints & DXEPINT_TXFEMP) {
3002 3003
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3004
			if (!using_dma(hsotg))
3005
				dwc2_hsotg_trytx(hsotg, hs_ep);
3006
		}
3007 3008 3009 3010
	}
}

/**
3011
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3012 3013 3014 3015
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3016
 */
3017
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3018
{
3019
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3020
	int ep0_mps = 0, ep_mps = 8;
3021

3022 3023
	/*
	 * This should signal the finish of the enumeration phase
3024
	 * of the USB handshaking, so we should now know what rate
3025 3026
	 * we connected at.
	 */
3027 3028 3029

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3030 3031
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3032
	 * it seems IN transfers must be a even number of packets we do
3033 3034
	 * not advertise a 64byte MPS on EP0.
	 */
3035 3036

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3037
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3038 3039
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3040 3041
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3042
		ep_mps = 1023;
3043 3044
		break;

3045
	case DSTS_ENUMSPD_HS:
3046 3047
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3048
		ep_mps = 1024;
3049 3050
		break;

3051
	case DSTS_ENUMSPD_LS:
3052
		hsotg->gadget.speed = USB_SPEED_LOW;
3053 3054
		ep0_mps = 8;
		ep_mps = 8;
3055 3056
		/*
		 * note, we don't actually support LS in this driver at the
3057 3058 3059 3060 3061
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3062 3063
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3064

3065 3066 3067 3068
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3069 3070 3071

	if (ep0_mps) {
		int i;
3072
		/* Initialize ep0 for both in and out directions */
3073 3074
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3075 3076
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3077 3078
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3079
			if (hsotg->eps_out[i])
3080 3081
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3082
		}
3083 3084 3085 3086
	}

	/* ensure after enumeration our EP0 is active */

3087
	dwc2_hsotg_enqueue_setup(hsotg);
3088 3089

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3090 3091
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3103
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3104
			      struct dwc2_hsotg_ep *ep,
3105
			      int result)
3106
{
3107
	struct dwc2_hsotg_req *req, *treq;
3108
	unsigned int size;
3109

3110
	ep->req = NULL;
3111

3112
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3113
		dwc2_hsotg_complete_request(hsotg, ep, req,
3114
					    result);
3115

3116 3117
	if (!hsotg->dedicated_fifos)
		return;
3118
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3119
	if (size < ep->fifo_size)
3120
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3121 3122 3123
}

/**
3124
 * dwc2_hsotg_disconnect - disconnect service
3125 3126
 * @hsotg: The device state.
 *
3127 3128 3129
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3130
 */
3131
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3132
{
3133
	unsigned int ep;
3134

3135 3136 3137 3138
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3139
	hsotg->test_mode = 0;
3140 3141 3142 3143

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3144
					  -ESHUTDOWN);
3145 3146
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3147
					  -ESHUTDOWN);
3148
	}
3149 3150

	call_gadget(hsotg, disconnect);
3151
	hsotg->lx_state = DWC2_L3;
J
John Stultz 已提交
3152 3153

	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3154 3155 3156
}

/**
3157
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3158 3159 3160
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3161
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3162
{
3163
	struct dwc2_hsotg_ep *ep;
3164 3165 3166
	int epno, ret;

	/* look through for any more data to transmit */
3167
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3168 3169 3170 3171
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3172 3173 3174 3175 3176 3177 3178 3179

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3180
		ret = dwc2_hsotg_trytx(hsotg, ep);
3181 3182 3183 3184 3185 3186
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3187 3188 3189
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3190

3191
/**
3192
 * dwc2_hsotg_core_init - issue softreset to the core
3193
 * @hsotg: The device state
3194
 * @is_usb_reset: Usb resetting flag
3195 3196 3197
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3198
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3199
				       bool is_usb_reset)
3200
{
3201
	u32 intmsk;
3202
	u32 val;
3203
	u32 usbcfg;
3204
	u32 dcfg = 0;
3205

3206 3207 3208
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3209
	if (!is_usb_reset)
3210
		if (dwc2_core_reset(hsotg, true))
3211
			return;
3212 3213 3214 3215 3216 3217

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3218 3219 3220
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3221
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3222

3223
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3224 3225
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3226 3227 3228 3229 3230 3231 3232 3233
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3234
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3235

3236
	dwc2_hsotg_init_fifo(hsotg);
3237

3238
	if (!is_usb_reset)
3239
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3240

3241
	dcfg |= DCFG_EPMISCNT(1);
3242 3243 3244 3245 3246 3247

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3248 3249 3250 3251
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3252 3253
		break;
	default:
3254 3255
		dcfg |= DCFG_DEVSPD_HS;
	}
3256

3257 3258 3259
	if (hsotg->params.ipg_isoc_en)
		dcfg |= DCFG_IPG_ISOC_SUPPORDED;

3260
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3261 3262

	/* Clear any pending OTG interrupts */
3263
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3264 3265

	/* Clear any pending interrupts */
3266
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3267
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3268
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3269 3270
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3271 3272
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_LPMTRANRCVD;
3273 3274 3275

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3276

J
John Youn 已提交
3277
	if (!hsotg->params.external_id_pin_ctl)
3278 3279 3280
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3281

3282
	if (using_dma(hsotg)) {
3283
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3284
			    hsotg->params.ahbcfg,
3285
			    hsotg->regs + GAHBCFG);
3286 3287 3288

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
3289
			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3290 3291

	} else {
3292 3293 3294 3295
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3296
	}
3297 3298

	/*
3299 3300 3301
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3302 3303
	 */

3304
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3305
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3306
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3307
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3308
		hsotg->regs + DIEPMSK);
3309 3310 3311

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3312
	 * DMA mode we may need this and StsPhseRcvd.
3313
	 */
3314 3315
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3316
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3317
		DOEPMSK_SETUPMSK,
3318
		hsotg->regs + DOEPMSK);
3319

3320
	/* Enable BNA interrupt for DDMA */
3321
	if (using_desc_dma(hsotg)) {
3322
		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3323 3324
		dwc2_set_bit(hsotg->regs + DIEPMSK, DIEPMSK_BNAININTRMSK);
	}
3325

3326
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3327 3328

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329 3330
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3331 3332

	/* enable in and out endpoint interrupts */
3333
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3334 3335 3336 3337 3338 3339 3340

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3341
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3342 3343

	/* Enable interrupts for EP0 in and out */
3344 3345
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3346

3347
	if (!is_usb_reset) {
3348
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349
		udelay(10);  /* see openiboot */
3350
		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3351
	}
3352

3353
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3354 3355

	/*
3356
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357 3358 3359 3360
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3361
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3363

3364
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365 3366
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3367
	       hsotg->regs + DOEPCTL0);
3368 3369

	/* enable, but don't activate EP0in */
3370
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3372 3373

	/* clear global NAKs */
3374 3375 3376
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
3377
	dwc2_set_bit(hsotg->regs + DCTL, val);
3378

3379 3380 3381
	/* configure the core to support LPM */
	dwc2_gadget_init_lpm(hsotg);

3382 3383 3384
	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3385
	hsotg->lx_state = DWC2_L0;
3386 3387 3388 3389 3390 3391

	dwc2_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3392 3393
}

3394
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3395 3396
{
	/* set the soft-disconnect bit */
3397
	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3398
}
3399

3400
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3401
{
3402
	/* remove the soft-disconnect and let's go */
3403
	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3404 3405
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
3423
	u32 daintmsk;
3424 3425 3426 3427
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

3428 3429
	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);

3430
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3431
		hs_ep = hsotg->eps_in[idx];
3432
		/* Proceed only unmasked ISOC EPs */
3433
		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3434 3435
			continue;

3436
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437
		if ((epctrl & DXEPCTL_EPENA) &&
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
3466
	u32 daintmsk;
3467 3468 3469 3470 3471 3472
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

3473 3474 3475
	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	daintmsk >>= DAINT_OUTEP_SHIFT;

3476
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3477
		hs_ep = hsotg->eps_out[idx];
3478
		/* Proceed only unmasked ISOC EPs */
3479
		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3480 3481
			continue;

3482
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483
		if ((epctrl & DXEPCTL_EPENA) &&
3484 3485 3486 3487 3488 3489 3490
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491
			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492
				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3493 3494
				break;
			}
3495 3496 3497 3498 3499 3500 3501
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3502
/**
3503
 * dwc2_hsotg_irq - handle device interrupt
3504 3505 3506
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3507
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3508
{
3509
	struct dwc2_hsotg *hsotg = pw;
3510 3511 3512 3513
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3514 3515 3516
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3517
	spin_lock(&hsotg->lock);
3518
irq_retry:
3519 3520
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3521 3522 3523 3524 3525 3526

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3527 3528 3529 3530 3531 3532 3533
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
3534
			dwc2_exit_partial_power_down(hsotg, true);
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3552
		/* Reset device address to zero */
3553
		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3554

3555 3556 3557 3558
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3559
	if (gintsts & GINTSTS_ENUMDONE) {
3560
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3561

3562
		dwc2_hsotg_irq_enumdone(hsotg);
3563 3564
	}

3565
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566 3567
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568
		u32 daint_out, daint_in;
3569 3570
		int ep;

3571
		daint &= daintmsk;
3572 3573
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3574

3575 3576
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3577 3578
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3579
			if (daint_out & 1)
3580
				dwc2_hsotg_epint(hsotg, ep, 0);
3581 3582
		}

3583 3584
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3585
			if (daint_in & 1)
3586
				dwc2_hsotg_epint(hsotg, ep, 1);
3587 3588 3589 3590 3591
		}
	}

	/* check both FIFOs */

3592
	if (gintsts & GINTSTS_NPTXFEMP) {
3593 3594
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3595 3596
		/*
		 * Disable the interrupt to stop it happening again
3597
		 * unless one of these endpoint routines decides that
3598 3599
		 * it needs re-enabling
		 */
3600

3601 3602
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3603 3604
	}

3605
	if (gintsts & GINTSTS_PTXFEMP) {
3606 3607
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3608
		/* See note in GINTSTS_NPTxFEmp */
3609

3610 3611
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3612 3613
	}

3614
	if (gintsts & GINTSTS_RXFLVL) {
3615 3616
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3618 3619
		 * set.
		 */
3620

3621
		dwc2_hsotg_handle_rx(hsotg);
3622 3623
	}

3624
	if (gintsts & GINTSTS_ERLYSUSP) {
3625
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3627 3628
	}

3629 3630
	/*
	 * these next two seem to crop-up occasionally causing the core
3631
	 * to shutdown the USB transfer, so try clearing them and logging
3632 3633
	 * the occurrence.
	 */
3634

3635
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3636 3637 3638
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
3639
		u32 daintmsk;
3640 3641
		struct dwc2_hsotg_ep *hs_ep;

3642 3643
		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
		daintmsk >>= DAINT_OUTEP_SHIFT;
3644 3645 3646 3647 3648 3649
		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3651
			hs_ep = hsotg->eps_out[idx];
3652
			/* Proceed only unmasked ISOC EPs */
3653
			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3654 3655
				continue;

3656 3657
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

3658
			if (epctrl & DXEPCTL_EPENA) {
3659 3660 3661 3662 3663
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3664

3665
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3666 3667
	}

3668
	if (gintsts & GINTSTS_GINNAKEFF) {
3669 3670
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3671
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3672

3673
		dwc2_hsotg_dump(hsotg);
3674 3675
	}

3676 3677
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3678

3679 3680
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3681

3682 3683 3684 3685
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3686 3687

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3688
		goto irq_retry;
3689

3690 3691
	spin_unlock(&hsotg->lock);

3692 3693 3694
	return IRQ_HANDLED;
}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711
			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712 3713 3714 3715 3716 3717 3718
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
3719
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720 3721 3722 3723 3724 3725 3726 3727 3728
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3730 3731 3732 3733 3734 3735 3736 3737 3738

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
3739
	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3740 3741 3742 3743 3744 3745 3746

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
3747
	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3763 3764 3765

	} else {
		/* Remove global NAKs */
3766
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3767 3768 3769
	}
}

3770
/**
3771
 * dwc2_hsotg_ep_enable - enable the given endpoint
3772 3773 3774 3775
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3776
 */
3777
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778
				const struct usb_endpoint_descriptor *desc)
3779
{
3780
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3782
	unsigned long flags;
3783
	unsigned int index = hs_ep->index;
3784 3785 3786
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3787
	u32 mc;
3788
	u32 mask;
3789 3790
	unsigned int dir_in;
	unsigned int i, val, size;
3791
	int ret = 0;
3792
	unsigned char ep_type;
3793 3794 3795 3796 3797 3798 3799

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3800 3801 3802 3803
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3804 3805 3806 3807 3808 3809 3810

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3811
	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3812
	mps = usb_endpoint_maxp(desc);
3813
	mc = usb_endpoint_maxp_mult(desc);
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	/* ISOC IN in DDMA supported bInterval up to 10 */
	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
	    dir_in && desc->bInterval > 10) {
		dev_err(hsotg->dev,
			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
		return -EINVAL;
	}

	/* High bandwidth ISOC OUT in DDMA not supported */
	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
	    !dir_in && mc > 1) {
		dev_err(hsotg->dev,
			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
		return -EINVAL;
	}

3831
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3832

3833
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3834
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3835 3836 3837 3838

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3839
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3840 3841
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3842 3843
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3844
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3845 3846 3847 3848 3849 3850
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3851
	spin_lock_irqsave(&hsotg->lock, flags);
3852

3853 3854
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3855

3856 3857 3858 3859
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3860
	epctrl |= DXEPCTL_USBACTEP;
3861 3862

	/* update the endpoint state */
3863
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3864 3865

	/* default, set to non-periodic */
3866
	hs_ep->isochronous = 0;
3867
	hs_ep->periodic = 0;
3868
	hs_ep->halted = 0;
3869
	hs_ep->interval = desc->bInterval;
3870

3871
	switch (ep_type) {
3872
	case USB_ENDPOINT_XFER_ISOC:
3873 3874
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3875
		hs_ep->isochronous = 1;
3876
		hs_ep->interval = 1 << (desc->bInterval - 1);
3877
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3878
		hs_ep->next_desc = 0;
3879
		hs_ep->compl_desc = 0;
3880
		if (dir_in) {
3881
			hs_ep->periodic = 1;
3882 3883 3884 3885 3886 3887 3888 3889
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3890
		break;
3891 3892

	case USB_ENDPOINT_XFER_BULK:
3893
		epctrl |= DXEPCTL_EPTYPE_BULK;
3894 3895 3896
		break;

	case USB_ENDPOINT_XFER_INT:
3897
		if (dir_in)
3898 3899
			hs_ep->periodic = 1;

3900 3901 3902
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3903
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3904 3905 3906
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3907
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3908 3909 3910
		break;
	}

3911 3912
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3913 3914
	 * a unique tx-fifo even if it is non-periodic.
	 */
3915
	if (dir_in && hsotg->dedicated_fifos) {
3916 3917
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3918 3919

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3920
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3921
			if (hsotg->fifo_map & (1 << i))
3922
				continue;
3923
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3924
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3925 3926
			if (val < size)
				continue;
3927 3928 3929 3930 3931
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3932
		}
3933
		if (!fifo_index) {
3934 3935
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3936
			ret = -ENOMEM;
3937
			goto error1;
3938
		}
3939 3940 3941 3942
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3943
	}
3944

3945
	/* for non control endpoints, set PID to D0 */
3946
	if (index && !hs_ep->isochronous)
3947
		epctrl |= DXEPCTL_SETD0PID;
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	/* WA for Full speed ISOC IN in DDMA mode.
	 * By Clear NAK status of EP, core will send ZLP
	 * to IN token and assert NAK interrupt relying
	 * on TxFIFO status only
	 */

	if (hsotg->gadget.speed == USB_SPEED_FULL &&
	    hs_ep->isochronous && dir_in) {
		/* The WA applies only to core versions from 2.72a
		 * to 4.00a (including both). Also for FS_IOT_1.00a
		 * and HS_IOT_1.00a.
		 */
		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);

		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
			epctrl |= DXEPCTL_CNAK;
	}

3970 3971 3972
	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3973
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3974
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3975
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3976 3977

	/* enable the endpoint interrupt */
3978
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3979

3980
error1:
3981
	spin_unlock_irqrestore(&hsotg->lock, flags);
3982 3983 3984

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3985
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3986 3987 3988 3989 3990
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3991
	return ret;
3992 3993
}

3994
/**
3995
 * dwc2_hsotg_ep_disable - disable given endpoint
3996 3997
 * @ep: The endpoint to disable.
 */
3998
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3999
{
4000
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4001
	struct dwc2_hsotg *hsotg = hs_ep->parent;
4002 4003 4004 4005 4006 4007
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

4008
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4009

4010
	if (ep == &hsotg->eps_out[0]->ep) {
4011 4012
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
4013 4014 4015 4016 4017
	}

	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
		return -EINVAL;
4018 4019
	}

4020
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4021

4022
	spin_lock_irqsave(&hsotg->lock, flags);
4023

4024
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4025 4026 4027 4028

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

4029 4030 4031
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
4032 4033

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4034
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4035 4036

	/* disable endpoint interrupts */
4037
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4038

4039 4040 4041
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

4042 4043 4044 4045
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

4046
	spin_unlock_irqrestore(&hsotg->lock, flags);
4047 4048 4049 4050 4051 4052 4053
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4054
 */
4055
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4056
{
4057
	struct dwc2_hsotg_req *req, *treq;
4058 4059 4060 4061 4062 4063 4064 4065 4066

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4067
/**
4068
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4069 4070 4071
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4072
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4073
{
4074 4075
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4076
	struct dwc2_hsotg *hs = hs_ep->parent;
4077 4078
	unsigned long flags;

4079
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4080

4081
	spin_lock_irqsave(&hs->lock, flags);
4082 4083

	if (!on_list(hs_ep, hs_req)) {
4084
		spin_unlock_irqrestore(&hs->lock, flags);
4085 4086 4087
		return -EINVAL;
	}

4088 4089 4090 4091
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4092
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4093
	spin_unlock_irqrestore(&hs->lock, flags);
4094 4095 4096 4097

	return 0;
}

4098
/**
4099
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4100 4101
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4102 4103 4104 4105 4106
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4107
 */
4108
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4109
{
4110
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4111
	struct dwc2_hsotg *hs = hs_ep->parent;
4112 4113 4114
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4115
	u32 xfertype;
4116 4117 4118

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4119 4120
	if (index == 0) {
		if (value)
4121
			dwc2_hsotg_stall_ep0(hs);
4122 4123 4124 4125 4126 4127
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4128 4129 4130 4131 4132
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4133 4134 4135 4136 4137 4138
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4139 4140
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4141
		epctl = dwc2_readl(hs->regs + epreg);
4142 4143

		if (value) {
4144
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4145 4146 4147 4148 4149 4150
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4151
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4152
				epctl |= DXEPCTL_SETD0PID;
4153
		}
4154
		dwc2_writel(epctl, hs->regs + epreg);
4155
	} else {
4156
		epreg = DOEPCTL(index);
4157
		epctl = dwc2_readl(hs->regs + epreg);
4158

J
John Youn 已提交
4159
		if (value) {
4160
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4161
		} else {
4162 4163 4164
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4165
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4166
				epctl |= DXEPCTL_SETD0PID;
4167
		}
4168
		dwc2_writel(epctl, hs->regs + epreg);
4169
	}
4170

4171 4172
	hs_ep->halted = value;

4173 4174 4175
	return 0;
}

4176
/**
4177
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4178 4179 4180
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4181
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4182
{
4183
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4184
	struct dwc2_hsotg *hs = hs_ep->parent;
4185 4186 4187 4188
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4189
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4190 4191 4192 4193 4194
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4195
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4196 4197 4198 4199 4200 4201 4202
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4203
	/* note, don't believe we have any call for the fifo routines */
4204 4205
};

4206
/**
4207
 * dwc2_hsotg_init - initialize the usb core
4208 4209
 * @hsotg: The driver state
 */
4210
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4211
{
4212
	u32 trdtim;
4213
	u32 usbcfg;
4214 4215
	/* unmask subset of endpoint interrupts */

4216 4217 4218
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4219

4220 4221 4222
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4223

4224
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4225 4226

	/* Be in disconnected state until gadget is registered */
4227
	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4228 4229 4230 4231

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4232 4233
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4234

4235
	dwc2_hsotg_init_fifo(hsotg);
4236

4237 4238 4239
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4240
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4241

4242
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4243
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4244 4245 4246
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4247

4248
	if (using_dma(hsotg))
4249
		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4250 4251
}

4252
/**
4253
 * dwc2_hsotg_udc_start - prepare the udc for work
4254 4255 4256 4257 4258 4259
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4260
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4261
				struct usb_gadget_driver *driver)
4262
{
4263
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4264
	unsigned long flags;
4265 4266 4267
	int ret;

	if (!hsotg) {
4268
		pr_err("%s: called with no device\n", __func__);
4269 4270 4271 4272 4273 4274 4275 4276
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4277
	if (driver->max_speed < USB_SPEED_FULL)
4278 4279
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4280
	if (!driver->setup) {
4281 4282 4283 4284 4285 4286 4287 4288
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4289
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4290 4291
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4292 4293 4294 4295
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4296 4297
	}

4298 4299
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4300

4301
	spin_lock_irqsave(&hsotg->lock, flags);
4302 4303 4304 4305 4306
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4307
	hsotg->enabled = 0;
4308 4309
	spin_unlock_irqrestore(&hsotg->lock, flags);

4310
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4311

4312 4313 4314 4315 4316 4317 4318
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4319
/**
4320
 * dwc2_hsotg_udc_stop - stop the udc
4321 4322 4323 4324
 * @gadget: The usb gadget state
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4325
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4326
{
4327
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4328
	unsigned long flags = 0;
4329 4330 4331 4332 4333 4334
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4335 4336
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4337
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4338
		if (hsotg->eps_out[ep])
4339
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4340
	}
4341

4342 4343
	spin_lock_irqsave(&hsotg->lock, flags);

4344
	hsotg->driver = NULL;
4345
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4346
	hsotg->enabled = 0;
4347

4348 4349
	spin_unlock_irqrestore(&hsotg->lock, flags);

4350 4351
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4352

4353 4354
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4355 4356 4357 4358

	return 0;
}

4359
/**
4360
 * dwc2_hsotg_gadget_getframe - read the frame number
4361 4362 4363 4364
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4365
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4366
{
4367
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4368 4369
}

4370
/**
4371
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4372 4373 4374 4375 4376
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4377
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4378
{
4379
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4380 4381
	unsigned long flags = 0;

4382
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4383
		hsotg->op_state);
4384 4385 4386 4387 4388 4389

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4390 4391 4392

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4393
		hsotg->enabled = 1;
4394
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4395 4396
		/* Enable ACG feature in device mode,if supported */
		dwc2_enable_acg(hsotg);
4397
		dwc2_hsotg_core_connect(hsotg);
4398
	} else {
4399 4400
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4401
		hsotg->enabled = 0;
4402 4403 4404 4405 4406 4407 4408 4409
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4410
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4411 4412 4413 4414 4415 4416 4417
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4418
	/*
4419
	 * If controller is hibernated, it must exit from power_down
4420 4421 4422
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
4423
		dwc2_exit_partial_power_down(hsotg, false);
4424

4425
	if (is_active) {
4426
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4427

4428
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4429 4430 4431
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4432
			dwc2_hsotg_core_connect(hsotg);
4433
		}
4434
	} else {
4435 4436
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4437 4438 4439 4440 4441 4442
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4443
/**
4444
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4445 4446 4447 4448 4449
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4450
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4451 4452 4453 4454 4455 4456 4457 4458
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4459 4460 4461 4462 4463 4464 4465
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4466 4467 4468
};

/**
4469
 * dwc2_hsotg_initep - initialise a single endpoint
4470 4471 4472
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
4473
 * @dir_in: True if direction is in.
4474 4475 4476 4477 4478
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4479
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4480
			      struct dwc2_hsotg_ep *hs_ep,
4481 4482
				       int epnum,
				       bool dir_in)
4483 4484 4485 4486 4487
{
	char *dir;

	if (epnum == 0)
		dir = "";
4488
	else if (dir_in)
4489
		dir = "in";
4490 4491
	else
		dir = "out";
4492

4493
	hs_ep->dir_in = dir_in;
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4507 4508 4509 4510 4511 4512

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4513
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4514

4515 4516 4517
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4518 4519 4520 4521
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4522 4523 4524 4525 4526 4527 4528 4529
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4530 4531
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4532 4533 4534 4535
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4536
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4537

4538
		if (dir_in)
4539
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4540
		else
4541
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4542 4543 4544
	}
}

4545
/**
4546
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4547
 * @hsotg: Programming view of the DWC_otg controller
4548 4549 4550
 *
 * Read the USB core HW configuration registers
 */
4551
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4552
{
4553 4554 4555 4556
	u32 cfg;
	u32 ep_type;
	u32 i;

4557
	/* check hardware configuration */
4558

4559 4560
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4561 4562
	/* Add ep0 */
	hsotg->num_of_eps++;
4563

4564 4565 4566
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4567 4568
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4569
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4570 4571
	hsotg->eps_out[0] = hsotg->eps_in[0];

4572
	cfg = hsotg->hw_params.dev_ep_dirs;
4573
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4574 4575 4576 4577
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4578
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4579 4580 4581 4582 4583 4584
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4585
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4586 4587 4588 4589 4590
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4591 4592
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4593

4594 4595 4596 4597
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4598
	return 0;
4599 4600
}

4601
/**
4602
 * dwc2_hsotg_dump - dump state of the udc
4603 4604
 * @hsotg: Programming view of the DWC_otg controller
 *
4605
 */
4606
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4607
{
M
Mark Brown 已提交
4608
#ifdef DEBUG
4609 4610 4611 4612 4613 4614
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4615 4616
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4617

4618
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4619
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4620 4621

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4622
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4623 4624 4625

	/* show periodic fifo settings */

4626
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4627
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4628
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4629 4630
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4631 4632
	}

4633
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4634 4635
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4636 4637 4638
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4639

4640
		val = dwc2_readl(regs + DOEPCTL(idx));
4641 4642
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4643 4644 4645
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4646 4647 4648
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4649
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4650
#endif
4651 4652
}

4653
/**
4654
 * dwc2_gadget_init - init function for gadget
4655 4656
 * @hsotg: Programming view of the DWC_otg controller
 *
4657
 */
4658
int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4659
{
4660
	struct device *dev = hsotg->dev;
4661 4662
	int epnum;
	int ret;
4663

4664 4665
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4666 4667
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4668

4669
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4670
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4671
	hsotg->gadget.name = dev_name(dev);
4672
	hsotg->remote_wakeup_allowed = 0;
J
John Youn 已提交
4673 4674 4675 4676

	if (hsotg->params.lpm)
		hsotg->gadget.lpm_capable = true;

4677 4678
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4679 4680
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4681

4682
	ret = dwc2_hsotg_hw_cfg(hsotg);
4683 4684
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4685
		return ret;
4686 4687
	}

4688 4689
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4690
	if (!hsotg->ctrl_buff)
4691
		return -ENOMEM;
4692 4693 4694

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4695
	if (!hsotg->ep0_buff)
4696
		return -ENOMEM;
4697

4698 4699 4700 4701 4702 4703
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4704 4705
	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4706
	if (ret < 0) {
4707
		dev_err(dev, "cannot claim IRQ for gadget\n");
4708
		return ret;
4709 4710
	}

4711 4712 4713 4714
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4715
		return -EINVAL;
4716 4717 4718 4719 4720
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4721
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4722 4723 4724

	/* allocate EP0 request */

4725
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4726 4727 4728
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4729
		return -ENOMEM;
4730
	}
4731 4732

	/* initialise the endpoints now the core has been initialised */
4733 4734
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4735
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4736
					  epnum, 1);
4737
		if (hsotg->eps_out[epnum])
4738
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4739
					  epnum, 0);
4740
	}
4741

4742
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4743 4744 4745
	if (ret) {
		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
					   hsotg->ctrl_req);
4746
		return ret;
4747
	}
4748
	dwc2_hsotg_dump(hsotg);
4749 4750 4751 4752

	return 0;
}

4753
/**
4754
 * dwc2_hsotg_remove - remove function for hsotg driver
4755 4756
 * @hsotg: Programming view of the DWC_otg controller
 *
4757
 */
4758
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4759
{
4760
	usb_del_gadget_udc(&hsotg->gadget);
4761
	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4762

4763 4764 4765
	return 0;
}

4766
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4767 4768 4769
{
	unsigned long flags;

4770
	if (hsotg->lx_state != DWC2_L0)
4771
		return 0;
4772

4773 4774 4775
	if (hsotg->driver) {
		int ep;

4776 4777 4778
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4779 4780
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4781 4782
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4783 4784
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4785

4786 4787
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4788
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4789
			if (hsotg->eps_out[ep])
4790
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4791
		}
4792 4793
	}

4794
	return 0;
4795 4796
}

4797
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4798 4799 4800
{
	unsigned long flags;

4801
	if (hsotg->lx_state == DWC2_L2)
4802
		return 0;
4803

4804 4805 4806
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4807

4808
		spin_lock_irqsave(&hsotg->lock, flags);
4809
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4810 4811 4812
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4813
			dwc2_hsotg_core_connect(hsotg);
4814
		}
4815 4816
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4817

4818
	return 0;
4819
}
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4868
		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
4880 4881 4882
 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
 *
 * Return: 0 if successful, negative error code otherwise
4883
 */
4884
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

4900 4901 4902
	if (!remote_wakeup)
		dwc2_writel(dr->dctl, hsotg->regs + DCTL);

4903 4904 4905 4906 4907 4908 4909 4910
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4911 4912 4913 4914 4915 4916 4917 4918 4919
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		/** WA for enabled EPx's IN in DDMA mode. On entering to
		 * hibernation wrong value read and saved from DIEPDMAx,
		 * as result BNA interrupt asserted on hibernation exit
		 * by restoring from saved area.
		 */
		if (hsotg->params.g_dma_desc &&
		    (dr->diepctl[i] & DXEPCTL_EPENA))
			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4920
		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4921
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4922 4923
		/* Restore OUT EPs */
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4924 4925 4926 4927 4928 4929 4930 4931
		/* WA for enabled EPx's OUT in DDMA mode. On entering to
		 * hibernation wrong value read and saved from DOEPDMAx,
		 * as result BNA interrupt asserted on hibernation exit
		 * by restoring from saved area.
		 */
		if (hsotg->params.g_dma_desc &&
		    (dr->doepctl[i] & DXEPCTL_EPENA))
			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4932
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4933
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4934 4935 4936 4937
	}

	return 0;
}
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960

/**
 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 */
void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
{
	u32 val;

	if (!hsotg->params.lpm)
		return;

	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
	dwc2_writel(val, hsotg->regs + GLPMCFG);
	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
		+ GLPMCFG));
}
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037

/**
 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
 *
 * @hsotg: Programming view of the DWC_otg controller
 *
 * Return non-zero if failed to enter to hibernation.
 */
int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
{
	u32 gpwrdn;
	int ret = 0;

	/* Change to L2(suspend) state */
	hsotg->lx_state = DWC2_L2;
	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
	ret = dwc2_backup_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
			__func__);
		return ret;
	}
	ret = dwc2_backup_device_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
			__func__);
		return ret;
	}

	gpwrdn = GPWRDN_PWRDNRSTN;
	gpwrdn |= GPWRDN_PMUACTV;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	/* Set flag to indicate that we are in hibernation */
	hsotg->hibernated = 1;

	/* Enable interrupts from wake up logic */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn |= GPWRDN_PMUINTSEL;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	/* Unmask device mode interrupts in GPWRDN */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn |= GPWRDN_RST_DET_MSK;
	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	/* Enable Power Down Clamp */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn |= GPWRDN_PWRDNCLMP;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	/* Switch off VDD */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn |= GPWRDN_PWRDNSWTCH;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	/* Save gpwrdn register for further usage if stschng interrupt */
	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	dev_dbg(hsotg->dev, "Hibernation completed\n");

	return ret;
}

/**
 * dwc2_gadget_exit_hibernation()
 * This function is for exiting from Device mode hibernation by host initiated
 * resume/reset and device initiated remote-wakeup.
 *
 * @hsotg: Programming view of the DWC_otg controller
 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5038
 * @reset: indicates whether resume is initiated by Reset.
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
 *
 * Return non-zero if failed to exit from hibernation.
 */
int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
				 int rem_wakeup, int reset)
{
	u32 pcgcctl;
	u32 gpwrdn;
	u32 dctl;
	int ret = 0;
	struct dwc2_gregs_backup *gr;
	struct dwc2_dregs_backup *dr;

	gr = &hsotg->gr_backup;
	dr = &hsotg->dr_backup;

	if (!hsotg->hibernated) {
		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
		return 1;
	}
	dev_dbg(hsotg->dev,
		"%s: called with rem_wakeup = %d reset = %d\n",
		__func__, rem_wakeup, reset);

	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);

	if (!reset) {
		/* Clear all pending interupts */
		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
	}

	/* De-assert Restore */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn &= ~GPWRDN_RESTORE;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
	udelay(10);

	if (!rem_wakeup) {
		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
	}

	/* Restore GUSBCFG, DCFG and DCTL */
	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);

	/* De-assert Wakeup Logic */
	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
	gpwrdn &= ~GPWRDN_PMUACTV;
	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);

	if (rem_wakeup) {
		udelay(10);
		/* Start Remote Wakeup Signaling */
		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
	} else {
		udelay(50);
		/* Set Device programming done bit */
		dctl = dwc2_readl(hsotg->regs + DCTL);
		dctl |= DCTL_PWRONPRGDONE;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}
	/* Wait for interrupts which must be cleared */
	mdelay(2);
	/* Clear all pending interupts */
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);

	/* Restore global registers */
	ret = dwc2_restore_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to restore registers\n",
			__func__);
		return ret;
	}

	/* Restore device registers */
	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
			__func__);
		return ret;
	}

	if (rem_wakeup) {
		mdelay(10);
		dctl = dwc2_readl(hsotg->regs + DCTL);
		dctl &= ~DCTL_RMTWKUPSIG;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	hsotg->hibernated = 0;
	hsotg->lx_state = DWC2_L0;
	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");

	return ret;
}