gadget.c 102.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38
#include <linux/uaccess.h>
39

40
#include "core.h"
41
#include "hw.h"
42 43 44 45 46 47 48 49 50 51 52 53

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

54
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
55
{
56
	return container_of(gadget, struct dwc2_hsotg, gadget);
57 58 59 60 61 62 63 64 65 66 67 68
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

69 70 71 72 73 74 75 76 77
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

78
/* forward declaration of functions */
79
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
98
 * g_using_dma is set depending on dts flag.
99
 */
100
static inline bool using_dma(struct dwc2_hsotg *hsotg)
101
{
102
	return hsotg->g_using_dma;
103 104 105 106 107 108 109
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
110
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
111
{
112
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
113 114 115 116 117 118
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
119
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
120 121 122 123 124 125 126 127
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
128
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
129
{
130
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
131 132 133 134 135
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
136
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
137 138 139 140 141 142 143 144 145 146 147 148
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
149
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
150 151 152 153 154 155 156 157 158 159 160
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
161
	daint = readl(hsotg->regs + DAINTMSK);
162 163 164 165
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
166
	writel(daint, hsotg->regs + DAINTMSK);
167 168 169 170 171 172 173
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
174
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
175
{
176 177
	unsigned int ep;
	unsigned int addr;
178
	int timeout;
179 180
	u32 val;

181 182 183 184
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

185 186 187 188 189
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
190

191 192
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
193 194
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
195 196
	 * known values.
	 */
197 198

	/* start at the end of the GNPTXFSIZ, rounded up */
199
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
200

201
	/*
202
	 * Configure fifos sizes from provided configuration and assign
203 204
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
205
	 */
206 207 208
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
209
		val = addr;
210 211
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
212
			  "insufficient fifo memory");
213
		addr += hsotg->g_tx_fifo_sz[ep];
214

215
		writel(val, hsotg->regs + DPTXFSIZN(ep));
216
	}
217

218 219 220 221
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
222

223 224
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 226 227 228

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
229
		val = readl(hsotg->regs + GRSTCTL);
230

231
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 233 234 235 236 237
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
238
			break;
239 240 241 242 243 244
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 246 247 248 249 250 251 252
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
253 254
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
287
 */
288
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 290 291 292 293 294 295 296 297
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

298
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
316
 */
317
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 319 320 321
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
322
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 324 325 326 327
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
328
	int max_transfer;
329 330 331 332 333 334 335

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

336
	if (periodic && !hsotg->dedicated_fifos) {
337
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 339 340
		int size_left;
		int size_done;

341 342 343 344
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
345

346
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347

348 349
		/*
		 * if shared fifo, we cannot write anything until the
350 351 352
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
353
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 355 356
			return -ENOSPC;
		}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
374
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 376
			return -ENOSPC;
		}
377
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379 380 381

		can_write &= 0xffff;
		can_write *= 4;
382
	} else {
383
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 385 386 387
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

388
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 390 391
			return -ENOSPC;
		}

392
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393
		can_write *= 4;	/* fifo size is in 32bit quantities. */
394 395
	}

396 397 398 399
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
400

401 402
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
403 404 405
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
406
	if (can_write > 512 && !periodic)
407 408
		can_write = 512;

409 410
	/*
	 * limit the write to one max-packet size worth of data, but allow
411
	 * the transfer to return that it did not run out of fifo space
412 413
	 * doing it.
	 */
414 415
	if (to_write > max_transfer) {
		to_write = max_transfer;
416

417 418 419
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
420 421
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
422 423
	}

424 425 426 427
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
428
		pkt_round = to_write % max_transfer;
429

430 431
		/*
		 * Round the write down to an
432 433 434 435 436 437 438 439 440
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

441 442 443 444
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
445

446 447 448
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
449 450
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

468
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
487 488
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489
	} else {
490
		maxsize = 64+64;
491
		if (hs_ep->dir_in)
492
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493
		else
494 495 496 497 498 499 500
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

501 502 503 504
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
522
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

551 552
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553 554 555 556 557

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

558 559 560
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

561
	if (ctrl & DXEPCTL_STALL) {
562 563 564 565
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

566
	length = ureq->length - ureq->actual;
567 568
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

589 590 591 592 593
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

594
	if (dir_in && index != 0)
595
		if (hs_ep->isochronous)
596
			epsize = DXEPTSIZ_MC(packets);
597
		else
598
			epsize = DXEPTSIZ_MC(1);
599 600 601
	else
		epsize = 0;

602 603 604 605 606 607 608 609
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
610
			hs_ep->send_zlp = 1;
611 612
	}

613 614
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
615 616 617 618 619 620 621 622 623 624

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

625
	if (using_dma(hsotg) && !continuing) {
626 627
		unsigned int dma_reg;

628 629 630 631
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
632

633
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
634 635
		writel(ureq->dma, hsotg->regs + dma_reg);

636
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
637
			__func__, &ureq->dma, dma_reg);
638 639
	}

640 641
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
642

643
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
644 645

	/* For Setup request do not clear NAK */
646
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
647
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
648

649 650 651
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

652 653
	/*
	 * set these, it seems that DMA support increments past the end
654
	 * of the packet buffer so we need to calculate the length from
655 656
	 * this information.
	 */
657 658 659 660 661 662 663 664 665 666
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

667 668 669 670
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
671
	if (dir_in)
672
		writel(DIEPMSK_INTKNTXFEMPMSK,
673
		       hsotg->regs + DIEPINT(index));
674

675 676 677 678
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
679 680

	/* check ep is enabled */
681
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
682
		dev_dbg(hsotg->dev,
683
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
684 685
			 index, readl(hsotg->regs + epctrl_reg));

686
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
687
		__func__, readl(hsotg->regs + epctrl_reg));
688 689 690

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
691 692 693 694 695 696 697 698 699 700 701 702 703
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
704
 */
705
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
706 707 708 709
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
710
	int ret;
711 712 713 714 715

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

716 717 718
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
719 720 721 722 723 724 725 726 727 728

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

782 783 784 785 786
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
787
	struct dwc2_hsotg *hs = hs_ep->parent;
788
	bool first;
789
	int ret;
790 791 792 793 794 795 796 797 798 799

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

800 801 802 803
	ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
	if (ret)
		return ret;

804 805
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
806
		ret = s3c_hsotg_map_dma(hs, hs_ep, req);
807 808 809 810 811 812 813 814 815 816 817 818 819
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

820 821 822 823
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
824
	struct dwc2_hsotg *hs = hs_ep->parent;
825 826 827 828 829 830 831 832 833 834
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
855
	struct dwc2_hsotg *hsotg = hs_ep->parent;
856 857 858 859 860 861 862 863 864 865 866 867 868

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
869
 */
870
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
871 872
					   u32 windex)
{
873
	struct s3c_hsotg_ep *ep;
874 875 876 877 878 879
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

880
	if (idx > hsotg->num_of_eps)
881 882
		return NULL;

883 884
	ep = index_to_ep(hsotg, idx, dir);

885 886 887 888 889 890
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/**
 * s3c_hsotg_set_test_mode - Enable usb Test Modes
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
static int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
{
	int dctl = readl(hsotg->regs + DCTL);

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
	writel(dctl, hsotg->regs + DCTL);
	return 0;
}

917 918 919 920 921 922 923 924 925 926
/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
927
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
946 947 948 949 950
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
970
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
971 972
					struct usb_ctrlrequest *ctrl)
{
973
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1036
/**
1037
 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1038 1039 1040
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1041
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1042 1043
					 struct usb_ctrlrequest *ctrl)
{
1044
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1045 1046
	struct s3c_hsotg_req *hs_req;
	bool restart;
1047 1048
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1049
	int ret;
1050
	bool halted;
1051 1052 1053
	u32 recip;
	u32 wValue;
	u32 wIndex;
1054 1055 1056 1057

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1086 1087
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1088
				__func__, wIndex);
1089 1090 1091
			return -ENOENT;
		}

1092
		switch (wValue) {
1093
		case USB_ENDPOINT_HALT:
1094 1095
			halted = ep->halted;

1096
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1097 1098 1099 1100 1101 1102 1103

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1104

1105 1106 1107 1108 1109 1110
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1111 1112 1113 1114 1115 1116 1117 1118
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1119 1120 1121 1122 1123 1124
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1125 1126 1127
				}

				/* If we have pending request, then start it */
1128 1129 1130 1131 1132 1133 1134
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
						s3c_hsotg_start_req(hsotg, ep,
								hs_req, false);
					}
1135 1136 1137
				}
			}

1138 1139 1140 1141 1142
			break;

		default:
			return -ENOENT;
		}
1143 1144 1145 1146
		break;
	default:
		return -ENOENT;
	}
1147 1148 1149
	return 1;
}

1150
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1151

1152 1153 1154 1155 1156 1157
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1158
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1159
{
1160
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1173 1174
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1175 1176 1177
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1178
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1179 1180 1181 1182 1183 1184 1185 1186 1187
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1197
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1198 1199
				      struct usb_ctrlrequest *ctrl)
{
1200
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1201 1202 1203 1204 1205 1206 1207
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1208 1209 1210 1211
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1212
		ep0->dir_in = 1;
1213 1214 1215 1216 1217
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1218 1219 1220 1221

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1222
			hsotg->connected = 1;
1223
			dcfg = readl(hsotg->regs + DCFG);
1224
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1225 1226
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1227
			writel(dcfg, hsotg->regs + DCFG);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1248
		spin_unlock(&hsotg->lock);
1249
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1250
		spin_lock(&hsotg->lock);
1251 1252 1253 1254
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1255 1256
	/*
	 * the request is either unhandlable, or is not formatted correctly
1257 1258 1259
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1260 1261
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1276
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1277 1278 1279 1280 1281 1282

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1283
	spin_lock(&hsotg->lock);
1284 1285 1286 1287
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1288
	spin_unlock(&hsotg->lock);
1289 1290 1291 1292 1293 1294 1295 1296 1297
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1298
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1316
	hsotg->eps_out[0]->dir_in = 0;
1317
	hsotg->eps_out[0]->send_zlp = 0;
1318
	hsotg->ep0_state = DWC2_EP0_SETUP;
1319

1320
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1321 1322
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1323 1324 1325 1326
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1327 1328 1329
	}
}

1330 1331 1332 1333 1334 1335 1336 1337
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1338 1339 1340 1341 1342 1343
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1368
 */
1369
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1384 1385 1386 1387
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1388 1389 1390 1391

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1392 1393
	s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);

1394 1395 1396 1397 1398 1399
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1400 1401 1402 1403
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1404 1405

	if (hs_req->req.complete) {
1406
		spin_unlock(&hsotg->lock);
1407
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1408
		spin_lock(&hsotg->lock);
1409 1410
	}

1411 1412
	/*
	 * Look to see if there is anything else to do. Note, the completion
1413
	 * of the previous request may have caused a new request to be started
1414 1415
	 * so be careful when doing this.
	 */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1436
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1437
{
1438
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1439
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1440
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1441 1442 1443 1444
	int to_read;
	int max_req;
	int read_ptr;

1445

1446
	if (!hs_req) {
1447
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1448 1449
		int ptr;

1450
		dev_dbg(hsotg->dev,
1451
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1465 1466 1467
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1468
	if (to_read > max_req) {
1469 1470
		/*
		 * more data appeared than we where willing
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1482 1483 1484 1485
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1486
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1487 1488 1489
}

/**
1490
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1491
 * @hsotg: The device instance
1492
 * @dir_in: If IN zlp
1493 1494 1495 1496 1497
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1498
 * currently believed that we do not need to wait for any space in
1499 1500
 * the TxFIFO.
 */
1501
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1502
{
1503
	/* eps_out[0] is used in both directions */
1504 1505
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1506

1507
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1518
 */
1519
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1520
{
1521
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1522
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1523 1524
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1525
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1526 1527 1528 1529 1530 1531 1532
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1533 1534 1535 1536 1537 1538 1539
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1540 1541 1542
	if (using_dma(hsotg)) {
		unsigned size_done;

1543 1544
		/*
		 * Calculate the size of the transfer by checking how much
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1558 1559 1560 1561 1562 1563
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1564 1565 1566 1567
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1568 1569 1570 1571
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1572 1573
	}

1574 1575 1576 1577
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1578 1579
	}

1580
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1581 1582 1583 1584 1585 1586 1587
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1588
 */
1589
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1590 1591 1592
{
	u32 dsts;

1593 1594 1595
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1608
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1609 1610 1611 1612 1613 1614 1615
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1616
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1617
{
1618
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1619 1620 1621 1622
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1623 1624
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1625

1626 1627
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1628

1629
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1630 1631
			__func__, grxstsr, size, epnum);

1632 1633 1634
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1635 1636
		break;

1637
	case GRXSTS_PKTSTS_OUTDONE:
1638 1639 1640 1641
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1642
			s3c_hsotg_handle_outdone(hsotg, epnum);
1643 1644
		break;

1645
	case GRXSTS_PKTSTS_SETUPDONE:
1646 1647 1648
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1649
			readl(hsotg->regs + DOEPCTL(0)));
1650 1651 1652 1653 1654 1655 1656
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1657 1658
		break;

1659
	case GRXSTS_PKTSTS_OUTRX:
1660 1661 1662
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1663
	case GRXSTS_PKTSTS_SETUPRX:
1664 1665 1666
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1667
			readl(hsotg->regs + DOEPCTL(0)));
1668

1669 1670
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1686
 */
1687 1688 1689 1690
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1691
		return D0EPCTL_MPS_64;
1692
	case 32:
1693
		return D0EPCTL_MPS_32;
1694
	case 16:
1695
		return D0EPCTL_MPS_16;
1696
	case 8:
1697
		return D0EPCTL_MPS_8;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1714
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1715
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1716
{
1717
	struct s3c_hsotg_ep *hs_ep;
1718 1719
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1720
	u32 mcval;
1721 1722
	u32 reg;

1723 1724 1725 1726
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1727 1728 1729 1730 1731
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1732
		hs_ep->ep.maxpacket = mps;
1733
		hs_ep->mc = 1;
1734
	} else {
1735
		mpsval = mps & DXEPCTL_MPS_MASK;
1736
		if (mpsval > 1024)
1737
			goto bad_mps;
1738 1739 1740 1741
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1742
		hs_ep->ep.maxpacket = mpsval;
1743 1744
	}

1745 1746 1747 1748 1749 1750
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1751
		reg = readl(regs + DOEPCTL(ep));
1752
		reg &= ~DXEPCTL_MPS_MASK;
1753
		reg |= mpsval;
1754
		writel(reg, regs + DOEPCTL(ep));
1755
	}
1756 1757 1758 1759 1760 1761 1762

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1763 1764 1765 1766 1767
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1768
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1769 1770 1771 1772
{
	int timeout;
	int val;

1773
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1774
		hsotg->regs + GRSTCTL);
1775 1776 1777 1778 1779

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1780
		val = readl(hsotg->regs + GRSTCTL);
1781

1782
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1783 1784 1785 1786 1787 1788
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1789
			break;
1790 1791 1792 1793 1794
		}

		udelay(1);
	}
}
1795 1796 1797 1798 1799 1800 1801 1802 1803

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1804
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1805 1806 1807 1808
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1809 1810 1811 1812 1813 1814 1815 1816
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1817
		return 0;
1818
	}
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1837
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1838 1839 1840
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1841
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1842 1843 1844 1845 1846 1847 1848
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1849
	/* Finish ZLP handling for IN EP0 transactions */
1850 1851
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1852
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		if (hsotg->test_mode) {
			int ret;

			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
				s3c_hsotg_stall_ep0(hsotg);
				return;
			}
		}
1864
		s3c_hsotg_enqueue_setup(hsotg);
1865 1866 1867
		return;
	}

1868 1869
	/*
	 * Calculate the size of the transfer by checking how much is left
1870 1871 1872 1873 1874 1875 1876 1877
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1878
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1879 1880 1881 1882 1883 1884 1885 1886 1887

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1888 1889 1890
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1891 1892 1893
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1894 1895 1896
		return;
	}

1897
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1898
	if (hs_ep->send_zlp) {
1899
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1900
		hs_ep->send_zlp = 0;
1901 1902 1903 1904
		/* transfer will be completed on next complete interrupt */
		return;
	}

1905 1906 1907 1908 1909 1910 1911
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1912 1913 1914 1915 1916 1917 1918 1919 1920
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1921
 */
1922
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1923 1924
			    int dir_in)
{
1925
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1926 1927 1928
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1929
	u32 ints;
1930
	u32 ctrl;
1931 1932

	ints = readl(hsotg->regs + epint_reg);
1933
	ctrl = readl(hsotg->regs + epctl_reg);
1934

1935 1936 1937
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1938 1939 1940 1941 1942 1943
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1944 1945 1946
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1947 1948 1949 1950
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1951
	if (ints & DXEPINT_XFERCOMPL) {
1952
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1953 1954
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1955
			else
1956
				ctrl |= DXEPCTL_SETODDFR;
1957 1958 1959
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1960
		dev_dbg(hsotg->dev,
1961
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1962 1963 1964
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1965 1966 1967 1968
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1969 1970 1971
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1972
			if (idx == 0 && !hs_ep->req)
1973 1974
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1975 1976 1977 1978
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1979

1980
			s3c_hsotg_handle_outdone(hsotg, idx);
1981 1982 1983
		}
	}

1984
	if (ints & DXEPINT_EPDISBLD) {
1985 1986
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1987 1988 1989
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1990
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1991

1992 1993
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1994
				int dctl = readl(hsotg->regs + DCTL);
1995

1996
				dctl |= DCTL_CGNPINNAK;
1997
				writel(dctl, hsotg->regs + DCTL);
1998 1999 2000 2001
			}
		}
	}

2002
	if (ints & DXEPINT_AHBERR)
2003 2004
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2005
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2006 2007 2008
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2009 2010
			/*
			 * this is the notification we've received a
2011 2012
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2013 2014
			 * the setup here.
			 */
2015 2016 2017 2018

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2019
				s3c_hsotg_handle_outdone(hsotg, 0);
2020 2021 2022
		}
	}

2023
	if (ints & DXEPINT_BACK2BACKSETUP)
2024 2025
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2026
	if (dir_in && !hs_ep->isochronous) {
2027
		/* not sure if this is important, but we'll clear it anyway */
2028
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2029 2030 2031 2032 2033
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2034
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2035 2036 2037
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2038 2039 2040

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2041
		    ints & DIEPMSK_TXFIFOEMPTY) {
2042 2043
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2044 2045
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2046
		}
2047 2048 2049 2050 2051 2052 2053 2054 2055
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2056
 */
2057
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2058
{
2059
	u32 dsts = readl(hsotg->regs + DSTS);
2060
	int ep0_mps = 0, ep_mps = 8;
2061

2062 2063
	/*
	 * This should signal the finish of the enumeration phase
2064
	 * of the USB handshaking, so we should now know what rate
2065 2066
	 * we connected at.
	 */
2067 2068 2069

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2070 2071
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2072
	 * it seems IN transfers must be a even number of packets we do
2073 2074
	 * not advertise a 64byte MPS on EP0.
	 */
2075 2076

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2077 2078 2079
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2080 2081
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2082
		ep_mps = 1023;
2083 2084
		break;

2085
	case DSTS_ENUMSPD_HS:
2086 2087
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2088
		ep_mps = 1024;
2089 2090
		break;

2091
	case DSTS_ENUMSPD_LS:
2092
		hsotg->gadget.speed = USB_SPEED_LOW;
2093 2094
		/*
		 * note, we don't actually support LS in this driver at the
2095 2096 2097 2098 2099
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2100 2101
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2102

2103 2104 2105 2106
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2107 2108 2109

	if (ep0_mps) {
		int i;
2110 2111 2112 2113 2114 2115 2116 2117 2118
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
2119 2120 2121 2122 2123 2124 2125
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2126 2127
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2139
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2140
			      struct s3c_hsotg_ep *ep,
2141
			      int result)
2142 2143
{
	struct s3c_hsotg_req *req, *treq;
2144
	unsigned size;
2145

2146
	ep->req = NULL;
2147

2148
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2149 2150
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2151

2152 2153 2154 2155 2156
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2157 2158 2159
}

/**
2160
 * s3c_hsotg_disconnect - disconnect service
2161 2162
 * @hsotg: The device state.
 *
2163 2164 2165
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2166
 */
2167
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2168 2169 2170
{
	unsigned ep;

2171 2172 2173 2174
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2175
	hsotg->test_mode = 0;
2176 2177 2178 2179 2180 2181 2182 2183 2184

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2185 2186 2187

	call_gadget(hsotg, disconnect);
}
2188
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2189 2190 2191 2192 2193 2194

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2195
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2196 2197 2198 2199 2200
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2201
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2202 2203 2204 2205
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2221 2222 2223
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2224

2225 2226 2227 2228 2229
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2230
 */
2231
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2232 2233 2234 2235 2236 2237 2238
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2239
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2240

2241
	timeout = 10000;
2242
	do {
2243
		grstctl = readl(hsotg->regs + GRSTCTL);
2244
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2245

2246
	if (grstctl & GRSTCTL_CSFTRST) {
2247 2248 2249 2250
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2251
	timeout = 10000;
2252 2253

	while (1) {
2254
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2255 2256 2257 2258 2259 2260 2261 2262

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2263
		if (!(grstctl & GRSTCTL_AHBIDLE))
2264 2265 2266 2267 2268 2269 2270 2271 2272
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2273 2274 2275 2276 2277 2278
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2279 2280
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
						bool is_usb_reset)
2281
{
2282 2283 2284 2285
	u32 val;

	if (!is_usb_reset)
		s3c_hsotg_corereset(hsotg);
2286 2287 2288 2289 2290 2291 2292

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2293
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2294
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2295
	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2296 2297 2298

	s3c_hsotg_init_fifo(hsotg);

2299 2300
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2301

2302
	writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2303 2304

	/* Clear any pending OTG interrupts */
2305
	writel(0xffffffff, hsotg->regs + GOTGINT);
2306 2307

	/* Clear any pending interrupts */
2308
	writel(0xffffffff, hsotg->regs + GINTSTS);
2309

2310 2311 2312 2313 2314 2315
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2316 2317

	if (using_dma(hsotg))
2318
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2319
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2320
		       hsotg->regs + GAHBCFG);
2321
	else
2322 2323 2324
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2325
		       hsotg->regs + GAHBCFG);
2326 2327

	/*
2328 2329 2330
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2331 2332
	 */

2333 2334
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2335 2336 2337 2338
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2339 2340 2341 2342 2343

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2344 2345 2346 2347 2348
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2349

2350
	writel(0, hsotg->regs + DAINTMSK);
2351 2352

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2353 2354
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2355 2356

	/* enable in and out endpoint interrupts */
2357
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2358 2359 2360 2361 2362 2363 2364

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2365
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2366 2367 2368 2369 2370

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2371 2372 2373 2374 2375
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2376

2377
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2378 2379

	/*
2380
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2381 2382 2383 2384
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2385 2386
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2387

2388
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2389 2390
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2391
	       hsotg->regs + DOEPCTL0);
2392 2393

	/* enable, but don't activate EP0in */
2394
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2395
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2396 2397 2398 2399

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2400 2401
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2402 2403

	/* clear global NAKs */
2404 2405 2406 2407
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2408 2409 2410 2411

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2412
	hsotg->last_rst = jiffies;
2413 2414
}

2415
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2416 2417 2418 2419
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2420

2421
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2422
{
2423
	/* remove the soft-disconnect and let's go */
2424
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2425 2426
}

2427 2428 2429 2430 2431 2432 2433
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2434
	struct dwc2_hsotg *hsotg = pw;
2435 2436 2437 2438
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2439
	spin_lock(&hsotg->lock);
2440
irq_retry:
2441 2442
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2443 2444 2445 2446 2447 2448

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2449 2450
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2451 2452

		s3c_hsotg_irq_enumdone(hsotg);
2453 2454
	}

2455
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2456
		u32 daint = readl(hsotg->regs + DAINT);
2457 2458
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2459 2460
		int ep;

2461
		daint &= daintmsk;
2462 2463
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2464

2465 2466
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2467 2468
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2469 2470 2471 2472
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2473 2474
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2475 2476 2477 2478 2479
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2480
	if (gintsts & GINTSTS_USBRST) {
2481

2482
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2483

2484
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2485
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2486
			readl(hsotg->regs + GNPTXSTS));
2487

2488
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2489

2490 2491 2492
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2493
		if (usb_status & GOTGCTL_BSESVLD) {
2494 2495
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2496

2497
				kill_all_requests(hsotg, hsotg->eps_out[0],
2498
							  -ECONNRESET);
2499

2500
				s3c_hsotg_core_init_disconnected(hsotg, true);
2501 2502
			}
		}
2503 2504 2505 2506
	}

	/* check both FIFOs */

2507
	if (gintsts & GINTSTS_NPTXFEMP) {
2508 2509
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2510 2511
		/*
		 * Disable the interrupt to stop it happening again
2512
		 * unless one of these endpoint routines decides that
2513 2514
		 * it needs re-enabling
		 */
2515

2516
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2517 2518 2519
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2520
	if (gintsts & GINTSTS_PTXFEMP) {
2521 2522
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2523
		/* See note in GINTSTS_NPTxFEmp */
2524

2525
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2526 2527 2528
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2529
	if (gintsts & GINTSTS_RXFLVL) {
2530 2531
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2532
		 * we need to retry s3c_hsotg_handle_rx if this is still
2533 2534
		 * set.
		 */
2535 2536 2537 2538

		s3c_hsotg_handle_rx(hsotg);
	}

2539
	if (gintsts & GINTSTS_ERLYSUSP) {
2540
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2541
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2542 2543
	}

2544 2545
	/*
	 * these next two seem to crop-up occasionally causing the core
2546
	 * to shutdown the USB transfer, so try clearing them and logging
2547 2548
	 * the occurrence.
	 */
2549

2550
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2551 2552
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2553
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2554 2555

		s3c_hsotg_dump(hsotg);
2556 2557
	}

2558
	if (gintsts & GINTSTS_GINNAKEFF) {
2559 2560
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2561
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2562 2563

		s3c_hsotg_dump(hsotg);
2564 2565
	}

2566 2567 2568 2569
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2570 2571 2572 2573

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2574 2575
	spin_unlock(&hsotg->lock);

2576 2577 2578 2579 2580 2581 2582 2583 2584
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2585
 */
2586 2587 2588 2589
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2590
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2591
	unsigned long flags;
2592
	unsigned int index = hs_ep->index;
2593 2594 2595
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2596 2597
	unsigned int dir_in;
	unsigned int i, val, size;
2598
	int ret = 0;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2614
	mps = usb_endpoint_maxp(desc);
2615 2616 2617

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2618
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2619 2620 2621 2622 2623
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2624
	spin_lock_irqsave(&hsotg->lock, flags);
2625

2626 2627
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2628

2629 2630 2631 2632
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2633
	epctrl |= DXEPCTL_USBACTEP;
2634

2635 2636
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2637 2638 2639 2640 2641
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2642
	epctrl |= DXEPCTL_SNAK;
2643 2644

	/* update the endpoint state */
2645
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2646 2647

	/* default, set to non-periodic */
2648
	hs_ep->isochronous = 0;
2649
	hs_ep->periodic = 0;
2650
	hs_ep->halted = 0;
2651
	hs_ep->interval = desc->bInterval;
2652

2653 2654 2655
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2656 2657
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2658 2659
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2660 2661 2662 2663
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2664 2665

	case USB_ENDPOINT_XFER_BULK:
2666
		epctrl |= DXEPCTL_EPTYPE_BULK;
2667 2668 2669
		break;

	case USB_ENDPOINT_XFER_INT:
2670
		if (dir_in)
2671 2672
			hs_ep->periodic = 1;

2673
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2674 2675 2676
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2677
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2678 2679 2680
		break;
	}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2692 2693
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2694 2695
	 * a unique tx-fifo even if it is non-periodic.
	 */
2696
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2697 2698
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2699
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2700
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2701 2702 2703 2704 2705 2706
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2707 2708 2709 2710 2711
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2712
		}
2713
		if (!fifo_index) {
2714 2715
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2716 2717 2718
			ret = -ENOMEM;
			goto error;
		}
2719 2720 2721 2722
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2723
	}
2724

2725 2726
	/* for non control endpoints, set PID to D0 */
	if (index)
2727
		epctrl |= DXEPCTL_SETD0PID;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2739
error:
2740
	spin_unlock_irqrestore(&hsotg->lock, flags);
2741
	return ret;
2742 2743
}

2744 2745 2746 2747
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2748
static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2749 2750
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2751
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2752 2753 2754 2755 2756 2757
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2758
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2759

2760
	if (ep == &hsotg->eps_out[0]->ep) {
2761 2762 2763 2764
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2765
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2766

2767
	spin_lock_irqsave(&hsotg->lock, flags);
2768

2769 2770 2771
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2772 2773

	ctrl = readl(hsotg->regs + epctrl_reg);
2774 2775 2776
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2777 2778 2779 2780 2781 2782 2783

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2784 2785 2786
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2787
	spin_unlock_irqrestore(&hsotg->lock, flags);
2788 2789 2790
	return 0;
}

2791 2792 2793 2794
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	return s3c_hsotg_ep_disable_force(ep, false);
}
2795 2796 2797 2798
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2799
 */
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2812 2813 2814 2815 2816
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2817 2818 2819 2820
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2821
	struct dwc2_hsotg *hs = hs_ep->parent;
2822 2823
	unsigned long flags;

2824
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2825

2826
	spin_lock_irqsave(&hs->lock, flags);
2827 2828

	if (!on_list(hs_ep, hs_req)) {
2829
		spin_unlock_irqrestore(&hs->lock, flags);
2830 2831 2832 2833
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2834
	spin_unlock_irqrestore(&hs->lock, flags);
2835 2836 2837 2838

	return 0;
}

2839 2840 2841 2842 2843
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2844 2845 2846
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2847
	struct dwc2_hsotg *hs = hs_ep->parent;
2848 2849 2850
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2851
	u32 xfertype;
2852 2853 2854

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2880
	} else {
2881

2882 2883
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2895
	}
2896

2897 2898
	hs_ep->halted = value;

2899 2900 2901
	return 0;
}

2902 2903 2904 2905 2906 2907 2908 2909
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2910
	struct dwc2_hsotg *hs = hs_ep->parent;
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2921 2922 2923 2924 2925
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2926
	.queue		= s3c_hsotg_ep_queue_lock,
2927
	.dequeue	= s3c_hsotg_ep_dequeue,
2928
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2929
	/* note, don't believe we have any call for the fifo routines */
2930 2931
};

2932 2933
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2934
 * @hsotg: The driver state
2935 2936 2937 2938
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2939
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2940 2941 2942 2943
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2944

2945
	if (hsotg->uphy)
2946
		usb_phy_init(hsotg->uphy);
2947
	else if (hsotg->plat && hsotg->plat->phy_init)
2948
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2949 2950 2951 2952
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2953 2954 2955 2956
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2957
 * @hsotg: The driver state
2958 2959 2960 2961
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2962
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2963 2964 2965
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2966
	if (hsotg->uphy)
2967
		usb_phy_shutdown(hsotg->uphy);
2968
	else if (hsotg->plat && hsotg->plat->phy_exit)
2969
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2970 2971 2972 2973
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2974 2975
}

2976 2977 2978 2979
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2980
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2981
{
2982
	u32 trdtim;
2983 2984
	/* unmask subset of endpoint interrupts */

2985 2986 2987
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2988

2989 2990 2991
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2992

2993
	writel(0, hsotg->regs + DAINTMSK);
2994 2995

	/* Be in disconnected state until gadget is registered */
2996
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2997 2998 2999 3000

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3001 3002
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
3003 3004 3005 3006

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
3007 3008
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3009
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3010
		hsotg->regs + GUSBCFG);
3011

3012 3013
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3024 3025
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
3026
{
3027
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3028
	unsigned long flags;
3029 3030 3031
	int ret;

	if (!hsotg) {
3032
		pr_err("%s: called with no device\n", __func__);
3033 3034 3035 3036 3037 3038 3039 3040
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3041
	if (driver->max_speed < USB_SPEED_FULL)
3042 3043
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3044
	if (!driver->setup) {
3045 3046 3047 3048
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

3049
	mutex_lock(&hsotg->init_mutex);
3050 3051 3052 3053
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3054
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3055 3056
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3057 3058
	clk_enable(hsotg->clk);

3059 3060
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
3061
	if (ret) {
3062
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3063 3064 3065
		goto err;
	}

3066
	s3c_hsotg_phy_enable(hsotg);
3067 3068
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3069

3070 3071
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
3072
	s3c_hsotg_core_init_disconnected(hsotg, false);
3073
	hsotg->enabled = 0;
3074 3075
	spin_unlock_irqrestore(&hsotg->lock, flags);

3076
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3077

3078 3079
	mutex_unlock(&hsotg->init_mutex);

3080 3081 3082
	return 0;

err:
3083
	mutex_unlock(&hsotg->init_mutex);
3084 3085 3086 3087
	hsotg->driver = NULL;
	return ret;
}

3088 3089 3090 3091 3092 3093 3094
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3095
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3096
{
3097
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3098
	unsigned long flags = 0;
3099 3100 3101 3102 3103
	int ep;

	if (!hsotg)
		return -ENODEV;

3104 3105
	mutex_lock(&hsotg->init_mutex);

3106
	/* all endpoints should be shutdown */
3107 3108 3109 3110 3111 3112
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
3113

3114 3115
	spin_lock_irqsave(&hsotg->lock, flags);

3116
	hsotg->driver = NULL;
3117
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3118
	hsotg->enabled = 0;
3119

3120 3121
	spin_unlock_irqrestore(&hsotg->lock, flags);

3122 3123
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3124 3125
	s3c_hsotg_phy_disable(hsotg);

3126
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3127

3128 3129
	clk_disable(hsotg->clk);

3130 3131
	mutex_unlock(&hsotg->init_mutex);

3132 3133 3134
	return 0;
}

3135 3136 3137 3138 3139 3140
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3141 3142 3143 3144 3145
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3146 3147 3148 3149 3150 3151 3152 3153 3154
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3155
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3156 3157
	unsigned long flags = 0;

3158
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3159

3160
	mutex_lock(&hsotg->init_mutex);
3161 3162
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3163
		clk_enable(hsotg->clk);
3164
		hsotg->enabled = 1;
3165
		s3c_hsotg_core_init_disconnected(hsotg, false);
3166
		s3c_hsotg_core_connect(hsotg);
3167
	} else {
3168
		s3c_hsotg_core_disconnect(hsotg);
3169
		s3c_hsotg_disconnect(hsotg);
3170
		hsotg->enabled = 0;
3171
		clk_disable(hsotg->clk);
3172 3173 3174 3175
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3176
	mutex_unlock(&hsotg->init_mutex);
3177 3178 3179 3180

	return 0;
}

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3192
		s3c_hsotg_core_init_disconnected(hsotg, false);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3220
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3221
	.get_frame	= s3c_hsotg_gadget_getframe,
3222 3223
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3224
	.pullup                 = s3c_hsotg_pullup,
3225
	.vbus_session		= s3c_hsotg_vbus_session,
3226
	.vbus_draw		= s3c_hsotg_vbus_draw,
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3239
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3240
				       struct s3c_hsotg_ep *hs_ep,
3241 3242
				       int epnum,
				       bool dir_in)
3243 3244 3245 3246 3247
{
	char *dir;

	if (epnum == 0)
		dir = "";
3248
	else if (dir_in)
3249
		dir = "in";
3250 3251
	else
		dir = "out";
3252

3253
	hs_ep->dir_in = dir_in;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3267
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3268 3269
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3270 3271
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3272 3273 3274 3275
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3276
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3277 3278 3279 3280
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3281 3282 3283
	}
}

3284 3285 3286 3287 3288 3289
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3290
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3291
{
3292 3293 3294 3295
	u32 cfg;
	u32 ep_type;
	u32 i;

3296
	/* check hardware configuration */
3297

3298
	cfg = readl(hsotg->regs + GHWCFG2);
3299
	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3300 3301
	/* Add ep0 */
	hsotg->num_of_eps++;
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
3330
	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3331

3332
	cfg = readl(hsotg->regs + GHWCFG4);
3333
	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3334

3335 3336 3337 3338
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3339
	return 0;
3340 3341
}

3342 3343 3344 3345
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3346
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3347
{
M
Mark Brown 已提交
3348
#ifdef DEBUG
3349 3350 3351 3352 3353 3354
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3355 3356
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3357

3358 3359
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
		 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3360 3361

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3362
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3363 3364 3365

	/* show periodic fifo settings */

3366
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3367
		val = readl(regs + DPTXFSIZN(idx));
3368
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3369 3370
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3371 3372
	}

3373
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3374 3375
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3376 3377 3378
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3379

3380
		val = readl(regs + DOEPCTL(idx));
3381 3382
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3383 3384 3385
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3386 3387 3388 3389

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3390
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3391
#endif
3392 3393
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
/**
 * testmode_write - debugfs: change usb test mode
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry modify the current usb test mode.
 */
static ssize_t testmode_write(struct file *file, const char __user *ubuf, size_t
		count, loff_t *ppos)
{
	struct seq_file		*s = file->private_data;
	struct dwc2_hsotg	*hsotg = s->private;
	unsigned long		flags;
	u32			testmode = 0;
	char			buf[32];

	if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
		return -EFAULT;

	if (!strncmp(buf, "test_j", 6))
		testmode = TEST_J;
	else if (!strncmp(buf, "test_k", 6))
		testmode = TEST_K;
	else if (!strncmp(buf, "test_se0_nak", 12))
		testmode = TEST_SE0_NAK;
	else if (!strncmp(buf, "test_packet", 11))
		testmode = TEST_PACKET;
	else if (!strncmp(buf, "test_force_enable", 17))
		testmode = TEST_FORCE_EN;
	else
		testmode = 0;

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_set_test_mode(hsotg, testmode);
	spin_unlock_irqrestore(&hsotg->lock, flags);
	return count;
}

/**
 * testmode_show - debugfs: show usb test mode state
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows which usb test mode is currently enabled.
 */
static int testmode_show(struct seq_file *s, void *unused)
{
	struct dwc2_hsotg *hsotg = s->private;
	unsigned long flags;
	int dctl;

	spin_lock_irqsave(&hsotg->lock, flags);
	dctl = readl(hsotg->regs + DCTL);
	dctl &= DCTL_TSTCTL_MASK;
	dctl >>= DCTL_TSTCTL_SHIFT;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	switch (dctl) {
	case 0:
		seq_puts(s, "no test\n");
		break;
	case TEST_J:
		seq_puts(s, "test_j\n");
		break;
	case TEST_K:
		seq_puts(s, "test_k\n");
		break;
	case TEST_SE0_NAK:
		seq_puts(s, "test_se0_nak\n");
		break;
	case TEST_PACKET:
		seq_puts(s, "test_packet\n");
		break;
	case TEST_FORCE_EN:
		seq_puts(s, "test_force_enable\n");
		break;
	default:
		seq_printf(s, "UNKNOWN %d\n", dctl);
	}

	return 0;
}

static int testmode_open(struct inode *inode, struct file *file)
{
	return single_open(file, testmode_show, inode->i_private);
}

static const struct file_operations testmode_fops = {
	.owner		= THIS_MODULE,
	.open		= testmode_open,
	.write		= testmode_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3502
	struct dwc2_hsotg *hsotg = seq->private;
3503 3504 3505 3506
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3507 3508 3509
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3510 3511

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3512
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3513 3514

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3515 3516
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3517 3518

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3519 3520
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3521 3522

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3523 3524
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3525

3526
	seq_puts(seq, "\nEndpoint status:\n");
3527

3528
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3529 3530
		u32 in, out;

3531 3532
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3533 3534 3535 3536

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3537 3538
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3539 3540 3541 3542

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3543
		seq_puts(seq, "\n");
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3569
 */
3570 3571
static int fifo_show(struct seq_file *seq, void *v)
{
3572
	struct dwc2_hsotg *hsotg = seq->private;
3573 3574 3575 3576
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3577
	seq_puts(seq, "Non-periodic FIFOs:\n");
3578
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3579

3580
	val = readl(regs + GNPTXFSIZ);
3581
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3582 3583
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3584

3585
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3586

3587
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3588
		val = readl(regs + DPTXFSIZN(idx));
3589 3590

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3591 3592
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3624
 */
3625 3626 3627
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3628
	struct dwc2_hsotg *hsotg = ep->parent;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3641 3642
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3643 3644

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3645 3646
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3647 3648

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3649 3650
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3651 3652

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3653 3654
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3655

3656
	seq_puts(seq, "\n");
3657 3658 3659 3660 3661 3662
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3663
	spin_lock_irqsave(&hsotg->lock, flags);
3664 3665 3666

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3667
			seq_puts(seq, "not showing more requests...\n");
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3678
	spin_unlock_irqrestore(&hsotg->lock, flags);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3704
 */
3705
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

3719
	hsotg->debug_file = debugfs_create_file("state", S_IRUGO, root,
3720 3721 3722 3723 3724
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

3725 3726 3727 3728 3729 3730 3731 3732
	hsotg->debug_testmode = debugfs_create_file("testmode",
					S_IRUGO | S_IWUSR, root,
					hsotg, &testmode_fops);

	if (IS_ERR(hsotg->debug_testmode))
		dev_err(hsotg->dev, "%s: failed to create testmode\n",
				__func__);

3733
	hsotg->debug_fifo = debugfs_create_file("fifo", S_IRUGO, root,
3734 3735 3736 3737 3738
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3739
	/* Create one file for each out endpoint */
3740
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3741
		struct s3c_hsotg_ep *ep;
3742

3743 3744
		ep = hsotg->eps_out[epidx];
		if (ep) {
3745
			ep->debugfs = debugfs_create_file(ep->name, S_IRUGO,
3746
							  root, ep, &ep_fops);
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
3759
			ep->debugfs = debugfs_create_file(ep->name, S_IRUGO,
3760 3761 3762 3763 3764 3765
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3766 3767 3768 3769 3770 3771 3772 3773
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3774
 */
3775
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3776 3777 3778
{
	unsigned epidx;

3779
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3780 3781 3782 3783
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3784 3785 3786
	}

	debugfs_remove(hsotg->debug_file);
3787
	debugfs_remove(hsotg->debug_testmode);
3788 3789 3790 3791
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3792 3793 3794 3795
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3796 3797
	u32 len = 0;
	u32 i = 0;
3798 3799 3800

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3832 3833 3834 3835 3836
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3837
/**
3838 3839 3840
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3841
 */
3842
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3843
{
3844 3845
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3846 3847
	int epnum;
	int ret;
3848
	int i;
3849
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3850

3851 3852 3853
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3854 3855
	s3c_hsotg_of_probe(hsotg);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3869
	/*
3870 3871
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3872
	 */
3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3882 3883 3884 3885
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3886
		if (phy_get_bus_width(hsotg->phy) == 8)
3887 3888
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3889

3890
	hsotg->clk = devm_clk_get(dev, "otg");
3891
	if (IS_ERR(hsotg->clk)) {
3892
		hsotg->clk = NULL;
3893
		dev_dbg(dev, "cannot get otg clock\n");
3894 3895
	}

3896
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3897 3898 3899 3900 3901
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3902 3903 3904 3905 3906 3907
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3908

3909 3910 3911 3912 3913
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3914
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3915 3916 3917
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3918
		goto err_clk;
3919 3920 3921 3922 3923 3924
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3925
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3926
		goto err_clk;
3927 3928
	}

3929 3930
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3945
	s3c_hsotg_corereset(hsotg);
3946 3947 3948 3949 3950 3951
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3952
	s3c_hsotg_init(hsotg);
3953

3954 3955 3956
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3973 3974
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3975 3976 3977 3978 3979
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3980
		dev_err(dev, "cannot claim IRQ for gadget\n");
3981
		goto err_supplies;
3982 3983
	}

3984 3985 3986 3987
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3988
		ret = -EINVAL;
3989 3990 3991 3992 3993 3994
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3995
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3996 3997 3998

	/* allocate EP0 request */

3999
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4000 4001 4002
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4003
		ret = -ENOMEM;
4004
		goto err_supplies;
4005
	}
4006 4007

	/* initialise the endpoints now the core has been initialised */
4008 4009 4010 4011 4012 4013 4014 4015
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
4016

4017
	/* disable power and clock */
4018
	s3c_hsotg_phy_disable(hsotg);
4019 4020 4021 4022

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
4023
		dev_err(dev, "failed to disable supplies: %d\n", ret);
4024
		goto err_supplies;
4025 4026
	}

4027
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4028
	if (ret)
4029
		goto err_supplies;
4030

4031 4032 4033 4034 4035 4036
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

4037
err_supplies:
4038
	s3c_hsotg_phy_disable(hsotg);
4039
err_clk:
4040
	clk_disable_unprepare(hsotg->clk);
4041

4042 4043
	return ret;
}
4044
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
4045

4046 4047 4048 4049
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
4050
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
4051
{
4052
	usb_del_gadget_udc(&hsotg->gadget);
4053
	s3c_hsotg_delete_debug(hsotg);
4054
	clk_disable_unprepare(hsotg->clk);
4055

4056 4057
	return 0;
}
4058
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
4059

4060
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
4061 4062 4063 4064
{
	unsigned long flags;
	int ret = 0;

4065 4066
	mutex_lock(&hsotg->init_mutex);

4067 4068 4069
	if (hsotg->driver) {
		int ep;

4070 4071 4072
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4073 4074 4075 4076 4077 4078
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4079

4080
		s3c_hsotg_phy_disable(hsotg);
4081

4082 4083 4084 4085 4086 4087
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
4088 4089 4090

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
4091
		clk_disable(hsotg->clk);
4092 4093
	}

4094 4095
	mutex_unlock(&hsotg->init_mutex);

4096 4097
	return ret;
}
4098
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
4099

4100
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
4101 4102 4103 4104
{
	unsigned long flags;
	int ret = 0;

4105 4106
	mutex_lock(&hsotg->init_mutex);

4107 4108 4109
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4110 4111

		clk_enable(hsotg->clk);
4112
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
4113
					    hsotg->supplies);
4114

4115
		s3c_hsotg_phy_enable(hsotg);
4116

4117
		spin_lock_irqsave(&hsotg->lock, flags);
4118
		s3c_hsotg_core_init_disconnected(hsotg, false);
4119 4120 4121 4122
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4123
	mutex_unlock(&hsotg->init_mutex);
4124 4125 4126

	return ret;
}
4127
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);