gadget.c 124.6 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

375
/**
376
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
377 378 379 380 381 382 383 384 385 386 387 388 389
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
390
 */
391 392 393
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
394 395
{
	bool periodic = is_ep_periodic(hs_ep);
396
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
397 398 399 400 401
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
402
	int max_transfer;
403 404 405 406 407 408 409

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

410
	if (periodic && !hsotg->dedicated_fifos) {
411
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
412 413 414
		int size_left;
		int size_done;

415 416 417 418
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
419

420
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
421

422 423
		/*
		 * if shared fifo, we cannot write anything until the
424 425 426
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
427
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
428 429 430
			return -ENOSPC;
		}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
448
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
449 450
			return -ENOSPC;
		}
451
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
452 453
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
454 455 456

		can_write &= 0xffff;
		can_write *= 4;
457
	} else {
458
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
459 460 461 462
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

463
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
464 465 466
			return -ENOSPC;
		}

467
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
468
		can_write *= 4;	/* fifo size is in 32bit quantities. */
469 470
	}

471 472 473 474
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
475

476 477
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
478 479 480
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
481
	if (can_write > 512 && !periodic)
482 483
		can_write = 512;

484 485
	/*
	 * limit the write to one max-packet size worth of data, but allow
486
	 * the transfer to return that it did not run out of fifo space
487 488
	 * doing it.
	 */
489 490
	if (to_write > max_transfer) {
		to_write = max_transfer;
491

492 493
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
494
			dwc2_hsotg_en_gsint(hsotg,
495 496
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
497 498
	}

499 500 501 502
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
503
		pkt_round = to_write % max_transfer;
504

505 506
		/*
		 * Round the write down to an
507 508 509 510 511 512 513 514 515
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

516 517 518 519
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
520

521 522
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
523
			dwc2_hsotg_en_gsint(hsotg,
524 525
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

543
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
544 545 546 547 548 549 550 551 552 553 554

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
555
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
556 557 558 559 560 561
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
562 563
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
564
	} else {
565
		maxsize = 64+64;
566
		if (hs_ep->dir_in)
567
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
568
		else
569 570 571 572 573 574 575
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

576 577 578 579
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
580 581 582 583 584 585 586

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

871
/**
872
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
873 874 875 876 877 878 879 880
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
881 882 883
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
884 885 886 887 888 889 890 891 892 893 894 895
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;
896
	unsigned int dma_reg;
897 898 899 900 901 902 903 904 905 906 907 908 909 910

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

911
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
912 913
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
914 915

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
916
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
917 918
		hs_ep->dir_in ? "in" : "out");

919
	/* If endpoint is stalled, we will restart request later */
920
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
921

922
	if (index && ctrl & DXEPCTL_STALL) {
923 924 925 926
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

927
	length = ureq->length - ureq->actual;
928 929
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
930

931 932 933 934 935
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

954 955 956 957 958
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

959
	if (dir_in && index != 0)
960
		if (hs_ep->isochronous)
961
			epsize = DXEPTSIZ_MC(packets);
962
		else
963
			epsize = DXEPTSIZ_MC(1);
964 965 966
	else
		epsize = 0;

967 968 969 970 971 972 973 974
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
975
			hs_ep->send_zlp = 1;
976 977
	}

978 979
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
980 981 982 983 984 985 986

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

987 988 989 990 991 992 993 994 995 996 997
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
998

999
		/*
1000 1001 1002
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1003
		 */
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1014

1015 1016 1017 1018 1019 1020
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1021
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1022 1023 1024 1025
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1026

1027 1028 1029 1030 1031
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1032 1033
	}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1044
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1045

1046
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1047 1048

	/* For Setup request do not clear NAK */
1049
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1050
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1051

1052
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1053
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1054

1055 1056
	/*
	 * set these, it seems that DMA support increments past the end
1057
	 * of the packet buffer so we need to calculate the length from
1058 1059
	 * this information.
	 */
1060 1061 1062 1063 1064 1065 1066
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1067
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1068 1069
	}

1070 1071 1072 1073
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1074 1075

	/* check ep is enabled */
1076
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1077
		dev_dbg(hsotg->dev,
1078
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1079
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1080

1081
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1082
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1083 1084

	/* enable ep interrupts */
1085
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1086 1087 1088
}

/**
1089
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1090 1091 1092 1093 1094 1095 1096 1097 1098
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1099
 */
1100 1101
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
1102 1103
			     struct usb_request *req)
{
1104
	struct dwc2_hsotg_req *hs_req = our_req(req);
1105
	int ret;
1106 1107 1108 1109 1110

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

1111 1112 1113
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1124 1125
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1155 1156
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1236
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1237 1238
			      gfp_t gfp_flags)
{
1239 1240
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1241
	struct dwc2_hsotg *hs = hs_ep->parent;
1242
	bool first;
1243
	int ret;
1244 1245 1246 1247 1248

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1249 1250 1251 1252 1253 1254 1255
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

1256 1257 1258 1259 1260
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1261
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1262 1263 1264
	if (ret)
		return ret;

1265 1266
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1267
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1268 1269 1270
		if (ret)
			return ret;
	}
1271 1272 1273 1274 1275 1276
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1277 1278 1279 1280

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1297 1298 1299 1300 1301 1302 1303 1304
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1305

1306 1307 1308
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1309 1310 1311
	return 0;
}

1312
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1313 1314
			      gfp_t gfp_flags)
{
1315
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1316
	struct dwc2_hsotg *hs = hs_ep->parent;
1317 1318 1319 1320
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1321
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1322 1323 1324 1325 1326
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1327
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1328 1329
				      struct usb_request *req)
{
1330
	struct dwc2_hsotg_req *hs_req = our_req(req);
1331 1332 1333 1334 1335

	kfree(hs_req);
}

/**
1336
 * dwc2_hsotg_complete_oursetup - setup completion callback
1337 1338 1339 1340 1341 1342
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1343
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1344 1345
					struct usb_request *req)
{
1346
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1347
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1348 1349 1350

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1351
	dwc2_hsotg_ep_free_request(ep, req);
1352 1353 1354 1355 1356 1357 1358 1359 1360
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1361
 */
1362
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1363 1364
					   u32 windex)
{
1365
	struct dwc2_hsotg_ep *ep;
1366 1367 1368 1369 1370 1371
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1372
	if (idx > hsotg->num_of_eps)
1373 1374
		return NULL;

1375 1376
	ep = index_to_ep(hsotg, idx, dir);

1377 1378 1379 1380 1381 1382
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1383
/**
1384
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1385 1386 1387 1388
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1389
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1390
{
1391
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1405
	dwc2_writel(dctl, hsotg->regs + DCTL);
1406 1407 1408
	return 0;
}

1409
/**
1410
 * dwc2_hsotg_send_reply - send reply to control request
1411 1412 1413 1414 1415 1416 1417 1418
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1419 1420
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1421 1422 1423 1424 1425 1426 1427 1428
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1429
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1430 1431 1432 1433 1434 1435 1436 1437
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1438 1439 1440 1441 1442
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1443
	req->complete = dwc2_hsotg_complete_oursetup;
1444 1445 1446 1447

	if (length)
		memcpy(req->buf, buff, length);

1448
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1458
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1459 1460 1461
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1462
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1463 1464
					struct usb_ctrlrequest *ctrl)
{
1465 1466
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1503
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1504 1505 1506 1507 1508 1509 1510 1511
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1512
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1513

1514 1515 1516 1517 1518 1519
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1520
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1521
{
1522 1523
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1562
/**
1563
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1564 1565 1566
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1567
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1568 1569
					 struct usb_ctrlrequest *ctrl)
{
1570 1571
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1572
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1573
	struct dwc2_hsotg_ep *ep;
1574
	int ret;
1575
	bool halted;
1576 1577 1578
	u32 recip;
	u32 wValue;
	u32 wIndex;
1579 1580 1581 1582

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1597
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1611 1612
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1613
				__func__, wIndex);
1614 1615 1616
			return -ENOENT;
		}

1617
		switch (wValue) {
1618
		case USB_ENDPOINT_HALT:
1619 1620
			halted = ep->halted;

1621
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1622

1623
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1624 1625 1626 1627 1628
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1629

1630 1631 1632 1633 1634 1635
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1636 1637 1638 1639 1640 1641 1642 1643
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1644 1645 1646 1647 1648 1649
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1650 1651 1652
				}

				/* If we have pending request, then start it */
1653
				if (!ep->req) {
1654
					dwc2_gadget_start_next_request(ep);
1655 1656 1657
				}
			}

1658 1659 1660 1661 1662
			break;

		default:
			return -ENOENT;
		}
1663 1664 1665 1666
		break;
	default:
		return -ENOENT;
	}
1667 1668 1669
	return 1;
}

1670
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1671

1672
/**
1673
 * dwc2_hsotg_stall_ep0 - stall ep0
1674 1675 1676 1677
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1678
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1679
{
1680
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1692
	ctrl = dwc2_readl(hsotg->regs + reg);
1693 1694
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1695
	dwc2_writel(ctrl, hsotg->regs + reg);
1696 1697

	dev_dbg(hsotg->dev,
1698
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1699
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1700 1701 1702 1703 1704

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1705
	 dwc2_hsotg_enqueue_setup(hsotg);
1706 1707
}

1708
/**
1709
 * dwc2_hsotg_process_control - process a control request
1710 1711 1712 1713 1714 1715 1716
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1717
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1718 1719
				      struct usb_ctrlrequest *ctrl)
{
1720
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1721 1722 1723
	int ret = 0;
	u32 dcfg;

1724 1725 1726 1727
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1728

1729 1730 1731 1732
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1733
		ep0->dir_in = 1;
1734 1735 1736 1737 1738
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1739 1740 1741 1742

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1743
			hsotg->connected = 1;
1744
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1745
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1746 1747
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1748
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1749 1750 1751

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1752
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1753 1754 1755
			return;

		case USB_REQ_GET_STATUS:
1756
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1757 1758 1759 1760
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1761
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1762 1763 1764 1765 1766 1767 1768
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1769
		spin_unlock(&hsotg->lock);
1770
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1771
		spin_lock(&hsotg->lock);
1772 1773 1774 1775
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1776 1777
	/*
	 * the request is either unhandlable, or is not formatted correctly
1778 1779 1780
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1781
	if (ret < 0)
1782
		dwc2_hsotg_stall_ep0(hsotg);
1783 1784 1785
}

/**
1786
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1787 1788 1789 1790 1791 1792
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1793
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1794 1795
				     struct usb_request *req)
{
1796
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1797
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1798 1799 1800 1801 1802 1803

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1804
	spin_lock(&hsotg->lock);
1805
	if (req->actual == 0)
1806
		dwc2_hsotg_enqueue_setup(hsotg);
1807
	else
1808
		dwc2_hsotg_process_control(hsotg, req->buf);
1809
	spin_unlock(&hsotg->lock);
1810 1811 1812
}

/**
1813
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1814 1815 1816 1817 1818
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1819
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1820 1821
{
	struct usb_request *req = hsotg->ctrl_req;
1822
	struct dwc2_hsotg_req *hs_req = our_req(req);
1823 1824 1825 1826 1827 1828 1829
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1830
	req->complete = dwc2_hsotg_complete_setup;
1831 1832 1833 1834 1835 1836

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1837
	hsotg->eps_out[0]->dir_in = 0;
1838
	hsotg->eps_out[0]->send_zlp = 0;
1839
	hsotg->ep0_state = DWC2_EP0_SETUP;
1840

1841
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1842 1843
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1844 1845 1846 1847
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1848 1849 1850
	}
}

1851 1852
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1853 1854 1855 1856 1857 1858
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1859 1860
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1861
			index);
1862 1863
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1864 1865 1866 1867
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1868

1869 1870 1871 1872 1873 1874 1875
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1876

1877
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1878 1879 1880
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1881
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1882 1883
}

1884
/**
1885
 * dwc2_hsotg_complete_request - complete a request given to us
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1896
 */
1897 1898 1899
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1911 1912 1913 1914
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1915 1916 1917 1918

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1919 1920 1921
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1922
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1923

1924 1925 1926
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1927 1928 1929 1930
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1931 1932

	if (hs_req->req.complete) {
1933
		spin_unlock(&hsotg->lock);
1934
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1935
		spin_lock(&hsotg->lock);
1936 1937
	}

1938 1939 1940 1941
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1942 1943
	/*
	 * Look to see if there is anything else to do. Note, the completion
1944
	 * of the previous request may have caused a new request to be started
1945 1946
	 * so be careful when doing this.
	 */
1947 1948

	if (!hs_ep->req && result >= 0) {
1949
		dwc2_gadget_start_next_request(hs_ep);
1950 1951 1952
	}
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2004 2005 2006 2007
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2062
/**
2063
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2064 2065 2066 2067 2068 2069 2070 2071
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2072
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2073
{
2074 2075
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2076
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2077 2078 2079 2080
	int to_read;
	int max_req;
	int read_ptr;

2081

2082
	if (!hs_req) {
2083
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2084 2085
		int ptr;

2086
		dev_dbg(hsotg->dev,
2087
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2088 2089 2090 2091
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2092
			(void)dwc2_readl(fifo);
2093 2094 2095 2096 2097 2098 2099 2100

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2101 2102 2103
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2104
	if (to_read > max_req) {
2105 2106
		/*
		 * more data appeared than we where willing
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2118 2119 2120 2121
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2122
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2123 2124 2125
}

/**
2126
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2127
 * @hsotg: The device instance
2128
 * @dir_in: If IN zlp
2129 2130 2131 2132 2133
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2134
 * currently believed that we do not need to wait for any space in
2135 2136
 * the TxFIFO.
 */
2137
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2138
{
2139
	/* eps_out[0] is used in both directions */
2140 2141
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2142

2143
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2189
/**
2190
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2191 2192 2193 2194 2195 2196
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2197
 */
2198
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2199
{
2200
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2201 2202
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2203
	struct usb_request *req = &hs_req->req;
2204
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2205 2206 2207 2208 2209 2210 2211
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2212 2213
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2214 2215
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2216 2217 2218
		return;
	}

2219 2220 2221
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2222 2223 2224
	if (using_dma(hsotg)) {
		unsigned size_done;

2225 2226
		/*
		 * Calculate the size of the transfer by checking how much
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2240 2241
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2242
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2243 2244 2245
		return;
	}

2246 2247 2248 2249
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2250 2251 2252 2253
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2254 2255
	}

2256 2257 2258
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2259
		/* Move to STATUS IN */
2260
		dwc2_hsotg_ep0_zlp(hsotg, true);
2261
		return;
2262 2263
	}

2264 2265 2266 2267 2268 2269 2270
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2271 2272
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2273 2274
	}

2275
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2276 2277 2278
}

/**
2279
 * dwc2_hsotg_handle_rx - RX FIFO has data
2280 2281 2282 2283 2284 2285
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2286
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2287 2288 2289 2290 2291 2292 2293
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2294
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2295
{
2296
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2297 2298 2299 2300
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2301 2302
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2303

2304 2305
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2306

2307
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2308 2309
			__func__, grxstsr, size, epnum);

2310 2311 2312
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2313 2314
		break;

2315
	case GRXSTS_PKTSTS_OUTDONE:
2316
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2317
			dwc2_hsotg_read_frameno(hsotg));
2318 2319

		if (!using_dma(hsotg))
2320
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2321 2322
		break;

2323
	case GRXSTS_PKTSTS_SETUPDONE:
2324 2325
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2326
			dwc2_hsotg_read_frameno(hsotg),
2327
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2328
		/*
2329
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2330 2331 2332 2333
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2334
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2335 2336
		break;

2337
	case GRXSTS_PKTSTS_OUTRX:
2338
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2339 2340
		break;

2341
	case GRXSTS_PKTSTS_SETUPRX:
2342 2343
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2344
			dwc2_hsotg_read_frameno(hsotg),
2345
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2346

2347 2348
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2349
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2350 2351 2352 2353 2354 2355
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2356
		dwc2_hsotg_dump(hsotg);
2357 2358 2359 2360 2361
		break;
	}
}

/**
2362
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2363
 * @mps: The maximum packet size in bytes.
2364
 */
2365
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2366 2367 2368
{
	switch (mps) {
	case 64:
2369
		return D0EPCTL_MPS_64;
2370
	case 32:
2371
		return D0EPCTL_MPS_32;
2372
	case 16:
2373
		return D0EPCTL_MPS_16;
2374
	case 8:
2375
		return D0EPCTL_MPS_8;
2376 2377 2378 2379 2380 2381 2382 2383
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2384
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2385 2386 2387
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2388
 * @mc: The multicount value
2389 2390 2391 2392
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2393
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2394 2395
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2396
{
2397
	struct dwc2_hsotg_ep *hs_ep;
2398 2399 2400
	void __iomem *regs = hsotg->regs;
	u32 reg;

2401 2402 2403 2404
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2405
	if (ep == 0) {
2406 2407
		u32 mps_bytes = mps;

2408
		/* EP0 is a special case */
2409 2410
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2411
			goto bad_mps;
2412
		hs_ep->ep.maxpacket = mps_bytes;
2413
		hs_ep->mc = 1;
2414
	} else {
2415
		if (mps > 1024)
2416
			goto bad_mps;
2417 2418
		hs_ep->mc = mc;
		if (mc > 3)
2419
			goto bad_mps;
2420
		hs_ep->ep.maxpacket = mps;
2421 2422
	}

2423
	if (dir_in) {
2424
		reg = dwc2_readl(regs + DIEPCTL(ep));
2425
		reg &= ~DXEPCTL_MPS_MASK;
2426
		reg |= mps;
2427
		dwc2_writel(reg, regs + DIEPCTL(ep));
2428
	} else {
2429
		reg = dwc2_readl(regs + DOEPCTL(ep));
2430
		reg &= ~DXEPCTL_MPS_MASK;
2431
		reg |= mps;
2432
		dwc2_writel(reg, regs + DOEPCTL(ep));
2433
	}
2434 2435 2436 2437 2438 2439 2440

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2441
/**
2442
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2443 2444 2445
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2446
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2447 2448 2449 2450
{
	int timeout;
	int val;

2451 2452
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2453 2454 2455 2456 2457

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2458
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2459

2460
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2461 2462 2463 2464 2465 2466
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2467
			break;
2468 2469 2470 2471 2472
		}

		udelay(1);
	}
}
2473 2474

/**
2475
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2476 2477 2478 2479 2480 2481
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2482 2483
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
2484
{
2485
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2486

2487 2488 2489 2490 2491 2492
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2493
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2494
					     hs_ep->dir_in, 0);
2495
		return 0;
2496
	}
2497 2498 2499 2500

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2501
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2502 2503 2504 2505 2506 2507
	}

	return 0;
}

/**
2508
 * dwc2_hsotg_complete_in - complete IN transfer
2509 2510 2511 2512 2513 2514
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2515 2516
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2517
{
2518
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2519
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2520 2521 2522 2523 2524 2525 2526
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2527
	/* Finish ZLP handling for IN EP0 transactions */
2528 2529
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2530
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2531 2532 2533
		if (hsotg->test_mode) {
			int ret;

2534
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2535 2536 2537
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2538
				dwc2_hsotg_stall_ep0(hsotg);
2539 2540 2541
				return;
			}
		}
2542
		dwc2_hsotg_enqueue_setup(hsotg);
2543 2544 2545
		return;
	}

2546 2547
	/*
	 * Calculate the size of the transfer by checking how much is left
2548 2549 2550 2551 2552 2553 2554
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2555 2556 2557 2558 2559 2560 2561 2562
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2563 2564 2565 2566 2567 2568 2569 2570 2571

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2572 2573 2574
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2575 2576
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2577
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2578 2579 2580
		return;
	}

2581
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2582
	if (hs_ep->send_zlp) {
2583
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2584
		hs_ep->send_zlp = 0;
2585 2586 2587 2588
		/* transfer will be completed on next complete interrupt */
		return;
	}

2589 2590
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2591
		dwc2_hsotg_ep0_zlp(hsotg, false);
2592 2593 2594
		return;
	}

2595
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2710
	u32 tmp;
2711 2712 2713 2714

	if (dir_in || !ep->isochronous)
		return;

2715 2716 2717 2718 2719 2720
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2721 2722
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2723 2724 2725 2726 2727 2728 2729 2730 2731
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2780 2781 2782 2783 2784 2785

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2804
/**
2805
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2806 2807 2808 2809 2810
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2811
 */
2812
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2813 2814
			    int dir_in)
{
2815
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2816 2817 2818
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2819
	u32 ints;
2820
	u32 ctrl;
2821

2822
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2823
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2824

2825
	/* Clear endpoint interrupts */
2826
	dwc2_writel(ints, hsotg->regs + epint_reg);
2827

2828 2829 2830 2831 2832 2833
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2834 2835 2836
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2837 2838 2839 2840
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2851
	if (ints & DXEPINT_XFERCOMPL) {
2852
		dev_dbg(hsotg->dev,
2853
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2854 2855
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2868 2869 2870
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2871
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2872 2873
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2874

2875
			if (idx == 0 && !hs_ep->req)
2876
				dwc2_hsotg_enqueue_setup(hsotg);
2877
		} else if (using_dma(hsotg)) {
2878 2879 2880 2881
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2882 2883
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2884

2885
			dwc2_hsotg_handle_outdone(hsotg, idx);
2886 2887 2888
		}
	}

2889 2890
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2891

2892 2893 2894 2895 2896 2897
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2898
	if (ints & DXEPINT_AHBERR)
2899 2900
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2901
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2902 2903 2904
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2905 2906
			/*
			 * this is the notification we've received a
2907 2908
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2909 2910
			 * the setup here.
			 */
2911 2912 2913 2914

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2915
				dwc2_hsotg_handle_outdone(hsotg, 0);
2916 2917 2918
		}
	}

2919
	if (ints & DXEPINT_STSPHSERCVD) {
2920 2921
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2922 2923 2924 2925 2926
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2927
	if (ints & DXEPINT_BACK2BACKSETUP)
2928 2929
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2943
	if (dir_in && !hs_ep->isochronous) {
2944
		/* not sure if this is important, but we'll clear it anyway */
2945
		if (ints & DXEPINT_INTKNTXFEMP) {
2946 2947 2948 2949 2950
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2951
		if (ints & DXEPINT_INTKNEPMIS) {
2952 2953 2954
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2955 2956 2957

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2958
		    ints & DXEPINT_TXFEMP) {
2959 2960
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2961
			if (!using_dma(hsotg))
2962
				dwc2_hsotg_trytx(hsotg, hs_ep);
2963
		}
2964 2965 2966 2967
	}
}

/**
2968
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2969 2970 2971 2972
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2973
 */
2974
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2975
{
2976
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2977
	int ep0_mps = 0, ep_mps = 8;
2978

2979 2980
	/*
	 * This should signal the finish of the enumeration phase
2981
	 * of the USB handshaking, so we should now know what rate
2982 2983
	 * we connected at.
	 */
2984 2985 2986

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2987 2988
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2989
	 * it seems IN transfers must be a even number of packets we do
2990 2991
	 * not advertise a 64byte MPS on EP0.
	 */
2992 2993

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2994
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2995 2996
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2997 2998
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2999
		ep_mps = 1023;
3000 3001
		break;

3002
	case DSTS_ENUMSPD_HS:
3003 3004
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3005
		ep_mps = 1024;
3006 3007
		break;

3008
	case DSTS_ENUMSPD_LS:
3009
		hsotg->gadget.speed = USB_SPEED_LOW;
3010 3011
		ep0_mps = 8;
		ep_mps = 8;
3012 3013
		/*
		 * note, we don't actually support LS in this driver at the
3014 3015 3016 3017 3018
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3019 3020
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3021

3022 3023 3024 3025
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3026 3027 3028

	if (ep0_mps) {
		int i;
3029
		/* Initialize ep0 for both in and out directions */
3030 3031
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3032 3033
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3034 3035
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3036
			if (hsotg->eps_out[i])
3037 3038
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3039
		}
3040 3041 3042 3043
	}

	/* ensure after enumeration our EP0 is active */

3044
	dwc2_hsotg_enqueue_setup(hsotg);
3045 3046

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3047 3048
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3060
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3061
			      struct dwc2_hsotg_ep *ep,
3062
			      int result)
3063
{
3064
	struct dwc2_hsotg_req *req, *treq;
3065
	unsigned size;
3066

3067
	ep->req = NULL;
3068

3069
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3070
		dwc2_hsotg_complete_request(hsotg, ep, req,
3071
					   result);
3072

3073 3074
	if (!hsotg->dedicated_fifos)
		return;
3075
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3076
	if (size < ep->fifo_size)
3077
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3078 3079 3080
}

/**
3081
 * dwc2_hsotg_disconnect - disconnect service
3082 3083
 * @hsotg: The device state.
 *
3084 3085 3086
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3087
 */
3088
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3089 3090 3091
{
	unsigned ep;

3092 3093 3094 3095
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3096
	hsotg->test_mode = 0;
3097 3098 3099 3100 3101 3102 3103 3104 3105

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
3106 3107

	call_gadget(hsotg, disconnect);
3108
	hsotg->lx_state = DWC2_L3;
3109 3110 3111
}

/**
3112
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3113 3114 3115
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3116
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3117
{
3118
	struct dwc2_hsotg_ep *ep;
3119 3120 3121
	int epno, ret;

	/* look through for any more data to transmit */
3122
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3123 3124 3125 3126
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3127 3128 3129 3130 3131 3132 3133 3134

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3135
		ret = dwc2_hsotg_trytx(hsotg, ep);
3136 3137 3138 3139 3140 3141
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3142 3143 3144
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3145

3146
/**
3147
 * dwc2_hsotg_core_init - issue softreset to the core
3148 3149 3150 3151
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3152
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3153
						bool is_usb_reset)
3154
{
3155
	u32 intmsk;
3156
	u32 val;
3157
	u32 usbcfg;
3158
	u32 dcfg = 0;
3159

3160 3161 3162
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3163
	if (!is_usb_reset)
3164
		if (dwc2_core_reset(hsotg))
3165
			return;
3166 3167 3168 3169 3170 3171

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3172 3173 3174 3175 3176
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3177
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3178 3179
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3180 3181 3182 3183 3184 3185 3186 3187
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3188
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3189

3190
	dwc2_hsotg_init_fifo(hsotg);
3191

3192 3193
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3194

3195
	dcfg |= DCFG_EPMISCNT(1);
3196 3197 3198 3199 3200 3201

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3202 3203 3204 3205
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3206 3207
		break;
	default:
3208 3209
		dcfg |= DCFG_DEVSPD_HS;
	}
3210

3211
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3212 3213

	/* Clear any pending OTG interrupts */
3214
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3215 3216

	/* Clear any pending interrupts */
3217
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3218
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3219
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3220 3221
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3222 3223 3224 3225
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3226

3227
	if (hsotg->params.external_id_pin_ctl <= 0)
3228 3229 3230
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3231

3232
	if (using_dma(hsotg)) {
3233 3234 3235
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3236 3237 3238 3239 3240 3241

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3242 3243 3244 3245
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3246
	}
3247 3248

	/*
3249 3250 3251
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3252 3253
	 */

3254
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3255
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3256
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3257
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3258
		hsotg->regs + DIEPMSK);
3259 3260 3261

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3262
	 * DMA mode we may need this and StsPhseRcvd.
3263
	 */
3264 3265
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3266
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3267
		DOEPMSK_SETUPMSK,
3268
		hsotg->regs + DOEPMSK);
3269

3270 3271 3272 3273
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3274
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3275 3276

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3277 3278
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3279 3280

	/* enable in and out endpoint interrupts */
3281
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3282 3283 3284 3285 3286 3287 3288

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3289
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3290 3291

	/* Enable interrupts for EP0 in and out */
3292 3293
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3294

3295 3296 3297 3298 3299
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3300

3301
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3302 3303

	/*
3304
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3305 3306 3307 3308
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3309
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3310
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3311

3312
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3313 3314
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3315
	       hsotg->regs + DOEPCTL0);
3316 3317

	/* enable, but don't activate EP0in */
3318
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3319
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3320

3321
	dwc2_hsotg_enqueue_setup(hsotg);
3322 3323

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3324 3325
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3326 3327

	/* clear global NAKs */
3328 3329 3330 3331
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3332 3333 3334 3335

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3336
	hsotg->lx_state = DWC2_L0;
3337 3338
}

3339
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3340 3341 3342 3343
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3344

3345
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3346
{
3347
	/* remove the soft-disconnect and let's go */
3348
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3349 3350
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3430
/**
3431
 * dwc2_hsotg_irq - handle device interrupt
3432 3433 3434
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3435
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3436
{
3437
	struct dwc2_hsotg *hsotg = pw;
3438 3439 3440 3441
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3442 3443 3444
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3445
	spin_lock(&hsotg->lock);
3446
irq_retry:
3447 3448
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3449 3450 3451 3452 3453 3454

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3485
	if (gintsts & GINTSTS_ENUMDONE) {
3486
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3487

3488
		dwc2_hsotg_irq_enumdone(hsotg);
3489 3490
	}

3491
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3492 3493
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3494
		u32 daint_out, daint_in;
3495 3496
		int ep;

3497
		daint &= daintmsk;
3498 3499
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3500

3501 3502
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3503 3504
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3505
			if (daint_out & 1)
3506
				dwc2_hsotg_epint(hsotg, ep, 0);
3507 3508
		}

3509 3510
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3511
			if (daint_in & 1)
3512
				dwc2_hsotg_epint(hsotg, ep, 1);
3513 3514 3515 3516 3517
		}
	}

	/* check both FIFOs */

3518
	if (gintsts & GINTSTS_NPTXFEMP) {
3519 3520
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3521 3522
		/*
		 * Disable the interrupt to stop it happening again
3523
		 * unless one of these endpoint routines decides that
3524 3525
		 * it needs re-enabling
		 */
3526

3527 3528
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3529 3530
	}

3531
	if (gintsts & GINTSTS_PTXFEMP) {
3532 3533
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3534
		/* See note in GINTSTS_NPTxFEmp */
3535

3536 3537
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3538 3539
	}

3540
	if (gintsts & GINTSTS_RXFLVL) {
3541 3542
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3543
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3544 3545
		 * set.
		 */
3546

3547
		dwc2_hsotg_handle_rx(hsotg);
3548 3549
	}

3550
	if (gintsts & GINTSTS_ERLYSUSP) {
3551
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3552
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3553 3554
	}

3555 3556
	/*
	 * these next two seem to crop-up occasionally causing the core
3557
	 * to shutdown the USB transfer, so try clearing them and logging
3558 3559
	 * the occurrence.
	 */
3560

3561
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3583

3584
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3585 3586
	}

3587
	if (gintsts & GINTSTS_GINNAKEFF) {
3588 3589
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3590
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3591

3592
		dwc2_hsotg_dump(hsotg);
3593 3594
	}

3595 3596
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3597

3598 3599
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3600

3601 3602 3603 3604
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3605 3606 3607 3608

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3609 3610
	spin_unlock(&hsotg->lock);

3611 3612 3613
	return IRQ_HANDLED;
}

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3703
/**
3704
 * dwc2_hsotg_ep_enable - enable the given endpoint
3705 3706 3707 3708
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3709
 */
3710
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3711 3712
			       const struct usb_endpoint_descriptor *desc)
{
3713
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3714
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3715
	unsigned long flags;
3716
	unsigned int index = hs_ep->index;
3717 3718 3719
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3720
	u32 mc;
3721
	u32 mask;
3722 3723
	unsigned int dir_in;
	unsigned int i, val, size;
3724
	int ret = 0;
3725 3726 3727 3728 3729 3730 3731

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3732 3733 3734 3735
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3736 3737 3738 3739 3740 3741 3742

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3743
	mps = usb_endpoint_maxp(desc);
3744
	mc = usb_endpoint_maxp_mult(desc);
3745

3746
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3747

3748
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3749
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3750 3751 3752 3753

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			&hs_ep->desc_list_dma, GFP_KERNEL);
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3766
	spin_lock_irqsave(&hsotg->lock, flags);
3767

3768 3769
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3770

3771 3772 3773 3774
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3775
	epctrl |= DXEPCTL_USBACTEP;
3776 3777

	/* update the endpoint state */
3778
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3779 3780

	/* default, set to non-periodic */
3781
	hs_ep->isochronous = 0;
3782
	hs_ep->periodic = 0;
3783
	hs_ep->halted = 0;
3784
	hs_ep->interval = desc->bInterval;
3785

3786 3787
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3788 3789
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3790
		hs_ep->isochronous = 1;
3791
		hs_ep->interval = 1 << (desc->bInterval - 1);
3792
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3793 3794
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3795
		if (dir_in) {
3796
			hs_ep->periodic = 1;
3797 3798 3799 3800 3801 3802 3803 3804
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3805
		break;
3806 3807

	case USB_ENDPOINT_XFER_BULK:
3808
		epctrl |= DXEPCTL_EPTYPE_BULK;
3809 3810 3811
		break;

	case USB_ENDPOINT_XFER_INT:
3812
		if (dir_in)
3813 3814
			hs_ep->periodic = 1;

3815 3816 3817
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3818
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3819 3820 3821
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3822
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3823 3824 3825
		break;
	}

3826 3827
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3828 3829
	 * a unique tx-fifo even if it is non-periodic.
	 */
3830
	if (dir_in && hsotg->dedicated_fifos) {
3831 3832
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3833
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3834
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3835 3836
			if (hsotg->fifo_map & (1<<i))
				continue;
3837
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3838 3839 3840
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3841 3842 3843 3844 3845
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3846
		}
3847
		if (!fifo_index) {
3848 3849
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3850
			ret = -ENOMEM;
3851
			goto error1;
3852
		}
3853 3854 3855 3856
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3857
	}
3858

3859
	/* for non control endpoints, set PID to D0 */
3860
	if (index && !hs_ep->isochronous)
3861
		epctrl |= DXEPCTL_SETD0PID;
3862 3863 3864 3865

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3866
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3867
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3868
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3869 3870

	/* enable the endpoint interrupt */
3871
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3872

3873
error1:
3874
	spin_unlock_irqrestore(&hsotg->lock, flags);
3875 3876 3877 3878 3879 3880 3881 3882 3883

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3884
	return ret;
3885 3886
}

3887
/**
3888
 * dwc2_hsotg_ep_disable - disable given endpoint
3889 3890
 * @ep: The endpoint to disable.
 */
3891
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3892
{
3893
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3894
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3895 3896 3897 3898 3899 3900
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3901
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3902

3903
	if (ep == &hsotg->eps_out[0]->ep) {
3904 3905 3906 3907
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3908 3909 3910 3911 3912 3913 3914 3915
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3916
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3917

3918
	spin_lock_irqsave(&hsotg->lock, flags);
3919

3920
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3921 3922 3923 3924

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3925 3926 3927
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3928 3929

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3930
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3931 3932

	/* disable endpoint interrupts */
3933
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3934

3935 3936 3937
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3938 3939 3940 3941
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3942
	spin_unlock_irqrestore(&hsotg->lock, flags);
3943 3944 3945 3946 3947 3948 3949
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3950
 */
3951
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3952
{
3953
	struct dwc2_hsotg_req *req, *treq;
3954 3955 3956 3957 3958 3959 3960 3961 3962

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3963
/**
3964
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3965 3966 3967
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3968
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3969
{
3970 3971
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3972
	struct dwc2_hsotg *hs = hs_ep->parent;
3973 3974
	unsigned long flags;

3975
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3976

3977
	spin_lock_irqsave(&hs->lock, flags);
3978 3979

	if (!on_list(hs_ep, hs_req)) {
3980
		spin_unlock_irqrestore(&hs->lock, flags);
3981 3982 3983
		return -EINVAL;
	}

3984 3985 3986 3987
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3988
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3989
	spin_unlock_irqrestore(&hs->lock, flags);
3990 3991 3992 3993

	return 0;
}

3994
/**
3995
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3996 3997
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3998 3999 4000 4001 4002
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4003
 */
4004
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4005
{
4006
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4007
	struct dwc2_hsotg *hs = hs_ep->parent;
4008 4009 4010
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4011
	u32 xfertype;
4012 4013 4014

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4015 4016
	if (index == 0) {
		if (value)
4017
			dwc2_hsotg_stall_ep0(hs);
4018 4019 4020 4021 4022 4023
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4024 4025 4026 4027 4028
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4029 4030 4031 4032 4033 4034
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4035 4036
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4037
		epctl = dwc2_readl(hs->regs + epreg);
4038 4039

		if (value) {
4040
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4041 4042 4043 4044 4045 4046 4047 4048 4049
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
4050
		dwc2_writel(epctl, hs->regs + epreg);
4051
	} else {
4052

4053
		epreg = DOEPCTL(index);
4054
		epctl = dwc2_readl(hs->regs + epreg);
4055

4056 4057 4058 4059 4060 4061 4062 4063 4064
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
4065
		dwc2_writel(epctl, hs->regs + epreg);
4066
	}
4067

4068 4069
	hs_ep->halted = value;

4070 4071 4072
	return 0;
}

4073
/**
4074
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4075 4076 4077
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4078
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4079
{
4080
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4081
	struct dwc2_hsotg *hs = hs_ep->parent;
4082 4083 4084 4085
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4086
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4087 4088 4089 4090 4091
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4092 4093 4094 4095 4096 4097 4098 4099
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4100
	/* note, don't believe we have any call for the fifo routines */
4101 4102
};

4103
/**
4104
 * dwc2_hsotg_init - initalize the usb core
4105 4106
 * @hsotg: The driver state
 */
4107
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4108
{
4109
	u32 trdtim;
4110
	u32 usbcfg;
4111 4112
	/* unmask subset of endpoint interrupts */

4113 4114 4115
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4116

4117 4118 4119
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4120

4121
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4122 4123

	/* Be in disconnected state until gadget is registered */
4124
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4125 4126 4127 4128

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4129 4130
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4131

4132
	dwc2_hsotg_init_fifo(hsotg);
4133

4134 4135 4136 4137 4138
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4139
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4140
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4141 4142 4143
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4144

4145 4146
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4147 4148
}

4149
/**
4150
 * dwc2_hsotg_udc_start - prepare the udc for work
4151 4152 4153 4154 4155 4156
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4157
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4158
			   struct usb_gadget_driver *driver)
4159
{
4160
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4161
	unsigned long flags;
4162 4163 4164
	int ret;

	if (!hsotg) {
4165
		pr_err("%s: called with no device\n", __func__);
4166 4167 4168 4169 4170 4171 4172 4173
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4174
	if (driver->max_speed < USB_SPEED_FULL)
4175 4176
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4177
	if (!driver->setup) {
4178 4179 4180 4181 4182 4183 4184 4185
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4186
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4187 4188
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4189 4190 4191 4192
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4193 4194
	}

4195 4196
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4197

4198
	spin_lock_irqsave(&hsotg->lock, flags);
4199 4200 4201 4202 4203
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4204
	hsotg->enabled = 0;
4205 4206
	spin_unlock_irqrestore(&hsotg->lock, flags);

4207
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4208

4209 4210 4211 4212 4213 4214 4215
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4216
/**
4217
 * dwc2_hsotg_udc_stop - stop the udc
4218 4219 4220 4221 4222
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4223
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4224
{
4225
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4226
	unsigned long flags = 0;
4227 4228 4229 4230 4231 4232
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4233 4234
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4235
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4236
		if (hsotg->eps_out[ep])
4237
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4238
	}
4239

4240 4241
	spin_lock_irqsave(&hsotg->lock, flags);

4242
	hsotg->driver = NULL;
4243
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4244
	hsotg->enabled = 0;
4245

4246 4247
	spin_unlock_irqrestore(&hsotg->lock, flags);

4248 4249
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4250

4251 4252
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4253 4254 4255 4256

	return 0;
}

4257
/**
4258
 * dwc2_hsotg_gadget_getframe - read the frame number
4259 4260 4261 4262
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4263
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4264
{
4265
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4266 4267
}

4268
/**
4269
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4270 4271 4272 4273 4274
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4275
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4276
{
4277
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4278 4279
	unsigned long flags = 0;

4280 4281 4282 4283 4284 4285 4286 4287
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4288 4289 4290

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4291
		hsotg->enabled = 1;
4292 4293
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4294
	} else {
4295 4296
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4297
		hsotg->enabled = 0;
4298 4299 4300 4301 4302 4303 4304 4305
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4306
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4307 4308 4309 4310 4311 4312 4313
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4314 4315 4316 4317 4318 4319 4320
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4321
	if (is_active) {
4322
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4323

4324
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4325
		if (hsotg->enabled)
4326
			dwc2_hsotg_core_connect(hsotg);
4327
	} else {
4328 4329
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4330 4331 4332 4333 4334 4335
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4336
/**
4337
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4338 4339 4340 4341 4342
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4343
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4344 4345 4346 4347 4348 4349 4350 4351
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4352 4353 4354 4355 4356 4357 4358
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4359 4360 4361
};

/**
4362
 * dwc2_hsotg_initep - initialise a single endpoint
4363 4364 4365 4366 4367 4368 4369 4370
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4371 4372
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
4373 4374
				       int epnum,
				       bool dir_in)
4375 4376 4377 4378 4379
{
	char *dir;

	if (epnum == 0)
		dir = "";
4380
	else if (dir_in)
4381
		dir = "in";
4382 4383
	else
		dir = "out";
4384

4385
	hs_ep->dir_in = dir_in;
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4399 4400 4401 4402 4403 4404

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4405
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4406

4407 4408 4409
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4410 4411 4412 4413
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4414 4415 4416 4417 4418 4419 4420 4421
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4422 4423
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4424 4425 4426 4427
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4428
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4429
		if (dir_in)
4430
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4431
		else
4432
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4433 4434 4435
	}
}

4436
/**
4437
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4438 4439 4440 4441
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4442
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4443
{
4444 4445 4446 4447
	u32 cfg;
	u32 ep_type;
	u32 i;

4448
	/* check hardware configuration */
4449

4450 4451
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4452 4453
	/* Add ep0 */
	hsotg->num_of_eps++;
4454

4455
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4456 4457 4458
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4459
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4460 4461
	hsotg->eps_out[0] = hsotg->eps_in[0];

4462
	cfg = hsotg->hw_params.dev_ep_dirs;
4463
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4464 4465 4466 4467
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4468
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4469 4470 4471 4472 4473 4474
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4475
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4476 4477 4478 4479 4480
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4481 4482
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4483

4484 4485 4486 4487
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4488
	return 0;
4489 4490
}

4491
/**
4492
 * dwc2_hsotg_dump - dump state of the udc
4493 4494
 * @param: The device state
 */
4495
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4496
{
M
Mark Brown 已提交
4497
#ifdef DEBUG
4498 4499 4500 4501 4502 4503
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4504 4505
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4506

4507
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4508
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4509 4510

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4511
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4512 4513 4514

	/* show periodic fifo settings */

4515
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4516
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4517
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4518 4519
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4520 4521
	}

4522
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4523 4524
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4525 4526 4527
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4528

4529
		val = dwc2_readl(regs + DOEPCTL(idx));
4530 4531
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4532 4533 4534
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4535 4536 4537 4538

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4539
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4540
#endif
4541 4542
}

4543
/**
4544 4545 4546
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4547
 */
4548
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4549
{
4550
	struct device *dev = hsotg->dev;
4551 4552
	int epnum;
	int ret;
4553

4554 4555
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4556 4557
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4558

4559
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4560
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4561
	hsotg->gadget.name = dev_name(dev);
4562 4563
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4564 4565
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4566

4567
	ret = dwc2_hsotg_hw_cfg(hsotg);
4568 4569
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4570
		return ret;
4571 4572
	}

4573 4574
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4575
	if (!hsotg->ctrl_buff)
4576
		return -ENOMEM;
4577 4578 4579

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4580
	if (!hsotg->ep0_buff)
4581
		return -ENOMEM;
4582

4583 4584 4585 4586 4587 4588
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4589
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4590
				dev_name(hsotg->dev), hsotg);
4591
	if (ret < 0) {
4592
		dev_err(dev, "cannot claim IRQ for gadget\n");
4593
		return ret;
4594 4595
	}

4596 4597 4598 4599
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4600
		return -EINVAL;
4601 4602 4603 4604 4605
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4606
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4607 4608 4609

	/* allocate EP0 request */

4610
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4611 4612 4613
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4614
		return -ENOMEM;
4615
	}
4616 4617

	/* initialise the endpoints now the core has been initialised */
4618 4619
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4620
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4621 4622
								epnum, 1);
		if (hsotg->eps_out[epnum])
4623
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4624 4625
								epnum, 0);
	}
4626

4627
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4628
	if (ret)
4629
		return ret;
4630

4631
	dwc2_hsotg_dump(hsotg);
4632 4633 4634 4635

	return 0;
}

4636
/**
4637
 * dwc2_hsotg_remove - remove function for hsotg driver
4638 4639
 * @pdev: The platform information for the driver
 */
4640
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4641
{
4642
	usb_del_gadget_udc(&hsotg->gadget);
4643

4644 4645 4646
	return 0;
}

4647
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4648 4649 4650
{
	unsigned long flags;

4651
	if (hsotg->lx_state != DWC2_L0)
4652
		return 0;
4653

4654 4655 4656
	if (hsotg->driver) {
		int ep;

4657 4658 4659
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4660 4661
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4662 4663
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4664 4665
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4666

4667 4668
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4669
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4670
			if (hsotg->eps_out[ep])
4671
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4672
		}
4673 4674
	}

4675
	return 0;
4676 4677
}

4678
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4679 4680 4681
{
	unsigned long flags;

4682
	if (hsotg->lx_state == DWC2_L2)
4683
		return 0;
4684

4685 4686 4687
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4688

4689
		spin_lock_irqsave(&hsotg->lock, flags);
4690
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4691
		if (hsotg->enabled)
4692
			dwc2_hsotg_core_connect(hsotg);
4693 4694
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4695

4696
	return 0;
4697
}
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}