gadget.c 113.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

375
/**
376
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
377 378 379 380 381 382 383 384 385 386 387 388 389
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
390
 */
391 392 393
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
394 395
{
	bool periodic = is_ep_periodic(hs_ep);
396
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
397 398 399 400 401
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
402
	int max_transfer;
403 404 405 406 407 408 409

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

410
	if (periodic && !hsotg->dedicated_fifos) {
411
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
412 413 414
		int size_left;
		int size_done;

415 416 417 418
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
419

420
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
421

422 423
		/*
		 * if shared fifo, we cannot write anything until the
424 425 426
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
427
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
428 429 430
			return -ENOSPC;
		}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
448
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
449 450
			return -ENOSPC;
		}
451
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
452 453
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
454 455 456

		can_write &= 0xffff;
		can_write *= 4;
457
	} else {
458
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
459 460 461 462
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

463
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
464 465 466
			return -ENOSPC;
		}

467
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
468
		can_write *= 4;	/* fifo size is in 32bit quantities. */
469 470
	}

471 472 473 474
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
475

476 477
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
478 479 480
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
481
	if (can_write > 512 && !periodic)
482 483
		can_write = 512;

484 485
	/*
	 * limit the write to one max-packet size worth of data, but allow
486
	 * the transfer to return that it did not run out of fifo space
487 488
	 * doing it.
	 */
489 490
	if (to_write > max_transfer) {
		to_write = max_transfer;
491

492 493
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
494
			dwc2_hsotg_en_gsint(hsotg,
495 496
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
497 498
	}

499 500 501 502
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
503
		pkt_round = to_write % max_transfer;
504

505 506
		/*
		 * Round the write down to an
507 508 509 510 511 512 513 514 515
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

516 517 518 519
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
520

521 522
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
523
			dwc2_hsotg_en_gsint(hsotg,
524 525
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

543
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
544 545 546 547 548 549 550 551 552 553 554

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
555
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
556 557 558 559 560 561
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
562 563
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
564
	} else {
565
		maxsize = 64+64;
566
		if (hs_ep->dir_in)
567
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
568
		else
569 570 571 572 573 574 575
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

576 577 578 579
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
580 581 582 583 584 585 586

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

738
/**
739
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
740 741 742 743 744 745 746 747
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
748 749 750
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
751 752 753 754 755 756 757 758 759 760 761 762
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;
763
	unsigned int dma_reg;
764 765 766 767 768 769 770 771 772 773 774 775 776 777

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

778
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
779 780
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
781 782

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
783
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
784 785
		hs_ep->dir_in ? "in" : "out");

786
	/* If endpoint is stalled, we will restart request later */
787
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
788

789
	if (index && ctrl & DXEPCTL_STALL) {
790 791 792 793
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

794
	length = ureq->length - ureq->actual;
795 796
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
797

798 799 800 801 802
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

821 822 823 824 825
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

826
	if (dir_in && index != 0)
827
		if (hs_ep->isochronous)
828
			epsize = DXEPTSIZ_MC(packets);
829
		else
830
			epsize = DXEPTSIZ_MC(1);
831 832 833
	else
		epsize = 0;

834 835 836 837 838 839 840 841
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
842
			hs_ep->send_zlp = 1;
843 844
	}

845 846
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
847 848 849 850 851 852 853

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

854 855 856 857 858 859 860 861 862 863 864
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
865

866
		/*
867 868 869
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
870
		 */
871 872 873 874 875 876 877 878 879 880
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
881

882 883 884 885 886 887 888 889 890 891 892
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

		if (using_dma(hsotg) && !continuing) {
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
893

894 895 896 897 898
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
899 900
	}

901 902 903 904 905 906 907 908 909 910
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

911
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
912

913
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
914 915

	/* For Setup request do not clear NAK */
916
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
917
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
918

919
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
920
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
921

922 923
	/*
	 * set these, it seems that DMA support increments past the end
924
	 * of the packet buffer so we need to calculate the length from
925 926
	 * this information.
	 */
927 928 929 930 931 932 933
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

934
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
935 936
	}

937 938 939 940
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
941 942

	/* check ep is enabled */
943
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
944
		dev_dbg(hsotg->dev,
945
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
946
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
947

948
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
949
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
950 951

	/* enable ep interrupts */
952
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
953 954 955
}

/**
956
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
957 958 959 960 961 962 963 964 965
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
966
 */
967 968
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
969 970
			     struct usb_request *req)
{
971
	struct dwc2_hsotg_req *hs_req = our_req(req);
972
	int ret;
973 974 975 976 977

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

978 979 980
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
981 982 983 984 985 986 987 988 989 990

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

991 992
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1022 1023
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1103
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1104 1105
			      gfp_t gfp_flags)
{
1106 1107
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1108
	struct dwc2_hsotg *hs = hs_ep->parent;
1109
	bool first;
1110
	int ret;
1111 1112 1113 1114 1115

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1116 1117 1118 1119 1120 1121 1122
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

1123 1124 1125 1126 1127
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1128
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1129 1130 1131
	if (ret)
		return ret;

1132 1133
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1134
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1135 1136 1137
		if (ret)
			return ret;
	}
1138 1139 1140 1141 1142 1143
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1144 1145 1146 1147

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1148 1149 1150 1151 1152 1153 1154 1155
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1156

1157 1158 1159
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1160 1161 1162
	return 0;
}

1163
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1164 1165
			      gfp_t gfp_flags)
{
1166
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1167
	struct dwc2_hsotg *hs = hs_ep->parent;
1168 1169 1170 1171
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1172
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1173 1174 1175 1176 1177
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1178
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1179 1180
				      struct usb_request *req)
{
1181
	struct dwc2_hsotg_req *hs_req = our_req(req);
1182 1183 1184 1185 1186

	kfree(hs_req);
}

/**
1187
 * dwc2_hsotg_complete_oursetup - setup completion callback
1188 1189 1190 1191 1192 1193
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1194
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1195 1196
					struct usb_request *req)
{
1197
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1198
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1199 1200 1201

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1202
	dwc2_hsotg_ep_free_request(ep, req);
1203 1204 1205 1206 1207 1208 1209 1210 1211
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1212
 */
1213
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1214 1215
					   u32 windex)
{
1216
	struct dwc2_hsotg_ep *ep;
1217 1218 1219 1220 1221 1222
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1223
	if (idx > hsotg->num_of_eps)
1224 1225
		return NULL;

1226 1227
	ep = index_to_ep(hsotg, idx, dir);

1228 1229 1230 1231 1232 1233
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1234
/**
1235
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1236 1237 1238 1239
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1240
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1241
{
1242
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1256
	dwc2_writel(dctl, hsotg->regs + DCTL);
1257 1258 1259
	return 0;
}

1260
/**
1261
 * dwc2_hsotg_send_reply - send reply to control request
1262 1263 1264 1265 1266 1267 1268 1269
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1270 1271
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1272 1273 1274 1275 1276 1277 1278 1279
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1280
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1281 1282 1283 1284 1285 1286 1287 1288
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1289 1290 1291 1292 1293
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1294
	req->complete = dwc2_hsotg_complete_oursetup;
1295 1296 1297 1298

	if (length)
		memcpy(req->buf, buff, length);

1299
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1309
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1310 1311 1312
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1313
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1314 1315
					struct usb_ctrlrequest *ctrl)
{
1316 1317
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1354
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1355 1356 1357 1358 1359 1360 1361 1362
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1363
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1364

1365 1366 1367 1368 1369 1370
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1371
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1372
{
1373 1374
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1413
/**
1414
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1415 1416 1417
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1418
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1419 1420
					 struct usb_ctrlrequest *ctrl)
{
1421 1422
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1423
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1424
	struct dwc2_hsotg_ep *ep;
1425
	int ret;
1426
	bool halted;
1427 1428 1429
	u32 recip;
	u32 wValue;
	u32 wIndex;
1430 1431 1432 1433

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1448
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1462 1463
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1464
				__func__, wIndex);
1465 1466 1467
			return -ENOENT;
		}

1468
		switch (wValue) {
1469
		case USB_ENDPOINT_HALT:
1470 1471
			halted = ep->halted;

1472
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1473

1474
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1475 1476 1477 1478 1479
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1480

1481 1482 1483 1484 1485 1486
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1487 1488 1489 1490 1491 1492 1493 1494
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1495 1496 1497 1498 1499 1500
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1501 1502 1503
				}

				/* If we have pending request, then start it */
1504
				if (!ep->req) {
1505
					dwc2_gadget_start_next_request(ep);
1506 1507 1508
				}
			}

1509 1510 1511 1512 1513
			break;

		default:
			return -ENOENT;
		}
1514 1515 1516 1517
		break;
	default:
		return -ENOENT;
	}
1518 1519 1520
	return 1;
}

1521
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1522

1523
/**
1524
 * dwc2_hsotg_stall_ep0 - stall ep0
1525 1526 1527 1528
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1529
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1530
{
1531
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1543
	ctrl = dwc2_readl(hsotg->regs + reg);
1544 1545
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1546
	dwc2_writel(ctrl, hsotg->regs + reg);
1547 1548

	dev_dbg(hsotg->dev,
1549
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1550
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1551 1552 1553 1554 1555

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1556
	 dwc2_hsotg_enqueue_setup(hsotg);
1557 1558
}

1559
/**
1560
 * dwc2_hsotg_process_control - process a control request
1561 1562 1563 1564 1565 1566 1567
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1568
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1569 1570
				      struct usb_ctrlrequest *ctrl)
{
1571
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1572 1573 1574
	int ret = 0;
	u32 dcfg;

1575 1576 1577 1578
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1579

1580 1581 1582 1583
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1584
		ep0->dir_in = 1;
1585 1586 1587 1588 1589
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1590 1591 1592 1593

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1594
			hsotg->connected = 1;
1595
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1596
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1597 1598
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1599
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1600 1601 1602

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1603
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1604 1605 1606
			return;

		case USB_REQ_GET_STATUS:
1607
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1608 1609 1610 1611
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1612
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1613 1614 1615 1616 1617 1618 1619
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1620
		spin_unlock(&hsotg->lock);
1621
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1622
		spin_lock(&hsotg->lock);
1623 1624 1625 1626
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1627 1628
	/*
	 * the request is either unhandlable, or is not formatted correctly
1629 1630 1631
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1632
	if (ret < 0)
1633
		dwc2_hsotg_stall_ep0(hsotg);
1634 1635 1636
}

/**
1637
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1638 1639 1640 1641 1642 1643
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1644
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1645 1646
				     struct usb_request *req)
{
1647
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1648
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1649 1650 1651 1652 1653 1654

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1655
	spin_lock(&hsotg->lock);
1656
	if (req->actual == 0)
1657
		dwc2_hsotg_enqueue_setup(hsotg);
1658
	else
1659
		dwc2_hsotg_process_control(hsotg, req->buf);
1660
	spin_unlock(&hsotg->lock);
1661 1662 1663
}

/**
1664
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1665 1666 1667 1668 1669
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1670
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1671 1672
{
	struct usb_request *req = hsotg->ctrl_req;
1673
	struct dwc2_hsotg_req *hs_req = our_req(req);
1674 1675 1676 1677 1678 1679 1680
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1681
	req->complete = dwc2_hsotg_complete_setup;
1682 1683 1684 1685 1686 1687

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1688
	hsotg->eps_out[0]->dir_in = 0;
1689
	hsotg->eps_out[0]->send_zlp = 0;
1690
	hsotg->ep0_state = DWC2_EP0_SETUP;
1691

1692
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1693 1694
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1695 1696 1697 1698
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1699 1700 1701
	}
}

1702 1703
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1704 1705 1706 1707 1708 1709
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1710 1711
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1712
			index);
1713 1714
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1715 1716 1717 1718
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1719

1720 1721 1722 1723 1724 1725 1726
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1727

1728
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1729 1730 1731
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1732
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1733 1734
}

1735
/**
1736
 * dwc2_hsotg_complete_request - complete a request given to us
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1747
 */
1748 1749 1750
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1762 1763 1764 1765
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1766 1767 1768 1769

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1770 1771 1772
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1773
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1774

1775 1776 1777
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1778 1779 1780 1781
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1782 1783

	if (hs_req->req.complete) {
1784
		spin_unlock(&hsotg->lock);
1785
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1786
		spin_lock(&hsotg->lock);
1787 1788
	}

1789 1790
	/*
	 * Look to see if there is anything else to do. Note, the completion
1791
	 * of the previous request may have caused a new request to be started
1792 1793
	 * so be careful when doing this.
	 */
1794 1795

	if (!hs_ep->req && result >= 0) {
1796
		dwc2_gadget_start_next_request(hs_ep);
1797 1798 1799 1800
	}
}

/**
1801
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1802 1803 1804 1805 1806 1807 1808 1809
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1810
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1811
{
1812 1813
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1814
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1815 1816 1817 1818
	int to_read;
	int max_req;
	int read_ptr;

1819

1820
	if (!hs_req) {
1821
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1822 1823
		int ptr;

1824
		dev_dbg(hsotg->dev,
1825
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1826 1827 1828 1829
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1830
			(void)dwc2_readl(fifo);
1831 1832 1833 1834 1835 1836 1837 1838

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1839 1840 1841
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1842
	if (to_read > max_req) {
1843 1844
		/*
		 * more data appeared than we where willing
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1856 1857 1858 1859
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1860
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1861 1862 1863
}

/**
1864
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1865
 * @hsotg: The device instance
1866
 * @dir_in: If IN zlp
1867 1868 1869 1870 1871
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1872
 * currently believed that we do not need to wait for any space in
1873 1874
 * the TxFIFO.
 */
1875
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1876
{
1877
	/* eps_out[0] is used in both directions */
1878 1879
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1880

1881
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

1927
/**
1928
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1929 1930 1931 1932 1933 1934
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1935
 */
1936
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1937
{
1938
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1939 1940
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1941
	struct usb_request *req = &hs_req->req;
1942
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1943 1944 1945 1946 1947 1948 1949
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1950 1951
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1952 1953
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1954 1955 1956
		return;
	}

1957 1958 1959
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

1960 1961 1962
	if (using_dma(hsotg)) {
		unsigned size_done;

1963 1964
		/*
		 * Calculate the size of the transfer by checking how much
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1978 1979
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1980
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1981 1982 1983
		return;
	}

1984 1985 1986 1987
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1988 1989 1990 1991
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1992 1993
	}

1994 1995
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1996
		dwc2_hsotg_ep0_zlp(hsotg, true);
1997
		return;
1998 1999
	}

2000 2001 2002 2003 2004 2005 2006
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2007 2008
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2009 2010
	}

2011
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2012 2013 2014
}

/**
2015
 * dwc2_hsotg_handle_rx - RX FIFO has data
2016 2017 2018 2019 2020 2021
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2022
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2023 2024 2025 2026 2027 2028 2029
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2030
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2031
{
2032
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2033 2034 2035 2036
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2037 2038
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2039

2040 2041
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2042

2043
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2044 2045
			__func__, grxstsr, size, epnum);

2046 2047 2048
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2049 2050
		break;

2051
	case GRXSTS_PKTSTS_OUTDONE:
2052
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2053
			dwc2_hsotg_read_frameno(hsotg));
2054 2055

		if (!using_dma(hsotg))
2056
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2057 2058
		break;

2059
	case GRXSTS_PKTSTS_SETUPDONE:
2060 2061
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2062
			dwc2_hsotg_read_frameno(hsotg),
2063
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2064
		/*
2065
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2066 2067 2068 2069
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2070
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2071 2072
		break;

2073
	case GRXSTS_PKTSTS_OUTRX:
2074
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2075 2076
		break;

2077
	case GRXSTS_PKTSTS_SETUPRX:
2078 2079
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2080
			dwc2_hsotg_read_frameno(hsotg),
2081
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2082

2083 2084
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2085
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2086 2087 2088 2089 2090 2091
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2092
		dwc2_hsotg_dump(hsotg);
2093 2094 2095 2096 2097
		break;
	}
}

/**
2098
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2099
 * @mps: The maximum packet size in bytes.
2100
 */
2101
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2102 2103 2104
{
	switch (mps) {
	case 64:
2105
		return D0EPCTL_MPS_64;
2106
	case 32:
2107
		return D0EPCTL_MPS_32;
2108
	case 16:
2109
		return D0EPCTL_MPS_16;
2110
	case 8:
2111
		return D0EPCTL_MPS_8;
2112 2113 2114 2115 2116 2117 2118 2119
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2120
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2121 2122 2123
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2124
 * @mc: The multicount value
2125 2126 2127 2128
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2129
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2130 2131
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2132
{
2133
	struct dwc2_hsotg_ep *hs_ep;
2134 2135 2136
	void __iomem *regs = hsotg->regs;
	u32 reg;

2137 2138 2139 2140
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2141
	if (ep == 0) {
2142 2143
		u32 mps_bytes = mps;

2144
		/* EP0 is a special case */
2145 2146
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2147
			goto bad_mps;
2148
		hs_ep->ep.maxpacket = mps_bytes;
2149
		hs_ep->mc = 1;
2150
	} else {
2151
		if (mps > 1024)
2152
			goto bad_mps;
2153 2154
		hs_ep->mc = mc;
		if (mc > 3)
2155
			goto bad_mps;
2156
		hs_ep->ep.maxpacket = mps;
2157 2158
	}

2159
	if (dir_in) {
2160
		reg = dwc2_readl(regs + DIEPCTL(ep));
2161
		reg &= ~DXEPCTL_MPS_MASK;
2162
		reg |= mps;
2163
		dwc2_writel(reg, regs + DIEPCTL(ep));
2164
	} else {
2165
		reg = dwc2_readl(regs + DOEPCTL(ep));
2166
		reg &= ~DXEPCTL_MPS_MASK;
2167
		reg |= mps;
2168
		dwc2_writel(reg, regs + DOEPCTL(ep));
2169
	}
2170 2171 2172 2173 2174 2175 2176

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2177
/**
2178
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2179 2180 2181
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2182
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2183 2184 2185 2186
{
	int timeout;
	int val;

2187 2188
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2189 2190 2191 2192 2193

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2194
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2195

2196
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2197 2198 2199 2200 2201 2202
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2203
			break;
2204 2205 2206 2207 2208
		}

		udelay(1);
	}
}
2209 2210

/**
2211
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2212 2213 2214 2215 2216 2217
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2218 2219
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
2220
{
2221
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2222

2223 2224 2225 2226 2227 2228
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2229
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2230
					     hs_ep->dir_in, 0);
2231
		return 0;
2232
	}
2233 2234 2235 2236

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2237
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2238 2239 2240 2241 2242 2243
	}

	return 0;
}

/**
2244
 * dwc2_hsotg_complete_in - complete IN transfer
2245 2246 2247 2248 2249 2250
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2251 2252
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2253
{
2254
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2255
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2256 2257 2258 2259 2260 2261 2262
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2263
	/* Finish ZLP handling for IN EP0 transactions */
2264 2265
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2266
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2267 2268 2269
		if (hsotg->test_mode) {
			int ret;

2270
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2271 2272 2273
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2274
				dwc2_hsotg_stall_ep0(hsotg);
2275 2276 2277
				return;
			}
		}
2278
		dwc2_hsotg_enqueue_setup(hsotg);
2279 2280 2281
		return;
	}

2282 2283
	/*
	 * Calculate the size of the transfer by checking how much is left
2284 2285 2286 2287 2288 2289 2290
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2291 2292 2293 2294 2295 2296 2297 2298
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2299 2300 2301 2302 2303 2304 2305 2306 2307

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2308 2309 2310
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2311 2312
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2313
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2314 2315 2316
		return;
	}

2317
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2318
	if (hs_ep->send_zlp) {
2319
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2320
		hs_ep->send_zlp = 0;
2321 2322 2323 2324
		/* transfer will be completed on next complete interrupt */
		return;
	}

2325 2326
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2327
		dwc2_hsotg_ep0_zlp(hsotg, false);
2328 2329 2330
		return;
	}

2331
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2332 2333
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2518
/**
2519
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2520 2521 2522 2523 2524
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2525
 */
2526
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2527 2528
			    int dir_in)
{
2529
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2530 2531 2532
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2533
	u32 ints;
2534
	u32 ctrl;
2535

2536
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2537
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2538

2539
	/* Clear endpoint interrupts */
2540
	dwc2_writel(ints, hsotg->regs + epint_reg);
2541

2542 2543 2544 2545 2546 2547
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2548 2549 2550
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2551 2552 2553 2554
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2555 2556
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2557

2558
	if (ints & DXEPINT_XFERCOMPL) {
2559
		dev_dbg(hsotg->dev,
2560
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2561 2562
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2563

2564 2565 2566 2567
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2568
		if (dir_in) {
2569 2570 2571
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2572
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2573 2574
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2575

2576
			if (idx == 0 && !hs_ep->req)
2577
				dwc2_hsotg_enqueue_setup(hsotg);
2578
		} else if (using_dma(hsotg)) {
2579 2580 2581 2582
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2583 2584
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2585

2586
			dwc2_hsotg_handle_outdone(hsotg, idx);
2587 2588 2589
		}
	}

2590 2591
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2592

2593 2594 2595 2596 2597 2598
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2599
	if (ints & DXEPINT_AHBERR)
2600 2601
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2602
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2603 2604 2605
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2606 2607
			/*
			 * this is the notification we've received a
2608 2609
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2610 2611
			 * the setup here.
			 */
2612 2613 2614 2615

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2616
				dwc2_hsotg_handle_outdone(hsotg, 0);
2617 2618 2619
		}
	}

2620
	if (ints & DXEPINT_BACK2BACKSETUP)
2621 2622
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2623
	if (dir_in && !hs_ep->isochronous) {
2624
		/* not sure if this is important, but we'll clear it anyway */
2625
		if (ints & DXEPINT_INTKNTXFEMP) {
2626 2627 2628 2629 2630
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2631
		if (ints & DXEPINT_INTKNEPMIS) {
2632 2633 2634
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2635 2636 2637

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2638
		    ints & DXEPINT_TXFEMP) {
2639 2640
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2641
			if (!using_dma(hsotg))
2642
				dwc2_hsotg_trytx(hsotg, hs_ep);
2643
		}
2644 2645 2646 2647
	}
}

/**
2648
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2649 2650 2651 2652
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2653
 */
2654
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2655
{
2656
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2657
	int ep0_mps = 0, ep_mps = 8;
2658

2659 2660
	/*
	 * This should signal the finish of the enumeration phase
2661
	 * of the USB handshaking, so we should now know what rate
2662 2663
	 * we connected at.
	 */
2664 2665 2666

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2667 2668
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2669
	 * it seems IN transfers must be a even number of packets we do
2670 2671
	 * not advertise a 64byte MPS on EP0.
	 */
2672 2673

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2674
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2675 2676
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2677 2678
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2679
		ep_mps = 1023;
2680 2681
		break;

2682
	case DSTS_ENUMSPD_HS:
2683 2684
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2685
		ep_mps = 1024;
2686 2687
		break;

2688
	case DSTS_ENUMSPD_LS:
2689
		hsotg->gadget.speed = USB_SPEED_LOW;
2690 2691
		/*
		 * note, we don't actually support LS in this driver at the
2692 2693 2694 2695 2696
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2697 2698
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2699

2700 2701 2702 2703
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2704 2705 2706

	if (ep0_mps) {
		int i;
2707
		/* Initialize ep0 for both in and out directions */
2708 2709
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
2710 2711
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2712 2713
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
2714
			if (hsotg->eps_out[i])
2715 2716
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
2717
		}
2718 2719 2720 2721
	}

	/* ensure after enumeration our EP0 is active */

2722
	dwc2_hsotg_enqueue_setup(hsotg);
2723 2724

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2725 2726
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2738
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2739
			      struct dwc2_hsotg_ep *ep,
2740
			      int result)
2741
{
2742
	struct dwc2_hsotg_req *req, *treq;
2743
	unsigned size;
2744

2745
	ep->req = NULL;
2746

2747
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2748
		dwc2_hsotg_complete_request(hsotg, ep, req,
2749
					   result);
2750

2751 2752
	if (!hsotg->dedicated_fifos)
		return;
2753
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2754
	if (size < ep->fifo_size)
2755
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2756 2757 2758
}

/**
2759
 * dwc2_hsotg_disconnect - disconnect service
2760 2761
 * @hsotg: The device state.
 *
2762 2763 2764
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2765
 */
2766
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2767 2768 2769
{
	unsigned ep;

2770 2771 2772 2773
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2774
	hsotg->test_mode = 0;
2775 2776 2777 2778 2779 2780 2781 2782 2783

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2784 2785

	call_gadget(hsotg, disconnect);
2786
	hsotg->lx_state = DWC2_L3;
2787 2788 2789
}

/**
2790
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2791 2792 2793
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2794
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2795
{
2796
	struct dwc2_hsotg_ep *ep;
2797 2798 2799
	int epno, ret;

	/* look through for any more data to transmit */
2800
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2801 2802 2803 2804
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2805 2806 2807 2808 2809 2810 2811 2812

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2813
		ret = dwc2_hsotg_trytx(hsotg, ep);
2814 2815 2816 2817 2818 2819
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2820 2821 2822
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2823

2824
/**
2825
 * dwc2_hsotg_core_init - issue softreset to the core
2826 2827 2828 2829
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2830
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2831
						bool is_usb_reset)
2832
{
2833
	u32 intmsk;
2834
	u32 val;
2835
	u32 usbcfg;
2836

2837 2838 2839
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2840
	if (!is_usb_reset)
2841
		if (dwc2_core_reset(hsotg))
2842
			return;
2843 2844 2845 2846 2847 2848

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2849 2850 2851 2852 2853
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2854
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2855
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2856 2857 2858
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2859

2860
	dwc2_hsotg_init_fifo(hsotg);
2861

2862 2863
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2864

2865
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2866 2867

	/* Clear any pending OTG interrupts */
2868
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2869 2870

	/* Clear any pending interrupts */
2871
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2872
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2873
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2874 2875
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2876 2877
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2878

2879
	if (hsotg->params.external_id_pin_ctl <= 0)
2880 2881 2882
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2883 2884

	if (using_dma(hsotg))
2885 2886 2887
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2888
	else
2889 2890 2891 2892
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2893 2894

	/*
2895 2896 2897
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2898 2899
	 */

2900
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2901
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2902
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2903
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2904
		hsotg->regs + DIEPMSK);
2905 2906 2907 2908 2909

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2910
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2911
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2912
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2913
		hsotg->regs + DOEPMSK);
2914

2915
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2916 2917

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2918 2919
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2920 2921

	/* enable in and out endpoint interrupts */
2922
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2923 2924 2925 2926 2927 2928 2929

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2930
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2931 2932

	/* Enable interrupts for EP0 in and out */
2933 2934
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2935

2936 2937 2938 2939 2940
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2941

2942
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2943 2944

	/*
2945
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2946 2947 2948 2949
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2950
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2951
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2952

2953
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2954 2955
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2956
	       hsotg->regs + DOEPCTL0);
2957 2958

	/* enable, but don't activate EP0in */
2959
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2960
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2961

2962
	dwc2_hsotg_enqueue_setup(hsotg);
2963 2964

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2965 2966
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2967 2968

	/* clear global NAKs */
2969 2970 2971 2972
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2973 2974 2975 2976

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2977
	hsotg->lx_state = DWC2_L0;
2978 2979
}

2980
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2981 2982 2983 2984
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2985

2986
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2987
{
2988
	/* remove the soft-disconnect and let's go */
2989
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2990 2991
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3071
/**
3072
 * dwc2_hsotg_irq - handle device interrupt
3073 3074 3075
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3076
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3077
{
3078
	struct dwc2_hsotg *hsotg = pw;
3079 3080 3081 3082
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3083 3084 3085
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3086
	spin_lock(&hsotg->lock);
3087
irq_retry:
3088 3089
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3090 3091 3092 3093 3094 3095

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3126
	if (gintsts & GINTSTS_ENUMDONE) {
3127
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3128

3129
		dwc2_hsotg_irq_enumdone(hsotg);
3130 3131
	}

3132
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3133 3134
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3135
		u32 daint_out, daint_in;
3136 3137
		int ep;

3138
		daint &= daintmsk;
3139 3140
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3141

3142 3143
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3144 3145
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3146
			if (daint_out & 1)
3147
				dwc2_hsotg_epint(hsotg, ep, 0);
3148 3149
		}

3150 3151
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3152
			if (daint_in & 1)
3153
				dwc2_hsotg_epint(hsotg, ep, 1);
3154 3155 3156 3157 3158
		}
	}

	/* check both FIFOs */

3159
	if (gintsts & GINTSTS_NPTXFEMP) {
3160 3161
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3162 3163
		/*
		 * Disable the interrupt to stop it happening again
3164
		 * unless one of these endpoint routines decides that
3165 3166
		 * it needs re-enabling
		 */
3167

3168 3169
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3170 3171
	}

3172
	if (gintsts & GINTSTS_PTXFEMP) {
3173 3174
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3175
		/* See note in GINTSTS_NPTxFEmp */
3176

3177 3178
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3179 3180
	}

3181
	if (gintsts & GINTSTS_RXFLVL) {
3182 3183
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3184
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3185 3186
		 * set.
		 */
3187

3188
		dwc2_hsotg_handle_rx(hsotg);
3189 3190
	}

3191
	if (gintsts & GINTSTS_ERLYSUSP) {
3192
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3193
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3194 3195
	}

3196 3197
	/*
	 * these next two seem to crop-up occasionally causing the core
3198
	 * to shutdown the USB transfer, so try clearing them and logging
3199 3200
	 * the occurrence.
	 */
3201

3202
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3224

3225
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3226 3227
	}

3228
	if (gintsts & GINTSTS_GINNAKEFF) {
3229 3230
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3231
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3232

3233
		dwc2_hsotg_dump(hsotg);
3234 3235
	}

3236 3237
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3238

3239 3240
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3241

3242 3243 3244 3245
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3246 3247 3248 3249

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3250 3251
	spin_unlock(&hsotg->lock);

3252 3253 3254 3255
	return IRQ_HANDLED;
}

/**
3256
 * dwc2_hsotg_ep_enable - enable the given endpoint
3257 3258 3259 3260
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3261
 */
3262
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3263 3264
			       const struct usb_endpoint_descriptor *desc)
{
3265
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3266
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3267
	unsigned long flags;
3268
	unsigned int index = hs_ep->index;
3269 3270 3271
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3272
	u32 mc;
3273
	u32 mask;
3274 3275
	unsigned int dir_in;
	unsigned int i, val, size;
3276
	int ret = 0;
3277 3278 3279 3280 3281 3282 3283

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3284 3285 3286 3287
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3288 3289 3290 3291 3292 3293 3294

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3295
	mps = usb_endpoint_maxp(desc);
3296
	mc = usb_endpoint_maxp_mult(desc);
3297

3298
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3299

3300
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3301
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3302 3303 3304 3305

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			&hs_ep->desc_list_dma, GFP_KERNEL);
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3318
	spin_lock_irqsave(&hsotg->lock, flags);
3319

3320 3321
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3322

3323 3324 3325 3326
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3327
	epctrl |= DXEPCTL_USBACTEP;
3328 3329

	/* update the endpoint state */
3330
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3331 3332

	/* default, set to non-periodic */
3333
	hs_ep->isochronous = 0;
3334
	hs_ep->periodic = 0;
3335
	hs_ep->halted = 0;
3336
	hs_ep->interval = desc->bInterval;
3337

3338 3339
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3340 3341
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3342
		hs_ep->isochronous = 1;
3343
		hs_ep->interval = 1 << (desc->bInterval - 1);
3344 3345
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3346
			hs_ep->periodic = 1;
3347 3348 3349 3350 3351 3352 3353 3354
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3355
		break;
3356 3357

	case USB_ENDPOINT_XFER_BULK:
3358
		epctrl |= DXEPCTL_EPTYPE_BULK;
3359 3360 3361
		break;

	case USB_ENDPOINT_XFER_INT:
3362
		if (dir_in)
3363 3364
			hs_ep->periodic = 1;

3365 3366 3367
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3368
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3369 3370 3371
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3372
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3373 3374 3375
		break;
	}

3376 3377
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3378 3379
	 * a unique tx-fifo even if it is non-periodic.
	 */
3380
	if (dir_in && hsotg->dedicated_fifos) {
3381 3382
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3383
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3384
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3385 3386
			if (hsotg->fifo_map & (1<<i))
				continue;
3387
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3388 3389 3390
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3391 3392 3393 3394 3395
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3396
		}
3397
		if (!fifo_index) {
3398 3399
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3400
			ret = -ENOMEM;
3401
			goto error1;
3402
		}
3403 3404 3405 3406
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3407
	}
3408

3409
	/* for non control endpoints, set PID to D0 */
3410
	if (index && !hs_ep->isochronous)
3411
		epctrl |= DXEPCTL_SETD0PID;
3412 3413 3414 3415

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3416
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3417
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3418
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3419 3420

	/* enable the endpoint interrupt */
3421
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3422

3423
error1:
3424
	spin_unlock_irqrestore(&hsotg->lock, flags);
3425 3426 3427 3428 3429 3430 3431 3432 3433

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3434
	return ret;
3435 3436
}

3437
/**
3438
 * dwc2_hsotg_ep_disable - disable given endpoint
3439 3440
 * @ep: The endpoint to disable.
 */
3441
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3442
{
3443
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3444
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3445 3446 3447 3448 3449 3450
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3451
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3452

3453
	if (ep == &hsotg->eps_out[0]->ep) {
3454 3455 3456 3457
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3458 3459 3460 3461 3462 3463 3464 3465
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3466
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3467

3468
	spin_lock_irqsave(&hsotg->lock, flags);
3469

3470
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3471 3472 3473
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3474 3475

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3476
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3477 3478

	/* disable endpoint interrupts */
3479
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3480

3481 3482 3483
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3484 3485 3486 3487
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3488
	spin_unlock_irqrestore(&hsotg->lock, flags);
3489 3490 3491 3492 3493 3494 3495
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3496
 */
3497
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3498
{
3499
	struct dwc2_hsotg_req *req, *treq;
3500 3501 3502 3503 3504 3505 3506 3507 3508

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3544 3545
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3546 3547 3548

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3549
						GINTSTS_GOUTNAKEFF, 100))
3550
			dev_warn(hsotg->dev,
3551
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3576
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3577 3578 3579
	}
}

3580
/**
3581
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3582 3583 3584
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3585
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3586
{
3587 3588
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3589
	struct dwc2_hsotg *hs = hs_ep->parent;
3590 3591
	unsigned long flags;

3592
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3593

3594
	spin_lock_irqsave(&hs->lock, flags);
3595 3596

	if (!on_list(hs_ep, hs_req)) {
3597
		spin_unlock_irqrestore(&hs->lock, flags);
3598 3599 3600
		return -EINVAL;
	}

3601 3602 3603 3604
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3605
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3606
	spin_unlock_irqrestore(&hs->lock, flags);
3607 3608 3609 3610

	return 0;
}

3611
/**
3612
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3613 3614
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3615 3616 3617 3618 3619
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3620
 */
3621
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3622
{
3623
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3624
	struct dwc2_hsotg *hs = hs_ep->parent;
3625 3626 3627
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3628
	u32 xfertype;
3629 3630 3631

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3632 3633
	if (index == 0) {
		if (value)
3634
			dwc2_hsotg_stall_ep0(hs);
3635 3636 3637 3638 3639 3640
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3641 3642 3643 3644 3645
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3646 3647 3648 3649 3650 3651
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3652 3653
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3654
		epctl = dwc2_readl(hs->regs + epreg);
3655 3656

		if (value) {
3657
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3658 3659 3660 3661 3662 3663 3664 3665 3666
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3667
		dwc2_writel(epctl, hs->regs + epreg);
3668
	} else {
3669

3670
		epreg = DOEPCTL(index);
3671
		epctl = dwc2_readl(hs->regs + epreg);
3672

3673 3674 3675 3676 3677 3678 3679 3680 3681
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3682
		dwc2_writel(epctl, hs->regs + epreg);
3683
	}
3684

3685 3686
	hs_ep->halted = value;

3687 3688 3689
	return 0;
}

3690
/**
3691
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3692 3693 3694
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3695
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3696
{
3697
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3698
	struct dwc2_hsotg *hs = hs_ep->parent;
3699 3700 3701 3702
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3703
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3704 3705 3706 3707 3708
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3709 3710 3711 3712 3713 3714 3715 3716
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3717
	/* note, don't believe we have any call for the fifo routines */
3718 3719
};

3720
/**
3721
 * dwc2_hsotg_init - initalize the usb core
3722 3723
 * @hsotg: The driver state
 */
3724
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3725
{
3726
	u32 trdtim;
3727
	u32 usbcfg;
3728 3729
	/* unmask subset of endpoint interrupts */

3730 3731 3732
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3733

3734 3735 3736
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3737

3738
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3739 3740

	/* Be in disconnected state until gadget is registered */
3741
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3742 3743 3744 3745

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3746 3747
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3748

3749
	dwc2_hsotg_init_fifo(hsotg);
3750

3751 3752 3753 3754 3755
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3756
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3757
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3758 3759 3760
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3761

3762 3763
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3764 3765
}

3766
/**
3767
 * dwc2_hsotg_udc_start - prepare the udc for work
3768 3769 3770 3771 3772 3773
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3774
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3775
			   struct usb_gadget_driver *driver)
3776
{
3777
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3778
	unsigned long flags;
3779 3780 3781
	int ret;

	if (!hsotg) {
3782
		pr_err("%s: called with no device\n", __func__);
3783 3784 3785 3786 3787 3788 3789 3790
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3791
	if (driver->max_speed < USB_SPEED_FULL)
3792 3793
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3794
	if (!driver->setup) {
3795 3796 3797 3798 3799 3800 3801 3802
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3803
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3804 3805
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3806 3807 3808 3809
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3810 3811
	}

3812 3813
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3814

3815
	spin_lock_irqsave(&hsotg->lock, flags);
3816 3817 3818 3819 3820
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

3821
	hsotg->enabled = 0;
3822 3823
	spin_unlock_irqrestore(&hsotg->lock, flags);

3824
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3825

3826 3827 3828 3829 3830 3831 3832
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3833
/**
3834
 * dwc2_hsotg_udc_stop - stop the udc
3835 3836 3837 3838 3839
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3840
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3841
{
3842
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3843
	unsigned long flags = 0;
3844 3845 3846 3847 3848 3849
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3850 3851
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3852
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3853
		if (hsotg->eps_out[ep])
3854
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3855
	}
3856

3857 3858
	spin_lock_irqsave(&hsotg->lock, flags);

3859
	hsotg->driver = NULL;
3860
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3861
	hsotg->enabled = 0;
3862

3863 3864
	spin_unlock_irqrestore(&hsotg->lock, flags);

3865 3866
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3867

3868 3869
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3870 3871 3872 3873

	return 0;
}

3874
/**
3875
 * dwc2_hsotg_gadget_getframe - read the frame number
3876 3877 3878 3879
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3880
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3881
{
3882
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3883 3884
}

3885
/**
3886
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3887 3888 3889 3890 3891
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3892
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3893
{
3894
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3895 3896
	unsigned long flags = 0;

3897 3898 3899 3900 3901 3902 3903 3904
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3905 3906 3907

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3908
		hsotg->enabled = 1;
3909 3910
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3911
	} else {
3912 3913
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3914
		hsotg->enabled = 0;
3915 3916 3917 3918 3919 3920 3921 3922
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3923
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3924 3925 3926 3927 3928 3929 3930
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3931 3932 3933 3934 3935 3936 3937
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3938
	if (is_active) {
3939
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3940

3941
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3942
		if (hsotg->enabled)
3943
			dwc2_hsotg_core_connect(hsotg);
3944
	} else {
3945 3946
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3947 3948 3949 3950 3951 3952
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3953
/**
3954
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3955 3956 3957 3958 3959
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3960
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3961 3962 3963 3964 3965 3966 3967 3968
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3969 3970 3971 3972 3973 3974 3975
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3976 3977 3978
};

/**
3979
 * dwc2_hsotg_initep - initialise a single endpoint
3980 3981 3982 3983 3984 3985 3986 3987
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3988 3989
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3990 3991
				       int epnum,
				       bool dir_in)
3992 3993 3994 3995 3996
{
	char *dir;

	if (epnum == 0)
		dir = "";
3997
	else if (dir_in)
3998
		dir = "in";
3999 4000
	else
		dir = "out";
4001

4002
	hs_ep->dir_in = dir_in;
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4016
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
4017
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4032 4033
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4034 4035 4036 4037
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4038
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4039
		if (dir_in)
4040
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4041
		else
4042
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4043 4044 4045
	}
}

4046
/**
4047
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4048 4049 4050 4051
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4052
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4053
{
4054 4055 4056 4057
	u32 cfg;
	u32 ep_type;
	u32 i;

4058
	/* check hardware configuration */
4059

4060 4061
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4062 4063
	/* Add ep0 */
	hsotg->num_of_eps++;
4064

4065
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4066 4067 4068
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4069
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4070 4071
	hsotg->eps_out[0] = hsotg->eps_in[0];

4072
	cfg = hsotg->hw_params.dev_ep_dirs;
4073
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4074 4075 4076 4077
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4078
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4079 4080 4081 4082 4083 4084
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4085
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4086 4087 4088 4089 4090
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4091 4092
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4093

4094 4095 4096 4097
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4098
	return 0;
4099 4100
}

4101
/**
4102
 * dwc2_hsotg_dump - dump state of the udc
4103 4104
 * @param: The device state
 */
4105
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4106
{
M
Mark Brown 已提交
4107
#ifdef DEBUG
4108 4109 4110 4111 4112 4113
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4114 4115
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4116

4117
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4118
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4119 4120

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4121
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4122 4123 4124

	/* show periodic fifo settings */

4125
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4126
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4127
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4128 4129
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4130 4131
	}

4132
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4133 4134
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4135 4136 4137
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4138

4139
		val = dwc2_readl(regs + DOEPCTL(idx));
4140 4141
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4142 4143 4144
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4145 4146 4147 4148

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4149
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4150
#endif
4151 4152
}

4153
/**
4154 4155 4156
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4157
 */
4158
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4159
{
4160
	struct device *dev = hsotg->dev;
4161 4162
	int epnum;
	int ret;
4163

4164 4165
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4166 4167
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4168

4169
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4170
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4171
	hsotg->gadget.name = dev_name(dev);
4172 4173
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4174 4175
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4176

4177
	ret = dwc2_hsotg_hw_cfg(hsotg);
4178 4179
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4180
		return ret;
4181 4182
	}

4183 4184
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4185
	if (!hsotg->ctrl_buff)
4186
		return -ENOMEM;
4187 4188 4189

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4190
	if (!hsotg->ep0_buff)
4191
		return -ENOMEM;
4192

4193 4194 4195 4196 4197 4198
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4199
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4200
				dev_name(hsotg->dev), hsotg);
4201
	if (ret < 0) {
4202
		dev_err(dev, "cannot claim IRQ for gadget\n");
4203
		return ret;
4204 4205
	}

4206 4207 4208 4209
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4210
		return -EINVAL;
4211 4212 4213 4214 4215
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4216
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4217 4218 4219

	/* allocate EP0 request */

4220
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4221 4222 4223
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4224
		return -ENOMEM;
4225
	}
4226 4227

	/* initialise the endpoints now the core has been initialised */
4228 4229
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4230
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4231 4232
								epnum, 1);
		if (hsotg->eps_out[epnum])
4233
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4234 4235
								epnum, 0);
	}
4236

4237
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4238
	if (ret)
4239
		return ret;
4240

4241
	dwc2_hsotg_dump(hsotg);
4242 4243 4244 4245

	return 0;
}

4246
/**
4247
 * dwc2_hsotg_remove - remove function for hsotg driver
4248 4249
 * @pdev: The platform information for the driver
 */
4250
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4251
{
4252
	usb_del_gadget_udc(&hsotg->gadget);
4253

4254 4255 4256
	return 0;
}

4257
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4258 4259 4260
{
	unsigned long flags;

4261
	if (hsotg->lx_state != DWC2_L0)
4262
		return 0;
4263

4264 4265 4266
	if (hsotg->driver) {
		int ep;

4267 4268 4269
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4270 4271
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4272 4273
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4274 4275
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4276

4277 4278
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4279
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4280
			if (hsotg->eps_out[ep])
4281
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4282
		}
4283 4284
	}

4285
	return 0;
4286 4287
}

4288
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4289 4290 4291
{
	unsigned long flags;

4292
	if (hsotg->lx_state == DWC2_L2)
4293
		return 0;
4294

4295 4296 4297
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4298

4299
		spin_lock_irqsave(&hsotg->lock, flags);
4300
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4301
		if (hsotg->enabled)
4302
			dwc2_hsotg_core_connect(hsotg);
4303 4304
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4305

4306
	return 0;
4307
}
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}