gadget.c 98.4 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189 190
	unsigned int ep;
	unsigned int addr;
191
	int timeout;
192 193
	u32 val;

194 195 196 197
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

198
	/* set RX/NPTX FIFO sizes */
199 200
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 202
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
203

204 205
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
206 207
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
208 209
	 * known values.
	 */
210 211

	/* start at the end of the GNPTXFSIZ, rounded up */
212
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213

214
	/*
215
	 * Configure fifos sizes from provided configuration and assign
216 217
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
218
	 */
219 220 221
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
222
		val = addr;
223 224
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
225
			  "insufficient fifo memory");
226
		addr += hsotg->g_tx_fifo_sz[ep];
227

228
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229
	}
230

231 232 233 234
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
235

236
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 239 240 241

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
242
		val = dwc2_readl(hsotg->regs + GRSTCTL);
243

244
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 246 247 248 249 250
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
251
			break;
252 253 254 255 256 257
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 259 260 261 262 263 264 265
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
266
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267
						      gfp_t flags)
268
{
269
	struct dwc2_hsotg_req *req;
270

271
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
287
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 289 290 291 292
{
	return hs_ep->periodic;
}

/**
293
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294 295 296 297
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
298
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299
 * of a request to ensure the buffer is ready for access by the caller.
300
 */
301 302 303
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
304 305 306 307 308 309 310
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

311
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 313 314
}

/**
315
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316 317 318 319 320 321 322 323 324 325 326 327 328
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
329
 */
330 331 332
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
333 334
{
	bool periodic = is_ep_periodic(hs_ep);
335
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 337 338 339 340
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
341
	int max_transfer;
342 343 344 345 346 347 348

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

349
	if (periodic && !hsotg->dedicated_fifos) {
350
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 352 353
		int size_left;
		int size_done;

354 355 356 357
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
358

359
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360

361 362
		/*
		 * if shared fifo, we cannot write anything until the
363 364 365
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
366
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 368 369
			return -ENOSPC;
		}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
387
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 389
			return -ENOSPC;
		}
390
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
392 393 394

		can_write &= 0xffff;
		can_write *= 4;
395
	} else {
396
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
397 398 399 400
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

401
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
402 403 404
			return -ENOSPC;
		}

405
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
406
		can_write *= 4;	/* fifo size is in 32bit quantities. */
407 408
	}

409 410 411 412
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
413

414 415
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
416 417 418
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
419
	if (can_write > 512 && !periodic)
420 421
		can_write = 512;

422 423
	/*
	 * limit the write to one max-packet size worth of data, but allow
424
	 * the transfer to return that it did not run out of fifo space
425 426
	 * doing it.
	 */
427 428
	if (to_write > max_transfer) {
		to_write = max_transfer;
429

430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
432
			dwc2_hsotg_en_gsint(hsotg,
433 434
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
435 436
	}

437 438 439 440
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
441
		pkt_round = to_write % max_transfer;
442

443 444
		/*
		 * Round the write down to an
445 446 447 448 449 450 451 452 453
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

454 455 456 457
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
458

459 460
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
461
			dwc2_hsotg_en_gsint(hsotg,
462 463
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

481
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
482 483 484 485 486 487 488 489 490 491 492

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
493
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
494 495 496 497 498 499
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
500 501
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
502
	} else {
503
		maxsize = 64+64;
504
		if (hs_ep->dir_in)
505
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
506
		else
507 508 509 510 511 512 513
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

514 515 516 517
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
518 519 520 521 522 523 524 525

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
526
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
527 528 529 530 531 532 533 534
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
535 536 537
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

564 565
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
566 567

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
568
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
569 570
		hs_ep->dir_in ? "in" : "out");

571
	/* If endpoint is stalled, we will restart request later */
572
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
573

574
	if (index && ctrl & DXEPCTL_STALL) {
575 576 577 578
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

579
	length = ureq->length - ureq->actual;
580 581
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

602 603 604 605 606
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

607
	if (dir_in && index != 0)
608
		if (hs_ep->isochronous)
609
			epsize = DXEPTSIZ_MC(packets);
610
		else
611
			epsize = DXEPTSIZ_MC(1);
612 613 614
	else
		epsize = 0;

615 616 617 618 619 620 621 622
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
623
			hs_ep->send_zlp = 1;
624 625
	}

626 627
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
628 629 630 631 632 633 634 635

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
636
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
637

638
	if (using_dma(hsotg) && !continuing) {
639 640
		unsigned int dma_reg;

641 642
		/*
		 * write DMA address to control register, buffer already
643
		 * synced by dwc2_hsotg_ep_queue().
644
		 */
645

646
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
647
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
648

649
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
650
			__func__, &ureq->dma, dma_reg);
651 652
	}

653
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
654

655
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
656 657

	/* For Setup request do not clear NAK */
658
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
659
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
660

661
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
662
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
663

664 665
	/*
	 * set these, it seems that DMA support increments past the end
666
	 * of the packet buffer so we need to calculate the length from
667 668
	 * this information.
	 */
669 670 671 672 673 674 675
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

676
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
677 678
	}

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
689

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
692 693

	/* enable ep interrupts */
694
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697
}

/**
698
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
699 700 701 702 703 704 705 706 707
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709 710
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
711 712
			     struct usb_request *req)
{
713
	struct dwc2_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

733 734
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

764 765
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

786
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
787 788
			      gfp_t gfp_flags)
{
789 790
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
791
	struct dwc2_hsotg *hs = hs_ep->parent;
792
	bool first;
793
	int ret;
794 795 796 797 798

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

799 800 801 802 803 804 805
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

806 807 808 809 810
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

811
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
812 813 814
	if (ret)
		return ret;

815 816
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
817
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
818 819 820 821 822 823 824 825
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
826
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
827 828 829 830

	return 0;
}

831
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
832 833
			      gfp_t gfp_flags)
{
834
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
835
	struct dwc2_hsotg *hs = hs_ep->parent;
836 837 838 839
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
840
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
841 842 843 844 845
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

846
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
847 848
				      struct usb_request *req)
{
849
	struct dwc2_hsotg_req *hs_req = our_req(req);
850 851 852 853 854

	kfree(hs_req);
}

/**
855
 * dwc2_hsotg_complete_oursetup - setup completion callback
856 857 858 859 860 861
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
862
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
863 864
					struct usb_request *req)
{
865
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
866
	struct dwc2_hsotg *hsotg = hs_ep->parent;
867 868 869

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

870
	dwc2_hsotg_ep_free_request(ep, req);
871 872 873 874 875 876 877 878 879
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
880
 */
881
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
882 883
					   u32 windex)
{
884
	struct dwc2_hsotg_ep *ep;
885 886 887 888 889 890
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

891
	if (idx > hsotg->num_of_eps)
892 893
		return NULL;

894 895
	ep = index_to_ep(hsotg, idx, dir);

896 897 898 899 900 901
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

902
/**
903
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
904 905 906 907
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
908
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
909
{
910
	int dctl = dwc2_readl(hsotg->regs + DCTL);
911 912 913 914 915 916 917 918 919 920 921 922 923

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
924
	dwc2_writel(dctl, hsotg->regs + DCTL);
925 926 927
	return 0;
}

928
/**
929
 * dwc2_hsotg_send_reply - send reply to control request
930 931 932 933 934 935 936 937
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
938 939
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
940 941 942 943 944 945 946 947
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

948
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
949 950 951 952 953 954 955 956
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
957 958 959 960 961
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
962
	req->complete = dwc2_hsotg_complete_oursetup;
963 964 965 966

	if (length)
		memcpy(req->buf, buff, length);

967
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
968 969 970 971 972 973 974 975 976
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
977
 * dwc2_hsotg_process_req_status - process request GET_STATUS
978 979 980
 * @hsotg: The device state
 * @ctrl: USB control request
 */
981
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
982 983
					struct usb_ctrlrequest *ctrl)
{
984 985
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1022
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1023 1024 1025 1026 1027 1028 1029 1030
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1031
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1032

1033 1034 1035 1036 1037 1038
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1039
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1040 1041 1042 1043
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1044
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1083
/**
1084
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1085 1086 1087
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1088
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1089 1090
					 struct usb_ctrlrequest *ctrl)
{
1091 1092
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1093
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1094
	struct dwc2_hsotg_ep *ep;
1095
	int ret;
1096
	bool halted;
1097 1098 1099
	u32 recip;
	u32 wValue;
	u32 wIndex;
1100 1101 1102 1103

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1118
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1132 1133
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1134
				__func__, wIndex);
1135 1136 1137
			return -ENOENT;
		}

1138
		switch (wValue) {
1139
		case USB_ENDPOINT_HALT:
1140 1141
			halted = ep->halted;

1142
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1143

1144
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1145 1146 1147 1148 1149
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1150

1151 1152 1153 1154 1155 1156
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1157 1158 1159 1160 1161 1162 1163 1164
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1165 1166 1167 1168 1169 1170
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1171 1172 1173
				}

				/* If we have pending request, then start it */
1174
				if (!ep->req) {
1175
					dwc2_gadget_start_next_request(ep);
1176 1177 1178
				}
			}

1179 1180 1181 1182 1183
			break;

		default:
			return -ENOENT;
		}
1184 1185 1186 1187
		break;
	default:
		return -ENOENT;
	}
1188 1189 1190
	return 1;
}

1191
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1192

1193
/**
1194
 * dwc2_hsotg_stall_ep0 - stall ep0
1195 1196 1197 1198
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1199
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1200
{
1201
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1213
	ctrl = dwc2_readl(hsotg->regs + reg);
1214 1215
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1216
	dwc2_writel(ctrl, hsotg->regs + reg);
1217 1218

	dev_dbg(hsotg->dev,
1219
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1220
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1221 1222 1223 1224 1225

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1226
	 dwc2_hsotg_enqueue_setup(hsotg);
1227 1228
}

1229
/**
1230
 * dwc2_hsotg_process_control - process a control request
1231 1232 1233 1234 1235 1236 1237
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1238
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1239 1240
				      struct usb_ctrlrequest *ctrl)
{
1241
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1242 1243 1244
	int ret = 0;
	u32 dcfg;

1245 1246 1247 1248
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1249

1250 1251 1252 1253
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1254
		ep0->dir_in = 1;
1255 1256 1257 1258 1259
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1260 1261 1262 1263

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1264
			hsotg->connected = 1;
1265
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1266
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1267 1268
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1269
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1270 1271 1272

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1273
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1274 1275 1276
			return;

		case USB_REQ_GET_STATUS:
1277
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1278 1279 1280 1281
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1282
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1283 1284 1285 1286 1287 1288 1289
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1290
		spin_unlock(&hsotg->lock);
1291
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1292
		spin_lock(&hsotg->lock);
1293 1294 1295 1296
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1297 1298
	/*
	 * the request is either unhandlable, or is not formatted correctly
1299 1300 1301
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1302
	if (ret < 0)
1303
		dwc2_hsotg_stall_ep0(hsotg);
1304 1305 1306
}

/**
1307
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1308 1309 1310 1311 1312 1313
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1314
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1315 1316
				     struct usb_request *req)
{
1317
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1318
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1319 1320 1321 1322 1323 1324

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1325
	spin_lock(&hsotg->lock);
1326
	if (req->actual == 0)
1327
		dwc2_hsotg_enqueue_setup(hsotg);
1328
	else
1329
		dwc2_hsotg_process_control(hsotg, req->buf);
1330
	spin_unlock(&hsotg->lock);
1331 1332 1333
}

/**
1334
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1335 1336 1337 1338 1339
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1340
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1341 1342
{
	struct usb_request *req = hsotg->ctrl_req;
1343
	struct dwc2_hsotg_req *hs_req = our_req(req);
1344 1345 1346 1347 1348 1349 1350
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1351
	req->complete = dwc2_hsotg_complete_setup;
1352 1353 1354 1355 1356 1357

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1358
	hsotg->eps_out[0]->dir_in = 0;
1359
	hsotg->eps_out[0]->send_zlp = 0;
1360
	hsotg->ep0_state = DWC2_EP0_SETUP;
1361

1362
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1363 1364
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1365 1366 1367 1368
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1369 1370 1371
	}
}

1372 1373
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1374 1375 1376 1377 1378 1379
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1380 1381 1382 1383 1384 1385
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1386

1387 1388 1389
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1390

1391
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1392 1393 1394
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1395
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1396 1397
}

1398
/**
1399
 * dwc2_hsotg_complete_request - complete a request given to us
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1410
 */
1411 1412 1413
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1425 1426 1427 1428
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1429 1430 1431 1432

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1433 1434 1435
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1436
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1437

1438 1439 1440
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1441 1442 1443 1444
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1445 1446

	if (hs_req->req.complete) {
1447
		spin_unlock(&hsotg->lock);
1448
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1449
		spin_lock(&hsotg->lock);
1450 1451
	}

1452 1453
	/*
	 * Look to see if there is anything else to do. Note, the completion
1454
	 * of the previous request may have caused a new request to be started
1455 1456
	 * so be careful when doing this.
	 */
1457 1458

	if (!hs_ep->req && result >= 0) {
1459
		dwc2_gadget_start_next_request(hs_ep);
1460 1461 1462 1463
	}
}

/**
1464
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1465 1466 1467 1468 1469 1470 1471 1472
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1473
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1474
{
1475 1476
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1477
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1478 1479 1480 1481
	int to_read;
	int max_req;
	int read_ptr;

1482

1483
	if (!hs_req) {
1484
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1485 1486
		int ptr;

1487
		dev_dbg(hsotg->dev,
1488
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1489 1490 1491 1492
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1493
			(void)dwc2_readl(fifo);
1494 1495 1496 1497 1498 1499 1500 1501

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1502 1503 1504
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1505
	if (to_read > max_req) {
1506 1507
		/*
		 * more data appeared than we where willing
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1519 1520 1521 1522
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1523
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1524 1525 1526
}

/**
1527
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1528
 * @hsotg: The device instance
1529
 * @dir_in: If IN zlp
1530 1531 1532 1533 1534
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1535
 * currently believed that we do not need to wait for any space in
1536 1537
 * the TxFIFO.
 */
1538
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1539
{
1540
	/* eps_out[0] is used in both directions */
1541 1542
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1543

1544
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1560
/**
1561
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1562 1563 1564 1565 1566 1567
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1568
 */
1569
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1570
{
1571
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1572 1573
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1574
	struct usb_request *req = &hs_req->req;
1575
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1576 1577 1578 1579 1580 1581 1582
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1583 1584
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1585 1586
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1587 1588 1589
		return;
	}

1590 1591 1592
	if (using_dma(hsotg)) {
		unsigned size_done;

1593 1594
		/*
		 * Calculate the size of the transfer by checking how much
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1608 1609
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1610
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1611 1612 1613
		return;
	}

1614 1615 1616 1617
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1618 1619 1620 1621
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1622 1623
	}

1624 1625
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1626
		dwc2_hsotg_ep0_zlp(hsotg, true);
1627
		return;
1628 1629
	}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
	}

1640
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1641 1642 1643
}

/**
1644
 * dwc2_hsotg_read_frameno - read current frame number
1645 1646 1647
 * @hsotg: The device instance
 *
 * Return the current frame number
1648
 */
1649
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1650 1651 1652
{
	u32 dsts;

1653
	dsts = dwc2_readl(hsotg->regs + DSTS);
1654 1655
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1656 1657 1658 1659 1660

	return dsts;
}

/**
1661
 * dwc2_hsotg_handle_rx - RX FIFO has data
1662 1663 1664 1665 1666 1667
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1668
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1669 1670 1671 1672 1673 1674 1675
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1676
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1677
{
1678
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1679 1680 1681 1682
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1683 1684
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1685

1686 1687
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1688

1689
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1690 1691
			__func__, grxstsr, size, epnum);

1692 1693 1694
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1695 1696
		break;

1697
	case GRXSTS_PKTSTS_OUTDONE:
1698
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1699
			dwc2_hsotg_read_frameno(hsotg));
1700 1701

		if (!using_dma(hsotg))
1702
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1703 1704
		break;

1705
	case GRXSTS_PKTSTS_SETUPDONE:
1706 1707
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1708
			dwc2_hsotg_read_frameno(hsotg),
1709
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1710
		/*
1711
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1712 1713 1714 1715
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1716
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1717 1718
		break;

1719
	case GRXSTS_PKTSTS_OUTRX:
1720
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1721 1722
		break;

1723
	case GRXSTS_PKTSTS_SETUPRX:
1724 1725
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1726
			dwc2_hsotg_read_frameno(hsotg),
1727
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1728

1729 1730
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1731
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1732 1733 1734 1735 1736 1737
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1738
		dwc2_hsotg_dump(hsotg);
1739 1740 1741 1742 1743
		break;
	}
}

/**
1744
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1745
 * @mps: The maximum packet size in bytes.
1746
 */
1747
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1748 1749 1750
{
	switch (mps) {
	case 64:
1751
		return D0EPCTL_MPS_64;
1752
	case 32:
1753
		return D0EPCTL_MPS_32;
1754
	case 16:
1755
		return D0EPCTL_MPS_16;
1756
	case 8:
1757
		return D0EPCTL_MPS_8;
1758 1759 1760 1761 1762 1763 1764 1765
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1766
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1767 1768 1769 1770 1771 1772 1773
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1774
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1775
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1776
{
1777
	struct dwc2_hsotg_ep *hs_ep;
1778 1779
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1780
	u32 mcval;
1781 1782
	u32 reg;

1783 1784 1785 1786
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1787 1788
	if (ep == 0) {
		/* EP0 is a special case */
1789
		mpsval = dwc2_hsotg_ep0_mps(mps);
1790 1791
		if (mpsval > 3)
			goto bad_mps;
1792
		hs_ep->ep.maxpacket = mps;
1793
		hs_ep->mc = 1;
1794
	} else {
1795
		mpsval = mps & DXEPCTL_MPS_MASK;
1796
		if (mpsval > 1024)
1797
			goto bad_mps;
1798 1799 1800 1801
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1802
		hs_ep->ep.maxpacket = mpsval;
1803 1804
	}

1805
	if (dir_in) {
1806
		reg = dwc2_readl(regs + DIEPCTL(ep));
1807 1808
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1809
		dwc2_writel(reg, regs + DIEPCTL(ep));
1810
	} else {
1811
		reg = dwc2_readl(regs + DOEPCTL(ep));
1812
		reg &= ~DXEPCTL_MPS_MASK;
1813
		reg |= mpsval;
1814
		dwc2_writel(reg, regs + DOEPCTL(ep));
1815
	}
1816 1817 1818 1819 1820 1821 1822

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1823
/**
1824
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1825 1826 1827
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1828
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1829 1830 1831 1832
{
	int timeout;
	int val;

1833 1834
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1835 1836 1837 1838 1839

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1840
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1841

1842
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1843 1844 1845 1846 1847 1848
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1849
			break;
1850 1851 1852 1853 1854
		}

		udelay(1);
	}
}
1855 1856

/**
1857
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1858 1859 1860 1861 1862 1863
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1864 1865
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1866
{
1867
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1868

1869 1870 1871 1872 1873 1874
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1875
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1876
					     hs_ep->dir_in, 0);
1877
		return 0;
1878
	}
1879 1880 1881 1882

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1883
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1884 1885 1886 1887 1888 1889
	}

	return 0;
}

/**
1890
 * dwc2_hsotg_complete_in - complete IN transfer
1891 1892 1893 1894 1895 1896
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1897 1898
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1899
{
1900
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1901
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1902 1903 1904 1905 1906 1907 1908
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1909
	/* Finish ZLP handling for IN EP0 transactions */
1910 1911
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1912
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1913 1914 1915
		if (hsotg->test_mode) {
			int ret;

1916
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1917 1918 1919
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1920
				dwc2_hsotg_stall_ep0(hsotg);
1921 1922 1923
				return;
			}
		}
1924
		dwc2_hsotg_enqueue_setup(hsotg);
1925 1926 1927
		return;
	}

1928 1929
	/*
	 * Calculate the size of the transfer by checking how much is left
1930 1931 1932 1933 1934 1935 1936 1937
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1938
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1939 1940 1941 1942 1943 1944 1945 1946 1947

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1948 1949 1950
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1951 1952
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1953
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1954 1955 1956
		return;
	}

1957
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1958
	if (hs_ep->send_zlp) {
1959
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1960
		hs_ep->send_zlp = 0;
1961 1962 1963 1964
		/* transfer will be completed on next complete interrupt */
		return;
	}

1965 1966
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1967
		dwc2_hsotg_ep0_zlp(hsotg, false);
1968 1969 1970
		return;
	}

1971
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2002
/**
2003
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2004 2005 2006 2007 2008
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2009
 */
2010
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2011 2012
			    int dir_in)
{
2013
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2014 2015 2016
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2017
	u32 ints;
2018
	u32 ctrl;
2019

2020
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2021
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2022

2023
	/* Clear endpoint interrupts */
2024
	dwc2_writel(ints, hsotg->regs + epint_reg);
2025

2026 2027 2028 2029 2030 2031
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2032 2033 2034
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2035 2036 2037 2038
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2039
	if (ints & DXEPINT_XFERCOMPL) {
2040 2041 2042
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2043

2044
		dev_dbg(hsotg->dev,
2045
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2046 2047
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2048

2049 2050 2051 2052
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2053
		if (dir_in) {
2054
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2055

2056
			if (idx == 0 && !hs_ep->req)
2057
				dwc2_hsotg_enqueue_setup(hsotg);
2058
		} else if (using_dma(hsotg)) {
2059 2060 2061 2062
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2063

2064
			dwc2_hsotg_handle_outdone(hsotg, idx);
2065 2066 2067
		}
	}

2068
	if (ints & DXEPINT_EPDISBLD) {
2069 2070
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

2071
		if (dir_in) {
2072
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2073

2074
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2075

2076 2077
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2078
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2079

2080
				dctl |= DCTL_CGNPINNAK;
2081
				dwc2_writel(dctl, hsotg->regs + DCTL);
2082 2083 2084 2085
			}
		}
	}

2086
	if (ints & DXEPINT_AHBERR)
2087 2088
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2089
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2090 2091 2092
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2093 2094
			/*
			 * this is the notification we've received a
2095 2096
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2097 2098
			 * the setup here.
			 */
2099 2100 2101 2102

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2103
				dwc2_hsotg_handle_outdone(hsotg, 0);
2104 2105 2106
		}
	}

2107
	if (ints & DXEPINT_BACK2BACKSETUP)
2108 2109
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2110
	if (dir_in && !hs_ep->isochronous) {
2111
		/* not sure if this is important, but we'll clear it anyway */
2112
		if (ints & DXEPINT_INTKNTXFEMP) {
2113 2114 2115 2116 2117
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2118
		if (ints & DXEPINT_INTKNEPMIS) {
2119 2120 2121
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2122 2123 2124

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2125
		    ints & DXEPINT_TXFEMP) {
2126 2127
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2128
			if (!using_dma(hsotg))
2129
				dwc2_hsotg_trytx(hsotg, hs_ep);
2130
		}
2131 2132 2133 2134
	}
}

/**
2135
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2136 2137 2138 2139
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2140
 */
2141
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2142
{
2143
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2144
	int ep0_mps = 0, ep_mps = 8;
2145

2146 2147
	/*
	 * This should signal the finish of the enumeration phase
2148
	 * of the USB handshaking, so we should now know what rate
2149 2150
	 * we connected at.
	 */
2151 2152 2153

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2154 2155
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2156
	 * it seems IN transfers must be a even number of packets we do
2157 2158
	 * not advertise a 64byte MPS on EP0.
	 */
2159 2160

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2161
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2162 2163
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2164 2165
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2166
		ep_mps = 1023;
2167 2168
		break;

2169
	case DSTS_ENUMSPD_HS:
2170 2171
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2172
		ep_mps = 1024;
2173 2174
		break;

2175
	case DSTS_ENUMSPD_LS:
2176
		hsotg->gadget.speed = USB_SPEED_LOW;
2177 2178
		/*
		 * note, we don't actually support LS in this driver at the
2179 2180 2181 2182 2183
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2184 2185
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2186

2187 2188 2189 2190
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2191 2192 2193

	if (ep0_mps) {
		int i;
2194
		/* Initialize ep0 for both in and out directions */
2195 2196
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2197 2198
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2199
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2200
			if (hsotg->eps_out[i])
2201
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2202
		}
2203 2204 2205 2206
	}

	/* ensure after enumeration our EP0 is active */

2207
	dwc2_hsotg_enqueue_setup(hsotg);
2208 2209

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2210 2211
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2223
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2224
			      struct dwc2_hsotg_ep *ep,
2225
			      int result)
2226
{
2227
	struct dwc2_hsotg_req *req, *treq;
2228
	unsigned size;
2229

2230
	ep->req = NULL;
2231

2232
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2233
		dwc2_hsotg_complete_request(hsotg, ep, req,
2234
					   result);
2235

2236 2237
	if (!hsotg->dedicated_fifos)
		return;
2238
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2239
	if (size < ep->fifo_size)
2240
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2241 2242 2243
}

/**
2244
 * dwc2_hsotg_disconnect - disconnect service
2245 2246
 * @hsotg: The device state.
 *
2247 2248 2249
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2250
 */
2251
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2252 2253 2254
{
	unsigned ep;

2255 2256 2257 2258
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2259
	hsotg->test_mode = 0;
2260 2261 2262 2263 2264 2265 2266 2267 2268

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2269 2270

	call_gadget(hsotg, disconnect);
2271
	hsotg->lx_state = DWC2_L3;
2272 2273 2274
}

/**
2275
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2276 2277 2278
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2279
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2280
{
2281
	struct dwc2_hsotg_ep *ep;
2282 2283 2284
	int epno, ret;

	/* look through for any more data to transmit */
2285
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2286 2287 2288 2289
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2290 2291 2292 2293 2294 2295 2296 2297

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2298
		ret = dwc2_hsotg_trytx(hsotg, ep);
2299 2300 2301 2302 2303 2304
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2305 2306 2307
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2308

2309
/**
2310
 * dwc2_hsotg_core_init - issue softreset to the core
2311 2312 2313 2314
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2315
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2316
						bool is_usb_reset)
2317
{
2318
	u32 intmsk;
2319
	u32 val;
2320
	u32 usbcfg;
2321

2322 2323 2324
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2325
	if (!is_usb_reset)
2326
		if (dwc2_core_reset(hsotg))
2327
			return;
2328 2329 2330 2331 2332 2333

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2334 2335 2336 2337 2338
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2339
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2340
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2341 2342 2343
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2344

2345
	dwc2_hsotg_init_fifo(hsotg);
2346

2347 2348
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2349

2350
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2351 2352

	/* Clear any pending OTG interrupts */
2353
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2354 2355

	/* Clear any pending interrupts */
2356
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2357
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2358
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2359 2360
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2361 2362
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2363 2364 2365 2366 2367

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2368 2369

	if (using_dma(hsotg))
2370 2371 2372
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2373
	else
2374 2375 2376 2377
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2378 2379

	/*
2380 2381 2382
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2383 2384
	 */

2385
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2386
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2387 2388 2389 2390
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2391 2392 2393 2394 2395

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2396
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2397 2398 2399 2400
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2401

2402
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2403 2404

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2405 2406
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2407 2408

	/* enable in and out endpoint interrupts */
2409
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2410 2411 2412 2413 2414 2415 2416

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2417
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2418 2419

	/* Enable interrupts for EP0 in and out */
2420 2421
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2422

2423 2424 2425 2426 2427
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2428

2429
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2430 2431

	/*
2432
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2433 2434 2435 2436
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2437
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2438
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2439

2440
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2441 2442
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2443
	       hsotg->regs + DOEPCTL0);
2444 2445

	/* enable, but don't activate EP0in */
2446
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2447
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2448

2449
	dwc2_hsotg_enqueue_setup(hsotg);
2450 2451

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2452 2453
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2454 2455

	/* clear global NAKs */
2456 2457 2458 2459
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2460 2461 2462 2463

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2464
	hsotg->lx_state = DWC2_L0;
2465 2466
}

2467
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2468 2469 2470 2471
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2472

2473
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2474
{
2475
	/* remove the soft-disconnect and let's go */
2476
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2477 2478
}

2479
/**
2480
 * dwc2_hsotg_irq - handle device interrupt
2481 2482 2483
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2484
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2485
{
2486
	struct dwc2_hsotg *hsotg = pw;
2487 2488 2489 2490
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2491 2492 2493
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2494
	spin_lock(&hsotg->lock);
2495
irq_retry:
2496 2497
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2498 2499 2500 2501 2502 2503

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2534
	if (gintsts & GINTSTS_ENUMDONE) {
2535
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2536

2537
		dwc2_hsotg_irq_enumdone(hsotg);
2538 2539
	}

2540
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2541 2542
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2543
		u32 daint_out, daint_in;
2544 2545
		int ep;

2546
		daint &= daintmsk;
2547 2548
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2549

2550 2551
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2552 2553
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2554
			if (daint_out & 1)
2555
				dwc2_hsotg_epint(hsotg, ep, 0);
2556 2557
		}

2558 2559
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2560
			if (daint_in & 1)
2561
				dwc2_hsotg_epint(hsotg, ep, 1);
2562 2563 2564 2565 2566
		}
	}

	/* check both FIFOs */

2567
	if (gintsts & GINTSTS_NPTXFEMP) {
2568 2569
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2570 2571
		/*
		 * Disable the interrupt to stop it happening again
2572
		 * unless one of these endpoint routines decides that
2573 2574
		 * it needs re-enabling
		 */
2575

2576 2577
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2578 2579
	}

2580
	if (gintsts & GINTSTS_PTXFEMP) {
2581 2582
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2583
		/* See note in GINTSTS_NPTxFEmp */
2584

2585 2586
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2587 2588
	}

2589
	if (gintsts & GINTSTS_RXFLVL) {
2590 2591
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2592
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2593 2594
		 * set.
		 */
2595

2596
		dwc2_hsotg_handle_rx(hsotg);
2597 2598
	}

2599
	if (gintsts & GINTSTS_ERLYSUSP) {
2600
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2601
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2602 2603
	}

2604 2605
	/*
	 * these next two seem to crop-up occasionally causing the core
2606
	 * to shutdown the USB transfer, so try clearing them and logging
2607 2608
	 * the occurrence.
	 */
2609

2610
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2611 2612
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2613
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2614

2615
		dwc2_hsotg_dump(hsotg);
2616 2617
	}

2618
	if (gintsts & GINTSTS_GINNAKEFF) {
2619 2620
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2621
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2622

2623
		dwc2_hsotg_dump(hsotg);
2624 2625
	}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	if (gintsts & GINTSTS_INCOMPL_SOIN) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_in[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DIEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
	}

	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DOEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
	}

2660 2661 2662 2663
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2664 2665 2666 2667

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2668 2669
	spin_unlock(&hsotg->lock);

2670 2671 2672 2673
	return IRQ_HANDLED;
}

/**
2674
 * dwc2_hsotg_ep_enable - enable the given endpoint
2675 2676 2677 2678
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2679
 */
2680
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2681 2682
			       const struct usb_endpoint_descriptor *desc)
{
2683
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2684
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2685
	unsigned long flags;
2686
	unsigned int index = hs_ep->index;
2687 2688 2689
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2690 2691
	unsigned int dir_in;
	unsigned int i, val, size;
2692
	int ret = 0;
2693 2694 2695 2696 2697 2698 2699

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2700 2701 2702 2703
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2704 2705 2706 2707 2708 2709 2710

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2711
	mps = usb_endpoint_maxp(desc);
2712

2713
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2714

2715
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2716
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2717 2718 2719 2720

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2721
	spin_lock_irqsave(&hsotg->lock, flags);
2722

2723 2724
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2725

2726 2727 2728 2729
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2730
	epctrl |= DXEPCTL_USBACTEP;
2731

2732 2733
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2734 2735 2736 2737 2738
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2739
	epctrl |= DXEPCTL_SNAK;
2740 2741

	/* update the endpoint state */
2742
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2743 2744

	/* default, set to non-periodic */
2745
	hs_ep->isochronous = 0;
2746
	hs_ep->periodic = 0;
2747
	hs_ep->halted = 0;
2748
	hs_ep->interval = desc->bInterval;
2749

2750 2751
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2752 2753
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2754
		hs_ep->isochronous = 1;
2755
		hs_ep->interval = 1 << (desc->bInterval - 1);
2756 2757 2758
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2759 2760

	case USB_ENDPOINT_XFER_BULK:
2761
		epctrl |= DXEPCTL_EPTYPE_BULK;
2762 2763 2764
		break;

	case USB_ENDPOINT_XFER_INT:
2765
		if (dir_in)
2766 2767
			hs_ep->periodic = 1;

2768 2769 2770
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

2771
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2772 2773 2774
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2775
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2776 2777 2778
		break;
	}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2790 2791
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2792 2793
	 * a unique tx-fifo even if it is non-periodic.
	 */
2794
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2795 2796
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2797
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2798
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2799 2800
			if (hsotg->fifo_map & (1<<i))
				continue;
2801
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2802 2803 2804
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2805 2806 2807 2808 2809
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2810
		}
2811
		if (!fifo_index) {
2812 2813
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2814 2815 2816
			ret = -ENOMEM;
			goto error;
		}
2817 2818 2819 2820
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2821
	}
2822

2823 2824
	/* for non control endpoints, set PID to D0 */
	if (index)
2825
		epctrl |= DXEPCTL_SETD0PID;
2826 2827 2828 2829

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2830
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2831
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2832
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2833 2834

	/* enable the endpoint interrupt */
2835
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2836

2837
error:
2838
	spin_unlock_irqrestore(&hsotg->lock, flags);
2839
	return ret;
2840 2841
}

2842
/**
2843
 * dwc2_hsotg_ep_disable - disable given endpoint
2844 2845
 * @ep: The endpoint to disable.
 */
2846
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2847
{
2848
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2849
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2850 2851 2852 2853 2854 2855
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2856
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2857

2858
	if (ep == &hsotg->eps_out[0]->ep) {
2859 2860 2861 2862
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2863
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2864

2865
	spin_lock_irqsave(&hsotg->lock, flags);
2866

2867 2868 2869
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2870

2871
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2872 2873 2874
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2875 2876

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2877
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2878 2879

	/* disable endpoint interrupts */
2880
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2881

2882 2883 2884
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2885
	spin_unlock_irqrestore(&hsotg->lock, flags);
2886 2887 2888 2889 2890 2891 2892
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2893
 */
2894
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2895
{
2896
	struct dwc2_hsotg_req *req, *treq;
2897 2898 2899 2900 2901 2902 2903 2904 2905

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
2941 2942
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2943 2944 2945

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2946
						GINTSTS_GOUTNAKEFF, 100))
2947
			dev_warn(hsotg->dev,
2948
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
2973
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2974 2975 2976
	}
}

2977
/**
2978
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2979 2980 2981
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2982
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2983
{
2984 2985
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2986
	struct dwc2_hsotg *hs = hs_ep->parent;
2987 2988
	unsigned long flags;

2989
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2990

2991
	spin_lock_irqsave(&hs->lock, flags);
2992 2993

	if (!on_list(hs_ep, hs_req)) {
2994
		spin_unlock_irqrestore(&hs->lock, flags);
2995 2996 2997
		return -EINVAL;
	}

2998 2999 3000 3001
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3002
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3003
	spin_unlock_irqrestore(&hs->lock, flags);
3004 3005 3006 3007

	return 0;
}

3008
/**
3009
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3010 3011
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3012 3013 3014 3015 3016
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3017
 */
3018
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3019
{
3020
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3021
	struct dwc2_hsotg *hs = hs_ep->parent;
3022 3023 3024
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3025
	u32 xfertype;
3026 3027 3028

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3029 3030
	if (index == 0) {
		if (value)
3031
			dwc2_hsotg_stall_ep0(hs);
3032 3033 3034 3035 3036 3037
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3038 3039 3040 3041 3042
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3043 3044 3045 3046 3047 3048
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3049 3050
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3051
		epctl = dwc2_readl(hs->regs + epreg);
3052 3053

		if (value) {
3054
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3055 3056 3057 3058 3059 3060 3061 3062 3063
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3064
		dwc2_writel(epctl, hs->regs + epreg);
3065
	} else {
3066

3067
		epreg = DOEPCTL(index);
3068
		epctl = dwc2_readl(hs->regs + epreg);
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3079
		dwc2_writel(epctl, hs->regs + epreg);
3080
	}
3081

3082 3083
	hs_ep->halted = value;

3084 3085 3086
	return 0;
}

3087
/**
3088
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3089 3090 3091
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3092
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3093
{
3094
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3095
	struct dwc2_hsotg *hs = hs_ep->parent;
3096 3097 3098 3099
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3100
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3101 3102 3103 3104 3105
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3106 3107 3108 3109 3110 3111 3112 3113
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3114
	/* note, don't believe we have any call for the fifo routines */
3115 3116
};

3117
/**
3118
 * dwc2_hsotg_init - initalize the usb core
3119 3120
 * @hsotg: The driver state
 */
3121
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3122
{
3123
	u32 trdtim;
3124
	u32 usbcfg;
3125 3126
	/* unmask subset of endpoint interrupts */

3127 3128 3129
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3130

3131 3132 3133
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3134

3135
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3136 3137

	/* Be in disconnected state until gadget is registered */
3138
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3139 3140 3141 3142

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3143 3144
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3145

3146
	dwc2_hsotg_init_fifo(hsotg);
3147

3148 3149 3150 3151 3152
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3153
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3154
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3155 3156 3157
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3158

3159 3160
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3161 3162
}

3163
/**
3164
 * dwc2_hsotg_udc_start - prepare the udc for work
3165 3166 3167 3168 3169 3170
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3171
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3172
			   struct usb_gadget_driver *driver)
3173
{
3174
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3175
	unsigned long flags;
3176 3177 3178
	int ret;

	if (!hsotg) {
3179
		pr_err("%s: called with no device\n", __func__);
3180 3181 3182 3183 3184 3185 3186 3187
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3188
	if (driver->max_speed < USB_SPEED_FULL)
3189 3190
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3191
	if (!driver->setup) {
3192 3193 3194 3195 3196 3197 3198 3199
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3200
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3201 3202
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3203 3204 3205 3206
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3207 3208
	}

3209 3210
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3211

3212
	spin_lock_irqsave(&hsotg->lock, flags);
3213 3214
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3215
	hsotg->enabled = 0;
3216 3217
	spin_unlock_irqrestore(&hsotg->lock, flags);

3218
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3219

3220 3221 3222 3223 3224 3225 3226
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3227
/**
3228
 * dwc2_hsotg_udc_stop - stop the udc
3229 3230 3231 3232 3233
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3234
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3235
{
3236
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237
	unsigned long flags = 0;
3238 3239 3240 3241 3242 3243
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3244 3245
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3246
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3247
		if (hsotg->eps_out[ep])
3248
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3249
	}
3250

3251 3252
	spin_lock_irqsave(&hsotg->lock, flags);

3253
	hsotg->driver = NULL;
3254
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3255
	hsotg->enabled = 0;
3256

3257 3258
	spin_unlock_irqrestore(&hsotg->lock, flags);

3259 3260
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3261

3262 3263
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3264 3265 3266 3267

	return 0;
}

3268
/**
3269
 * dwc2_hsotg_gadget_getframe - read the frame number
3270 3271 3272 3273
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3274
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3275
{
3276
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3277 3278
}

3279
/**
3280
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3281 3282 3283 3284 3285
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3286
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3287
{
3288
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3289 3290
	unsigned long flags = 0;

3291 3292 3293 3294 3295 3296 3297 3298
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3299 3300 3301

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3302
		hsotg->enabled = 1;
3303 3304
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3305
	} else {
3306 3307
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3308
		hsotg->enabled = 0;
3309 3310 3311 3312 3313 3314 3315 3316
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3317
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3318 3319 3320 3321 3322 3323 3324
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3325 3326 3327 3328 3329 3330 3331
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3332
	if (is_active) {
3333
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3334

3335
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3336
		if (hsotg->enabled)
3337
			dwc2_hsotg_core_connect(hsotg);
3338
	} else {
3339 3340
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3341 3342 3343 3344 3345 3346
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3347
/**
3348
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3349 3350 3351 3352 3353
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3354
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3355 3356 3357 3358 3359 3360 3361 3362
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3363 3364 3365 3366 3367 3368 3369
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3370 3371 3372
};

/**
3373
 * dwc2_hsotg_initep - initialise a single endpoint
3374 3375 3376 3377 3378 3379 3380 3381
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3382 3383
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3384 3385
				       int epnum,
				       bool dir_in)
3386 3387 3388 3389 3390
{
	char *dir;

	if (epnum == 0)
		dir = "";
3391
	else if (dir_in)
3392
		dir = "in";
3393 3394
	else
		dir = "out";
3395

3396
	hs_ep->dir_in = dir_in;
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3410
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3411
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3426 3427
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3428 3429 3430 3431
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3432
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3433
		if (dir_in)
3434
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3435
		else
3436
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3437 3438 3439
	}
}

3440
/**
3441
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3442 3443 3444 3445
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3446
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3447
{
3448 3449 3450 3451
	u32 cfg;
	u32 ep_type;
	u32 i;

3452
	/* check hardware configuration */
3453

3454 3455
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3456 3457
	/* Add ep0 */
	hsotg->num_of_eps++;
3458

3459
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3460 3461 3462
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3463
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3464 3465
	hsotg->eps_out[0] = hsotg->eps_in[0];

3466
	cfg = hsotg->hw_params.dev_ep_dirs;
3467
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3468 3469 3470 3471
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3472
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3473 3474 3475 3476 3477 3478
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3479
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3480 3481 3482 3483 3484
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3485 3486
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3487

3488 3489 3490 3491
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3492
	return 0;
3493 3494
}

3495
/**
3496
 * dwc2_hsotg_dump - dump state of the udc
3497 3498
 * @param: The device state
 */
3499
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3500
{
M
Mark Brown 已提交
3501
#ifdef DEBUG
3502 3503 3504 3505 3506 3507
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3508 3509
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3510

3511
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3512
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3513 3514

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3515
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3516 3517 3518

	/* show periodic fifo settings */

3519
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3520
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3521
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3522 3523
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3524 3525
	}

3526
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3527 3528
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3529 3530 3531
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3532

3533
		val = dwc2_readl(regs + DOEPCTL(idx));
3534 3535
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3536 3537 3538
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3539 3540 3541 3542

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3543
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3544
#endif
3545 3546
}

3547
#ifdef CONFIG_OF
3548
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3549 3550
{
	struct device_node *np = hsotg->dev->of_node;
3551 3552
	u32 len = 0;
	u32 i = 0;
3553 3554 3555

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3587 3588
}
#else
3589
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3590 3591
#endif

3592
/**
3593 3594 3595
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3596
 */
3597
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3598
{
3599
	struct device *dev = hsotg->dev;
3600 3601
	int epnum;
	int ret;
3602
	int i;
3603
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3604

3605 3606 3607 3608 3609
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3610
	dwc2_hsotg_of_probe(hsotg);
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3622 3623 3624 3625 3626 3627 3628
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3629

3630
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3631
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3632
	hsotg->gadget.name = dev_name(dev);
3633 3634
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3635 3636
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3637

3638
	ret = dwc2_hsotg_hw_cfg(hsotg);
3639 3640
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3641
		return ret;
3642 3643
	}

3644 3645 3646 3647
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
3648
		return -ENOMEM;
3649 3650 3651 3652 3653 3654
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
3655
		return -ENOMEM;
3656 3657
	}

3658
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3659
				dev_name(hsotg->dev), hsotg);
3660
	if (ret < 0) {
3661
		dev_err(dev, "cannot claim IRQ for gadget\n");
3662
		return ret;
3663 3664
	}

3665 3666 3667 3668
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3669
		return -EINVAL;
3670 3671 3672 3673 3674
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3675
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3676 3677 3678

	/* allocate EP0 request */

3679
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3680 3681 3682
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3683
		return -ENOMEM;
3684
	}
3685 3686

	/* initialise the endpoints now the core has been initialised */
3687 3688
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3689
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3690 3691
								epnum, 1);
		if (hsotg->eps_out[epnum])
3692
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3693 3694
								epnum, 0);
	}
3695

3696
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3697
	if (ret)
3698
		return ret;
3699

3700
	dwc2_hsotg_dump(hsotg);
3701 3702 3703 3704

	return 0;
}

3705
/**
3706
 * dwc2_hsotg_remove - remove function for hsotg driver
3707 3708
 * @pdev: The platform information for the driver
 */
3709
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3710
{
3711
	usb_del_gadget_udc(&hsotg->gadget);
3712

3713 3714 3715
	return 0;
}

3716
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3717 3718 3719
{
	unsigned long flags;

3720
	if (hsotg->lx_state != DWC2_L0)
3721
		return 0;
3722

3723 3724 3725
	if (hsotg->driver) {
		int ep;

3726 3727 3728
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3729 3730
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3731 3732
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3733 3734
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3735

3736 3737
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3738
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3739
			if (hsotg->eps_out[ep])
3740
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3741
		}
3742 3743
	}

3744
	return 0;
3745 3746
}

3747
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3748 3749 3750
{
	unsigned long flags;

3751
	if (hsotg->lx_state == DWC2_L2)
3752
		return 0;
3753

3754 3755 3756
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3757

3758
		spin_lock_irqsave(&hsotg->lock, flags);
3759
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3760
		if (hsotg->enabled)
3761
			dwc2_hsotg_core_connect(hsotg);
3762 3763
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3764

3765
	return 0;
3766
}
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}