gadget.c 91.2 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23 24 25 26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
100
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101 102 103 104 105 106
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108 109 110 111 112 113 114 115 116 117
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
118
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119 120 121 122 123
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
124
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
149
	daint = readl(hsotg->regs + DAINTMSK);
150 151 152 153
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
154
	writel(daint, hsotg->regs + DAINTMSK);
155 156 157 158 159 160 161 162 163
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
164 165 166
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
167
	int timeout;
168 169
	u32 val;

170
	/* set FIFO sizes to 2048/1024 */
171

172
	writel(2048, hsotg->regs + GRXFSIZ);
173 174
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175

176 177
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
178 179
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
180 181
	 * known values.
	 */
182 183 184 185

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

186
	/*
187 188 189 190 191
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
192
	 */
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
208
		val = addr;
209
		val |= size << FIFOSIZE_DEPTH_SHIFT;
210 211
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
212 213
		addr += size;

214
		writel(val, hsotg->regs + DPTXFSIZN(ep));
215
	}
216

217 218 219 220
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
221

222 223
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224 225 226 227

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
228
		val = readl(hsotg->regs + GRSTCTL);
229

230
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231 232 233 234 235 236 237 238 239 240 241 242
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 244 245 246 247 248 249 250
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
251 252
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
285
 */
286 287 288 289 290 291 292 293 294 295
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

296
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
314
 */
315 316 317 318 319
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
320
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 322 323 324 325
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
326
	int max_transfer;
327 328 329 330 331 332 333

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

334
	if (periodic && !hsotg->dedicated_fifos) {
335
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 337 338
		int size_left;
		int size_done;

339 340 341 342
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
343

344
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345

346 347
		/*
		 * if shared fifo, we cannot write anything until the
348 349 350
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
351
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 353 354
			return -ENOSPC;
		}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
372
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 374
			return -ENOSPC;
		}
375
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 378 379

		can_write &= 0xffff;
		can_write *= 4;
380
	} else {
381
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 383 384 385
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

386
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 388 389
			return -ENOSPC;
		}

390
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391
		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 393
	}

394 395 396 397
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
398

399 400
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 402 403
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
404
	if (can_write > 512 && !periodic)
405 406
		can_write = 512;

407 408
	/*
	 * limit the write to one max-packet size worth of data, but allow
409
	 * the transfer to return that it did not run out of fifo space
410 411
	 * doing it.
	 */
412 413
	if (to_write > max_transfer) {
		to_write = max_transfer;
414

415 416 417
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
418 419
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
420 421
	}

422 423 424 425
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
426
		pkt_round = to_write % max_transfer;
427

428 429
		/*
		 * Round the write down to an
430 431 432 433 434 435 436 437 438
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

439 440 441 442
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
443

444 445 446
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
447 448
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

466
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
485 486
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487
	} else {
488
		maxsize = 64+64;
489
		if (hs_ep->dir_in)
490
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491
		else
492 493 494 495 496 497 498
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

499 500 501 502
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

549 550
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 552 553 554 555

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

556 557 558
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

559
	if (ctrl & DXEPCTL_STALL) {
560 561 562 563
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

564
	length = ureq->length - ureq->actual;
565 566
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
567 568
	if (0)
		dev_dbg(hsotg->dev,
569
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
570
			ureq->buf, length, &ureq->dma,
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

592 593 594 595 596
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

597
	if (dir_in && index != 0)
598
		if (hs_ep->isochronous)
599
			epsize = DXEPTSIZ_MC(packets);
600
		else
601
			epsize = DXEPTSIZ_MC(1);
602 603 604 605
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
606 607 608 609
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
610 611 612 613 614

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

615 616
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
617 618 619 620 621 622 623 624 625 626

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

627
	if (using_dma(hsotg) && !continuing) {
628 629
		unsigned int dma_reg;

630 631 632 633
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
634

635
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
636 637
		writel(ureq->dma, hsotg->regs + dma_reg);

638
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
639
			__func__, &ureq->dma, dma_reg);
640 641
	}

642 643
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
644 645 646 647 648 649 650

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
651
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652

653 654 655 656

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

657 658
	/*
	 * set these, it seems that DMA support increments past the end
659
	 * of the packet buffer so we need to calculate the length from
660 661
	 * this information.
	 */
662 663 664 665 666 667 668 669 670 671
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

672 673 674 675
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
676
	if (dir_in)
677
		writel(DIEPMSK_INTKNTXFEMPMSK,
678
		       hsotg->regs + DIEPINT(index));
679

680 681 682 683
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
684 685

	/* check ep is enabled */
686
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
687
		dev_warn(hsotg->dev,
688
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
689 690
			 index, readl(hsotg->regs + epctrl_reg));

691
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
692
		__func__, readl(hsotg->regs + epctrl_reg));
693 694 695

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
696 697 698 699 700 701 702 703 704 705 706 707 708
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
709
 */
710 711 712 713 714
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
715
	int ret;
716 717 718 719 720

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

721 722 723
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
816
 */
817 818 819 820 821 822 823 824 825 826
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

827
	if (idx > hsotg->num_of_eps)
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

953 954 955 956 957 958 959 960
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
961
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
962 963
	struct s3c_hsotg_req *hs_req;
	bool restart;
964 965
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
966
	int ret;
967
	bool halted;
968 969 970 971 972 973 974 975 976 977 978 979 980 981

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
982 983
			halted = ep->halted;

984
			s3c_hsotg_ep_sethalt(&ep->ep, set);
985 986 987 988 989 990 991

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
992

993 994 995 996 997 998
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1031
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1032
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1033

1034 1035 1036 1037 1038 1039
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1040 1041
static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
{
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1055 1056
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1057 1058 1059
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1060
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1061 1062 1063 1064 1065 1066 1067 1068 1069
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1092 1093 1094 1095
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1096 1097 1098 1099

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1100 1101 1102 1103
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1104 1105 1106 1107 1108 1109
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1110
			s3c_hsotg_disconnect(hsotg);
1111
			dcfg = readl(hsotg->regs + DCFG);
1112
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1113 1114
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115
			writel(dcfg, hsotg->regs + DCFG);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1136
		spin_unlock(&hsotg->lock);
1137
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138
		spin_lock(&hsotg->lock);
1139 1140 1141 1142
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1143 1144
	/*
	 * the request is either unhandlable, or is not formatted correctly
1145 1146 1147
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1148 1149
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1171
	spin_lock(&hsotg->lock);
1172 1173 1174 1175
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1176
	spin_unlock(&hsotg->lock);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 1210 1211 1212
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1228
 */
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1244 1245 1246 1247
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1258 1259 1260 1261
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1262 1263

	if (hs_req->req.complete) {
1264
		spin_unlock(&hsotg->lock);
1265
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1266
		spin_lock(&hsotg->lock);
1267 1268
	}

1269 1270
	/*
	 * Look to see if there is anything else to do. Note, the completion
1271
	 * of the previous request may have caused a new request to be started
1272 1273
	 * so be careful when doing this.
	 */
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1298
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 1300 1301 1302
	int to_read;
	int max_req;
	int read_ptr;

1303

1304
	if (!hs_req) {
1305
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 1307 1308
		int ptr;

		dev_warn(hsotg->dev,
1309
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1323 1324 1325
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1326
	if (to_read > max_req) {
1327 1328
		/*
		 * more data appeared than we where willing
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1340 1341 1342 1343
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1344
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1356
 * currently believed that we do not need to wait for any space in
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1381 1382
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383

1384
	ctrl = readl(hsotg->regs + DIEPCTL0);
1385 1386 1387
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1388
	writel(ctrl, hsotg->regs + DIEPCTL0);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1400
 */
1401 1402 1403
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1404
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 1406 1407
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1408
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1419 1420
		/*
		 * Calculate the size of the transfer by checking how much
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1434 1435 1436 1437
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1438 1439 1440 1441 1442 1443
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1444 1445
	}

1446 1447 1448 1449
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1450 1451 1452 1453
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1454 1455 1456
	}

	if (epnum == 0) {
1457 1458 1459 1460
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1461 1462 1463 1464
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1465
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 1467 1468 1469 1470 1471 1472
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1473
 */
1474 1475 1476 1477
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1478 1479 1480
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1493
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494 1495 1496 1497 1498 1499 1500
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1501
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1502
{
1503
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 1505 1506 1507
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1508 1509
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1510

1511 1512
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1513 1514 1515 1516 1517

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1518 1519 1520
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 1522
		break;

1523
	case GRXSTS_PKTSTS_OUTDONE:
1524 1525 1526 1527 1528 1529 1530
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1531
	case GRXSTS_PKTSTS_SETUPDONE:
1532 1533 1534
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1535
			readl(hsotg->regs + DOEPCTL(0)));
1536 1537 1538 1539

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1540
	case GRXSTS_PKTSTS_OUTRX:
1541 1542 1543
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1544
	case GRXSTS_PKTSTS_SETUPRX:
1545 1546 1547
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1548
			readl(hsotg->regs + DOEPCTL(0)));
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1565
 */
1566 1567 1568 1569
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1570
		return D0EPCTL_MPS_64;
1571
	case 32:
1572
		return D0EPCTL_MPS_32;
1573
	case 16:
1574
		return D0EPCTL_MPS_16;
1575
	case 8:
1576
		return D0EPCTL_MPS_8;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1599
	u32 mcval;
1600 1601 1602 1603 1604 1605 1606
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1607
		hs_ep->ep.maxpacket = mps;
1608
		hs_ep->mc = 1;
1609
	} else {
1610
		mpsval = mps & DXEPCTL_MPS_MASK;
1611
		if (mpsval > 1024)
1612
			goto bad_mps;
1613 1614 1615 1616
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1617
		hs_ep->ep.maxpacket = mpsval;
1618 1619
	}

1620 1621 1622 1623
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1624

1625
	reg = readl(regs + DIEPCTL(ep));
1626
	reg &= ~DXEPCTL_MPS_MASK;
1627
	reg |= mpsval;
1628
	writel(reg, regs + DIEPCTL(ep));
1629

1630
	if (ep) {
1631
		reg = readl(regs + DOEPCTL(ep));
1632
		reg &= ~DXEPCTL_MPS_MASK;
1633
		reg |= mpsval;
1634
		writel(reg, regs + DOEPCTL(ep));
1635
	}
1636 1637 1638 1639 1640 1641 1642

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1653
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654
		hsotg->regs + GRSTCTL);
1655 1656 1657 1658 1659

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1660
		val = readl(hsotg->regs + GRSTCTL);
1661

1662
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 1664 1665 1666 1667 1668
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1669
			break;
1670 1671 1672 1673 1674
		}

		udelay(1);
	}
}
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1689 1690 1691 1692 1693 1694 1695 1696
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1697
		return 0;
1698
	}
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1721
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 1723 1724 1725 1726 1727 1728
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1729 1730 1731
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1732
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 1734 1735
		return;
	}

1736 1737
	/*
	 * Calculate the size of the transfer by checking how much is left
1738 1739 1740 1741 1742 1743 1744 1745
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1746
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747 1748 1749 1750 1751 1752 1753 1754 1755

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1775

1776 1777
		return;
	}
1778 1779 1780 1781 1782

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1783
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 1785 1786 1787 1788 1789 1790 1791 1792
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1793
 */
1794 1795 1796 1797
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 1799 1800
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801
	u32 ints;
1802
	u32 ctrl;
1803 1804

	ints = readl(hsotg->regs + epint_reg);
1805
	ctrl = readl(hsotg->regs + epctl_reg);
1806

1807 1808 1809
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1810 1811 1812
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1813
	if (ints & DXEPINT_XFERCOMPL) {
1814
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1815 1816
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1817
			else
1818
				ctrl |= DXEPCTL_SETODDFR;
1819 1820 1821
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1822
		dev_dbg(hsotg->dev,
1823
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824 1825 1826
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1827 1828 1829 1830
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1831 1832 1833
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1834
			if (idx == 0 && !hs_ep->req)
1835 1836
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1837 1838 1839 1840
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1841 1842 1843 1844 1845

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1846
	if (ints & DXEPINT_EPDISBLD) {
1847 1848
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1849 1850 1851
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1852
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853

1854 1855
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1856
				int dctl = readl(hsotg->regs + DCTL);
1857

1858
				dctl |= DCTL_CGNPINNAK;
1859
				writel(dctl, hsotg->regs + DCTL);
1860 1861 1862 1863
			}
		}
	}

1864
	if (ints & DXEPINT_AHBERR)
1865 1866
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1867
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1868 1869 1870
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1871 1872
			/*
			 * this is the notification we've received a
1873 1874
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1875 1876
			 * the setup here.
			 */
1877 1878 1879 1880 1881 1882 1883 1884

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1885
	if (ints & DXEPINT_BACK2BACKSETUP)
1886 1887
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1888
	if (dir_in && !hs_ep->isochronous) {
1889
		/* not sure if this is important, but we'll clear it anyway */
1890
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891 1892 1893 1894 1895
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1896
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1897 1898 1899
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1900 1901 1902

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1903
		    ints & DIEPMSK_TXFIFOEMPTY) {
1904 1905
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1906 1907
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1908
		}
1909 1910 1911 1912 1913 1914 1915 1916 1917
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1918
 */
1919 1920
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1921
	u32 dsts = readl(hsotg->regs + DSTS);
1922
	int ep0_mps = 0, ep_mps = 8;
1923

1924 1925
	/*
	 * This should signal the finish of the enumeration phase
1926
	 * of the USB handshaking, so we should now know what rate
1927 1928
	 * we connected at.
	 */
1929 1930 1931

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1932 1933
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1934
	 * it seems IN transfers must be a even number of packets we do
1935 1936
	 * not advertise a 64byte MPS on EP0.
	 */
1937 1938

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1939 1940 1941
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1942 1943
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1944
		ep_mps = 1023;
1945 1946
		break;

1947
	case DSTS_ENUMSPD_HS:
1948 1949
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1950
		ep_mps = 1024;
1951 1952
		break;

1953
	case DSTS_ENUMSPD_LS:
1954
		hsotg->gadget.speed = USB_SPEED_LOW;
1955 1956
		/*
		 * note, we don't actually support LS in this driver at the
1957 1958 1959 1960 1961
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1962 1963
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1964

1965 1966 1967 1968
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1969 1970 1971 1972

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1973
		for (i = 1; i < hsotg->num_of_eps; i++)
1974 1975 1976 1977 1978 1979 1980 1981
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1982 1983
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
2001
	unsigned size;
2002 2003

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2004 2005 2006 2007
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2008 2009 2010 2011 2012 2013 2014

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
2015 2016 2017 2018 2019
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2020 2021 2022
}

/**
2023
 * s3c_hsotg_disconnect - disconnect service
2024 2025
 * @hsotg: The device state.
 *
2026 2027 2028
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2029
 */
2030
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2031 2032 2033
{
	unsigned ep;

2034
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2052
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2069 2070 2071
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2072

2073 2074 2075 2076 2077
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2078
 */
2079 2080 2081 2082 2083 2084 2085 2086
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2087
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2088

2089
	timeout = 10000;
2090
	do {
2091
		grstctl = readl(hsotg->regs + GRSTCTL);
2092
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2093

2094
	if (grstctl & GRSTCTL_CSFTRST) {
2095 2096 2097 2098
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2099
	timeout = 10000;
2100 2101

	while (1) {
2102
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2103 2104 2105 2106 2107 2108 2109 2110

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2111
		if (!(grstctl & GRSTCTL_AHBIDLE))
2112 2113 2114 2115 2116 2117 2118 2119 2120
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2121 2122 2123 2124 2125 2126
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2137
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2138
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2139 2140 2141

	s3c_hsotg_init_fifo(hsotg);

2142
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2143

2144
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2145 2146

	/* Clear any pending OTG interrupts */
2147
	writel(0xffffffff, hsotg->regs + GOTGINT);
2148 2149

	/* Clear any pending interrupts */
2150
	writel(0xffffffff, hsotg->regs + GINTSTS);
2151

2152 2153 2154 2155 2156 2157
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2158 2159

	if (using_dma(hsotg))
2160 2161
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2162
		       hsotg->regs + GAHBCFG);
2163
	else
2164 2165 2166
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2167
		       hsotg->regs + GAHBCFG);
2168 2169

	/*
2170 2171 2172
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2173 2174
	 */

2175 2176 2177 2178 2179 2180
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2181 2182 2183 2184 2185

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2186 2187 2188 2189 2190
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2191

2192
	writel(0, hsotg->regs + DAINTMSK);
2193 2194

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2195 2196
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2197 2198

	/* enable in and out endpoint interrupts */
2199
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2200 2201 2202 2203 2204 2205 2206

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2207
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2208 2209 2210 2211 2212

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2213
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2214
	udelay(10);  /* see openiboot */
2215
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2216

2217
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2218 2219

	/*
2220
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2221 2222 2223 2224
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2225 2226
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2227 2228

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2229 2230
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2231
	       hsotg->regs + DOEPCTL0);
2232 2233 2234

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2235
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2236 2237 2238 2239

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2240 2241
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2242 2243

	/* clear global NAKs */
2244
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2245
	       hsotg->regs + DCTL);
2246 2247 2248 2249 2250

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2251
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2252 2253
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2266
	spin_lock(&hsotg->lock);
2267
irq_retry:
2268 2269
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2270 2271 2272 2273 2274 2275

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2276
	if (gintsts & GINTSTS_OTGINT) {
2277
		u32 otgint = readl(hsotg->regs + GOTGINT);
2278 2279 2280

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2281
		writel(otgint, hsotg->regs + GOTGINT);
2282 2283
	}

2284
	if (gintsts & GINTSTS_SESSREQINT) {
2285
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2286
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2287 2288
	}

2289 2290
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2291 2292

		s3c_hsotg_irq_enumdone(hsotg);
2293 2294
	}

2295
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2296
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2297 2298
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2299

2300
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2301 2302
	}

2303
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2304
		u32 daint = readl(hsotg->regs + DAINT);
2305 2306
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2307 2308
		int ep;

2309
		daint &= daintmsk;
2310 2311
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2326
	if (gintsts & GINTSTS_USBRST) {
2327

2328
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2329

2330 2331
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2332
			readl(hsotg->regs + GNPTXSTS));
2333

2334
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2335

2336
		if (usb_status & GOTGCTL_BSESVLD) {
2337 2338
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2339

2340 2341
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2342

2343 2344 2345 2346
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2347 2348 2349 2350
	}

	/* check both FIFOs */

2351
	if (gintsts & GINTSTS_NPTXFEMP) {
2352 2353
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2354 2355
		/*
		 * Disable the interrupt to stop it happening again
2356
		 * unless one of these endpoint routines decides that
2357 2358
		 * it needs re-enabling
		 */
2359

2360
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2361 2362 2363
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2364
	if (gintsts & GINTSTS_PTXFEMP) {
2365 2366
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2367
		/* See note in GINTSTS_NPTxFEmp */
2368

2369
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2370 2371 2372
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2373
	if (gintsts & GINTSTS_RXFLVL) {
2374 2375
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2376
		 * we need to retry s3c_hsotg_handle_rx if this is still
2377 2378
		 * set.
		 */
2379 2380 2381 2382

		s3c_hsotg_handle_rx(hsotg);
	}

2383
	if (gintsts & GINTSTS_MODEMIS) {
2384
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2385
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2386 2387
	}

2388
	if (gintsts & GINTSTS_USBSUSP) {
2389
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2390
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2391 2392 2393 2394

		call_gadget(hsotg, suspend);
	}

2395
	if (gintsts & GINTSTS_WKUPINT) {
2396
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2397
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2398 2399 2400 2401

		call_gadget(hsotg, resume);
	}

2402
	if (gintsts & GINTSTS_ERLYSUSP) {
2403
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2404
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2405 2406
	}

2407 2408
	/*
	 * these next two seem to crop-up occasionally causing the core
2409
	 * to shutdown the USB transfer, so try clearing them and logging
2410 2411
	 * the occurrence.
	 */
2412

2413
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2414 2415
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2416
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2417 2418

		s3c_hsotg_dump(hsotg);
2419 2420
	}

2421
	if (gintsts & GINTSTS_GINNAKEFF) {
2422 2423
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2424
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2425 2426

		s3c_hsotg_dump(hsotg);
2427 2428
	}

2429 2430 2431 2432
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2433 2434 2435 2436

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2437 2438
	spin_unlock(&hsotg->lock);

2439 2440 2441 2442 2443 2444 2445 2446 2447
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2448
 */
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2460
	int i, val, size;
2461
	int ret = 0;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2477
	mps = usb_endpoint_maxp(desc);
2478 2479 2480

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2481
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2482 2483 2484 2485 2486
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2487
	spin_lock_irqsave(&hsotg->lock, flags);
2488

2489 2490
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2491

2492 2493 2494 2495
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2496
	epctrl |= DXEPCTL_USBACTEP;
2497

2498 2499
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2500 2501 2502 2503 2504
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2505
	epctrl |= DXEPCTL_SNAK;
2506 2507

	/* update the endpoint state */
2508
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2509 2510

	/* default, set to non-periodic */
2511
	hs_ep->isochronous = 0;
2512
	hs_ep->periodic = 0;
2513
	hs_ep->halted = 0;
2514
	hs_ep->interval = desc->bInterval;
2515

2516 2517 2518
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2519 2520
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2521 2522
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2523 2524 2525 2526
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2527 2528

	case USB_ENDPOINT_XFER_BULK:
2529
		epctrl |= DXEPCTL_EPTYPE_BULK;
2530 2531 2532
		break;

	case USB_ENDPOINT_XFER_INT:
2533
		if (dir_in)
2534 2535
			hs_ep->periodic = 1;

2536
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2537 2538 2539
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2540
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2541 2542 2543
		break;
	}

2544 2545
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2546 2547
	 * a unique tx-fifo even if it is non-periodic.
	 */
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
		if (i == 8)
			return -ENOMEM;
	}
2567

2568 2569
	/* for non control endpoints, set PID to D0 */
	if (index)
2570
		epctrl |= DXEPCTL_SETD0PID;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2582
	spin_unlock_irqrestore(&hsotg->lock, flags);
2583
	return ret;
2584 2585
}

2586 2587 2588 2589
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2600
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2601 2602 2603 2604 2605 2606

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2607
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2608

2609
	spin_lock_irqsave(&hsotg->lock, flags);
2610 2611 2612
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

2613 2614 2615
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2616 2617

	ctrl = readl(hsotg->regs + epctrl_reg);
2618 2619 2620
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2621 2622 2623 2624 2625 2626 2627

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2628
	spin_unlock_irqrestore(&hsotg->lock, flags);
2629 2630 2631 2632 2633 2634 2635
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2636
 */
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2649 2650 2651 2652 2653
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2654 2655 2656 2657 2658 2659 2660
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

2661
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2662

2663
	spin_lock_irqsave(&hs->lock, flags);
2664 2665

	if (!on_list(hs_ep, hs_req)) {
2666
		spin_unlock_irqrestore(&hs->lock, flags);
2667 2668 2669 2670
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2671
	spin_unlock_irqrestore(&hs->lock, flags);
2672 2673 2674 2675

	return 0;
}

2676 2677 2678 2679 2680
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2681 2682 2683 2684 2685 2686 2687
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2688
	u32 xfertype;
2689 2690 2691

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2692 2693 2694 2695 2696 2697 2698 2699 2700
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2701 2702
	/* write both IN and OUT control registers */

2703
	epreg = DIEPCTL(index);
2704 2705
	epctl = readl(hs->regs + epreg);

2706
	if (value) {
2707 2708 2709
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2710
	} else {
2711 2712 2713 2714 2715
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2716
	}
2717 2718 2719

	writel(epctl, hs->regs + epreg);

2720
	epreg = DOEPCTL(index);
2721 2722 2723
	epctl = readl(hs->regs + epreg);

	if (value)
2724
		epctl |= DXEPCTL_STALL;
2725
	else {
2726 2727 2728 2729 2730
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2731
	}
2732 2733 2734

	writel(epctl, hs->regs + epreg);

2735 2736
	hs_ep->halted = value;

2737 2738 2739
	return 0;
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2759 2760 2761 2762 2763
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2764
	.queue		= s3c_hsotg_ep_queue_lock,
2765
	.dequeue	= s3c_hsotg_ep_dequeue,
2766
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2767
	/* note, don't believe we have any call for the fifo routines */
2768 2769
};

2770 2771
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2772
 * @hsotg: The driver state
2773 2774 2775 2776 2777 2778 2779 2780 2781
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2782

2783
	if (hsotg->uphy)
2784
		usb_phy_init(hsotg->uphy);
2785
	else if (hsotg->plat && hsotg->plat->phy_init)
2786
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2787 2788 2789 2790
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2791 2792 2793 2794
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2795
 * @hsotg: The driver state
2796 2797 2798 2799 2800 2801 2802 2803
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2804
	if (hsotg->uphy)
2805
		usb_phy_shutdown(hsotg->uphy);
2806
	else if (hsotg->plat && hsotg->plat->phy_exit)
2807
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2808 2809 2810 2811
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2812 2813
}

2814 2815 2816 2817
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2818 2819 2820 2821
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2822 2823 2824
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2825

2826 2827 2828
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2829

2830
	writel(0, hsotg->regs + DAINTMSK);
2831 2832

	/* Be in disconnected state until gadget is registered */
2833
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2834 2835 2836

	if (0) {
		/* post global nak until we're ready */
2837
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2838
		       hsotg->regs + DCTL);
2839 2840 2841 2842 2843
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2844 2845
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2846 2847 2848 2849

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2850
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2851
	       hsotg->regs + GUSBCFG);
2852

2853
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2854
	       hsotg->regs + GAHBCFG);
2855 2856
}

2857 2858 2859 2860 2861 2862 2863 2864
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2865 2866
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2867
{
2868
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2869 2870 2871
	int ret;

	if (!hsotg) {
2872
		pr_err("%s: called with no device\n", __func__);
2873 2874 2875 2876 2877 2878 2879 2880
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2881
	if (driver->max_speed < USB_SPEED_FULL)
2882 2883
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2884
	if (!driver->setup) {
2885 2886 2887 2888 2889 2890 2891 2892
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2893
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2894 2895
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2896 2897
	clk_enable(hsotg->clk);

2898 2899
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2900
	if (ret) {
2901
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2902 2903 2904
		goto err;
	}

2905
	hsotg->last_rst = jiffies;
2906 2907 2908 2909 2910 2911 2912 2913
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2914 2915 2916 2917 2918 2919 2920
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2921 2922
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2923
{
2924
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2925
	unsigned long flags = 0;
2926 2927 2928 2929 2930 2931
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2932
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2933 2934
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2935 2936
	spin_lock_irqsave(&hsotg->lock, flags);

2937 2938 2939
	if (!driver)
		hsotg->driver = NULL;

2940 2941
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2942 2943
	spin_unlock_irqrestore(&hsotg->lock, flags);

2944
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2945

2946 2947
	clk_disable(hsotg->clk);

2948 2949 2950
	return 0;
}

2951 2952 2953 2954 2955 2956
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2957 2958 2959 2960 2961
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

2974
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2975 2976 2977 2978

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
2979
		clk_enable(hsotg->clk);
2980 2981
		s3c_hsotg_core_init(hsotg);
	} else {
2982
		clk_disable(hsotg->clk);
2983 2984 2985 2986 2987 2988 2989 2990 2991
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2992
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2993
	.get_frame	= s3c_hsotg_gadget_getframe,
2994 2995
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2996
	.pullup                 = s3c_hsotg_pullup,
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3009
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3037
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3038 3039
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3040 3041
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3042 3043 3044 3045
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3046
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3047 3048
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3049 3050 3051
	}
}

3052 3053 3054 3055 3056 3057 3058
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3059
{
3060
	u32 cfg2, cfg3, cfg4;
3061
	/* check hardware configuration */
3062

3063 3064
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3065

3066 3067
	cfg3 = readl(hsotg->regs + 0x4C);
	hsotg->fifo_mem = (cfg3 >> 16);
3068 3069 3070 3071

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

3072 3073 3074 3075
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3076 3077
}

3078 3079 3080 3081
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3082 3083
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3084
#ifdef DEBUG
3085 3086 3087 3088 3089 3090
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3091 3092
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3093 3094

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3095
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3096 3097

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3098
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3099 3100 3101 3102

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3103
		val = readl(regs + DPTXFSIZN(idx));
3104
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3105 3106
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3107 3108 3109 3110 3111
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3112 3113 3114
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3115

3116
		val = readl(regs + DOEPCTL(idx));
3117 3118
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3119 3120 3121
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3122 3123 3124 3125

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3126
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3127
#endif
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3146 3147 3148
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3149 3150

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3151
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3152 3153

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3154 3155
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3156 3157

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3158 3159
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3160 3161

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3162 3163
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3164

3165
	seq_puts(seq, "\nEndpoint status:\n");
3166 3167 3168 3169

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3170 3171
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3172 3173 3174 3175

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3176 3177
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3178 3179 3180 3181

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3182
		seq_puts(seq, "\n");
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3208
 */
3209 3210 3211 3212 3213 3214 3215
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3216
	seq_puts(seq, "Non-periodic FIFOs:\n");
3217
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3218

3219
	val = readl(regs + GNPTXFSIZ);
3220
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3221 3222
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3223

3224
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3225 3226

	for (idx = 1; idx <= 15; idx++) {
3227
		val = readl(regs + DPTXFSIZN(idx));
3228 3229

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3230 3231
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3263
 */
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3280 3281
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3282 3283

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3284 3285
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3286 3287

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3288 3289
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3290 3291

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3292 3293
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3294

3295
	seq_puts(seq, "\n");
3296 3297 3298 3299 3300 3301
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3302
	spin_lock_irqsave(&hsotg->lock, flags);
3303 3304 3305

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3306
			seq_puts(seq, "not showing more requests...\n");
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3317
	spin_unlock_irqrestore(&hsotg->lock, flags);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3343
 */
B
Bill Pemberton 已提交
3344
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3372
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3389
 */
B
Bill Pemberton 已提交
3390
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3391 3392 3393
{
	unsigned epidx;

3394
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3395 3396 3397 3398 3399 3400 3401 3402 3403
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3404 3405 3406 3407
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3408

B
Bill Pemberton 已提交
3409
static int s3c_hsotg_probe(struct platform_device *pdev)
3410
{
J
Jingoo Han 已提交
3411
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3412 3413
	struct phy *phy;
	struct usb_phy *uphy;
3414
	struct device *dev = &pdev->dev;
3415
	struct s3c_hsotg_ep *eps;
3416 3417 3418 3419
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3420
	int i;
3421

3422
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3423
	if (!hsotg)
3424 3425
		return -ENOMEM;

3426 3427 3428
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3429 3430 3431 3432 3433
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3434
	if (IS_ERR(phy)) {
3435 3436 3437 3438 3439 3440 3441 3442 3443
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
			plat = dev_get_platdata(&pdev->dev);
			if (!plat) {
				dev_err(&pdev->dev,
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3444
			hsotg->plat = plat;
3445 3446
		} else
			hsotg->uphy = uphy;
3447
	} else {
3448
		hsotg->phy = phy;
3449 3450 3451 3452 3453 3454 3455
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
		if (phy_get_bus_width(phy) == 8)
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3456

3457 3458
	hsotg->dev = dev;

3459
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3460 3461
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3462
		return PTR_ERR(hsotg->clk);
3463 3464
	}

3465 3466 3467 3468
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3469 3470 3471
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3472
		goto err_clk;
3473 3474 3475 3476 3477
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3478
		goto err_clk;
3479 3480
	}

3481 3482
	spin_lock_init(&hsotg->lock);

3483 3484 3485 3486
	hsotg->irq = ret;

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3487
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3488 3489 3490 3491 3492
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3493
	clk_prepare_enable(hsotg->clk);
3494

3495 3496 3497 3498 3499
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3500
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3501 3502 3503
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3504
		goto err_clk;
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3515 3516
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3517 3518

	s3c_hsotg_corereset(hsotg);
3519
	s3c_hsotg_hw_cfg(hsotg);
3520
	s3c_hsotg_init(hsotg);
3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
		dev_err(dev, "cannot claim IRQ\n");
		goto err_clk;
	}

3533 3534 3535 3536
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3537
		ret = -EINVAL;
3538 3539 3540 3541 3542 3543
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3544
		ret = -ENOMEM;
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3561
		ret = -ENOMEM;
3562 3563
		goto err_ep_mem;
	}
3564 3565

	/* initialise the endpoints now the core has been initialised */
3566
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3567 3568
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3580 3581
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3582
		goto err_ep_mem;
3583

3584 3585 3586 3587 3588 3589
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3590
err_ep_mem:
3591
	kfree(eps);
3592
err_supplies:
3593
	s3c_hsotg_phy_disable(hsotg);
3594
err_clk:
3595
	clk_disable_unprepare(hsotg->clk);
3596

3597 3598 3599
	return ret;
}

3600 3601 3602 3603
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3604
static int s3c_hsotg_remove(struct platform_device *pdev)
3605 3606 3607
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3608 3609
	usb_del_gadget_udc(&hsotg->gadget);

3610 3611
	s3c_hsotg_delete_debug(hsotg);

3612 3613 3614 3615
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3616

3617
	clk_disable_unprepare(hsotg->clk);
3618

3619 3620 3621
	return 0;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_disconnect(hsotg);
	s3c_hsotg_phy_disable(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3645
		clk_disable(hsotg->clk);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	}

	return ret;
}

static int s3c_hsotg_resume(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3660 3661

		clk_enable(hsotg->clk);
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	spin_lock_irqsave(&hsotg->lock, flags);
	hsotg->last_rst = jiffies;
	s3c_hsotg_phy_enable(hsotg);
	s3c_hsotg_core_init(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3674

3675 3676 3677
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
3678
	{ .compatible = "snps,dwc2", },
3679 3680 3681 3682 3683
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3684 3685 3686 3687
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3688
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3689 3690
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3691
	.remove		= s3c_hsotg_remove,
3692 3693 3694 3695
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3696
module_platform_driver(s3c_hsotg_driver);
3697 3698 3699 3700 3701

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");