gadget.c 113.7 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

375
/**
376
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
377 378 379 380 381 382 383 384 385 386 387 388 389
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
390
 */
391 392 393
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
394 395
{
	bool periodic = is_ep_periodic(hs_ep);
396
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
397 398 399 400 401
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
402
	int max_transfer;
403 404 405 406 407 408 409

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

410
	if (periodic && !hsotg->dedicated_fifos) {
411
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
412 413 414
		int size_left;
		int size_done;

415 416 417 418
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
419

420
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
421

422 423
		/*
		 * if shared fifo, we cannot write anything until the
424 425 426
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
427
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
428 429 430
			return -ENOSPC;
		}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
448
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
449 450
			return -ENOSPC;
		}
451
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
452 453
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
454 455 456

		can_write &= 0xffff;
		can_write *= 4;
457
	} else {
458
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
459 460 461 462
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

463
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
464 465 466
			return -ENOSPC;
		}

467
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
468
		can_write *= 4;	/* fifo size is in 32bit quantities. */
469 470
	}

471 472 473 474
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
475

476 477
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
478 479 480
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
481
	if (can_write > 512 && !periodic)
482 483
		can_write = 512;

484 485
	/*
	 * limit the write to one max-packet size worth of data, but allow
486
	 * the transfer to return that it did not run out of fifo space
487 488
	 * doing it.
	 */
489 490
	if (to_write > max_transfer) {
		to_write = max_transfer;
491

492 493
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
494
			dwc2_hsotg_en_gsint(hsotg,
495 496
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
497 498
	}

499 500 501 502
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
503
		pkt_round = to_write % max_transfer;
504

505 506
		/*
		 * Round the write down to an
507 508 509 510 511 512 513 514 515
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

516 517 518 519
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
520

521 522
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
523
			dwc2_hsotg_en_gsint(hsotg,
524 525
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

543
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
544 545 546 547 548 549 550 551 552 553 554

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
555
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
556 557 558 559 560 561
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
562 563
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
564
	} else {
565
		maxsize = 64+64;
566
		if (hs_ep->dir_in)
567
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
568
		else
569 570 571 572 573 574 575
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

576 577 578 579
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
580 581 582 583 584 585 586

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

738
/**
739
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
740 741 742 743 744 745 746 747
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
748 749 750
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
751 752 753 754 755 756 757 758 759 760 761 762
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;
763
	unsigned int dma_reg;
764 765 766 767 768 769 770 771 772 773 774 775 776 777

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

778
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
779 780
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
781 782

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
783
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
784 785
		hs_ep->dir_in ? "in" : "out");

786
	/* If endpoint is stalled, we will restart request later */
787
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
788

789
	if (index && ctrl & DXEPCTL_STALL) {
790 791 792 793
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

794
	length = ureq->length - ureq->actual;
795 796
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
797

798 799 800 801 802
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

821 822 823 824 825
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

826
	if (dir_in && index != 0)
827
		if (hs_ep->isochronous)
828
			epsize = DXEPTSIZ_MC(packets);
829
		else
830
			epsize = DXEPTSIZ_MC(1);
831 832 833
	else
		epsize = 0;

834 835 836 837 838 839 840 841
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
842
			hs_ep->send_zlp = 1;
843 844
	}

845 846
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
847 848 849 850 851 852 853

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

854 855 856 857 858 859 860 861 862 863 864
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
865

866
		/*
867 868 869
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
870
		 */
871 872 873 874 875 876 877 878 879 880
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
881

882 883 884 885 886 887 888 889 890 891 892
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

		if (using_dma(hsotg) && !continuing) {
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
893

894 895 896 897 898
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
899 900
	}

901 902 903 904 905 906 907 908 909 910
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

911
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
912

913
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
914 915

	/* For Setup request do not clear NAK */
916
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
917
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
918

919
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
920
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
921

922 923
	/*
	 * set these, it seems that DMA support increments past the end
924
	 * of the packet buffer so we need to calculate the length from
925 926
	 * this information.
	 */
927 928 929 930 931 932 933
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

934
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
935 936
	}

937 938 939 940
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
941 942

	/* check ep is enabled */
943
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
944
		dev_dbg(hsotg->dev,
945
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
946
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
947

948
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
949
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
950 951

	/* enable ep interrupts */
952
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
953 954 955
}

/**
956
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
957 958 959 960 961 962 963 964 965
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
966
 */
967 968
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
969 970
			     struct usb_request *req)
{
971
	struct dwc2_hsotg_req *hs_req = our_req(req);
972
	int ret;
973 974 975 976 977

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

978 979 980
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
981 982 983 984 985 986 987 988 989 990

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

991 992
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1022 1023
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1103
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1104 1105
			      gfp_t gfp_flags)
{
1106 1107
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1108
	struct dwc2_hsotg *hs = hs_ep->parent;
1109
	bool first;
1110
	int ret;
1111 1112 1113 1114 1115

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1116 1117 1118 1119 1120 1121 1122
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

1123 1124 1125 1126 1127
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1128
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1129 1130 1131
	if (ret)
		return ret;

1132 1133
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1134
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1135 1136 1137
		if (ret)
			return ret;
	}
1138 1139 1140 1141 1142 1143
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1144 1145 1146 1147

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1148 1149 1150 1151 1152 1153 1154 1155
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1156

1157 1158 1159
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1160 1161 1162
	return 0;
}

1163
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1164 1165
			      gfp_t gfp_flags)
{
1166
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1167
	struct dwc2_hsotg *hs = hs_ep->parent;
1168 1169 1170 1171
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1172
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1173 1174 1175 1176 1177
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1178
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1179 1180
				      struct usb_request *req)
{
1181
	struct dwc2_hsotg_req *hs_req = our_req(req);
1182 1183 1184 1185 1186

	kfree(hs_req);
}

/**
1187
 * dwc2_hsotg_complete_oursetup - setup completion callback
1188 1189 1190 1191 1192 1193
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1194
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1195 1196
					struct usb_request *req)
{
1197
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1198
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1199 1200 1201

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1202
	dwc2_hsotg_ep_free_request(ep, req);
1203 1204 1205 1206 1207 1208 1209 1210 1211
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1212
 */
1213
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1214 1215
					   u32 windex)
{
1216
	struct dwc2_hsotg_ep *ep;
1217 1218 1219 1220 1221 1222
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1223
	if (idx > hsotg->num_of_eps)
1224 1225
		return NULL;

1226 1227
	ep = index_to_ep(hsotg, idx, dir);

1228 1229 1230 1231 1232 1233
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1234
/**
1235
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1236 1237 1238 1239
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1240
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1241
{
1242
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1256
	dwc2_writel(dctl, hsotg->regs + DCTL);
1257 1258 1259
	return 0;
}

1260
/**
1261
 * dwc2_hsotg_send_reply - send reply to control request
1262 1263 1264 1265 1266 1267 1268 1269
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1270 1271
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1272 1273 1274 1275 1276 1277 1278 1279
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1280
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1281 1282 1283 1284 1285 1286 1287 1288
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1289 1290 1291 1292 1293
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1294
	req->complete = dwc2_hsotg_complete_oursetup;
1295 1296 1297 1298

	if (length)
		memcpy(req->buf, buff, length);

1299
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1309
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1310 1311 1312
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1313
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1314 1315
					struct usb_ctrlrequest *ctrl)
{
1316 1317
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1354
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1355 1356 1357 1358 1359 1360 1361 1362
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1363
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1364

1365 1366 1367 1368 1369 1370
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1371
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1372
{
1373 1374
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1413
/**
1414
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1415 1416 1417
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1418
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1419 1420
					 struct usb_ctrlrequest *ctrl)
{
1421 1422
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1423
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1424
	struct dwc2_hsotg_ep *ep;
1425
	int ret;
1426
	bool halted;
1427 1428 1429
	u32 recip;
	u32 wValue;
	u32 wIndex;
1430 1431 1432 1433

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1448
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1462 1463
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1464
				__func__, wIndex);
1465 1466 1467
			return -ENOENT;
		}

1468
		switch (wValue) {
1469
		case USB_ENDPOINT_HALT:
1470 1471
			halted = ep->halted;

1472
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1473

1474
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1475 1476 1477 1478 1479
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1480

1481 1482 1483 1484 1485 1486
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1487 1488 1489 1490 1491 1492 1493 1494
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1495 1496 1497 1498 1499 1500
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1501 1502 1503
				}

				/* If we have pending request, then start it */
1504
				if (!ep->req) {
1505
					dwc2_gadget_start_next_request(ep);
1506 1507 1508
				}
			}

1509 1510 1511 1512 1513
			break;

		default:
			return -ENOENT;
		}
1514 1515 1516 1517
		break;
	default:
		return -ENOENT;
	}
1518 1519 1520
	return 1;
}

1521
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1522

1523
/**
1524
 * dwc2_hsotg_stall_ep0 - stall ep0
1525 1526 1527 1528
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1529
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1530
{
1531
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1543
	ctrl = dwc2_readl(hsotg->regs + reg);
1544 1545
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1546
	dwc2_writel(ctrl, hsotg->regs + reg);
1547 1548

	dev_dbg(hsotg->dev,
1549
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1550
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1551 1552 1553 1554 1555

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1556
	 dwc2_hsotg_enqueue_setup(hsotg);
1557 1558
}

1559
/**
1560
 * dwc2_hsotg_process_control - process a control request
1561 1562 1563 1564 1565 1566 1567
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1568
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1569 1570
				      struct usb_ctrlrequest *ctrl)
{
1571
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1572 1573 1574
	int ret = 0;
	u32 dcfg;

1575 1576 1577 1578
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1579

1580 1581 1582 1583
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1584
		ep0->dir_in = 1;
1585 1586 1587 1588 1589
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1590 1591 1592 1593

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1594
			hsotg->connected = 1;
1595
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1596
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1597 1598
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1599
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1600 1601 1602

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1603
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1604 1605 1606
			return;

		case USB_REQ_GET_STATUS:
1607
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1608 1609 1610 1611
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1612
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1613 1614 1615 1616 1617 1618 1619
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1620
		spin_unlock(&hsotg->lock);
1621
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1622
		spin_lock(&hsotg->lock);
1623 1624 1625 1626
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1627 1628
	/*
	 * the request is either unhandlable, or is not formatted correctly
1629 1630 1631
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1632
	if (ret < 0)
1633
		dwc2_hsotg_stall_ep0(hsotg);
1634 1635 1636
}

/**
1637
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1638 1639 1640 1641 1642 1643
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1644
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1645 1646
				     struct usb_request *req)
{
1647
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1648
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1649 1650 1651 1652 1653 1654

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1655
	spin_lock(&hsotg->lock);
1656
	if (req->actual == 0)
1657
		dwc2_hsotg_enqueue_setup(hsotg);
1658
	else
1659
		dwc2_hsotg_process_control(hsotg, req->buf);
1660
	spin_unlock(&hsotg->lock);
1661 1662 1663
}

/**
1664
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1665 1666 1667 1668 1669
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1670
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1671 1672
{
	struct usb_request *req = hsotg->ctrl_req;
1673
	struct dwc2_hsotg_req *hs_req = our_req(req);
1674 1675 1676 1677 1678 1679 1680
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1681
	req->complete = dwc2_hsotg_complete_setup;
1682 1683 1684 1685 1686 1687

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1688
	hsotg->eps_out[0]->dir_in = 0;
1689
	hsotg->eps_out[0]->send_zlp = 0;
1690
	hsotg->ep0_state = DWC2_EP0_SETUP;
1691

1692
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1693 1694
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1695 1696 1697 1698
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1699 1700 1701
	}
}

1702 1703
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1704 1705 1706 1707 1708 1709
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1710 1711
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1712
			index);
1713 1714
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1715 1716 1717 1718
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1719

1720 1721 1722 1723 1724 1725 1726
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1727

1728
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1729 1730 1731
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1732
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1733 1734
}

1735
/**
1736
 * dwc2_hsotg_complete_request - complete a request given to us
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1747
 */
1748 1749 1750
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1762 1763 1764 1765
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1766 1767 1768 1769

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1770 1771 1772
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1773
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1774

1775 1776 1777
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1778 1779 1780 1781
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1782 1783

	if (hs_req->req.complete) {
1784
		spin_unlock(&hsotg->lock);
1785
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1786
		spin_lock(&hsotg->lock);
1787 1788
	}

1789 1790
	/*
	 * Look to see if there is anything else to do. Note, the completion
1791
	 * of the previous request may have caused a new request to be started
1792 1793
	 * so be careful when doing this.
	 */
1794 1795

	if (!hs_ep->req && result >= 0) {
1796
		dwc2_gadget_start_next_request(hs_ep);
1797 1798 1799 1800
	}
}

/**
1801
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1802 1803 1804 1805 1806 1807 1808 1809
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1810
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1811
{
1812 1813
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1814
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1815 1816 1817 1818
	int to_read;
	int max_req;
	int read_ptr;

1819

1820
	if (!hs_req) {
1821
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1822 1823
		int ptr;

1824
		dev_dbg(hsotg->dev,
1825
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1826 1827 1828 1829
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1830
			(void)dwc2_readl(fifo);
1831 1832 1833 1834 1835 1836 1837 1838

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1839 1840 1841
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1842
	if (to_read > max_req) {
1843 1844
		/*
		 * more data appeared than we where willing
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1856 1857 1858 1859
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1860
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1861 1862 1863
}

/**
1864
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1865
 * @hsotg: The device instance
1866
 * @dir_in: If IN zlp
1867 1868 1869 1870 1871
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1872
 * currently believed that we do not need to wait for any space in
1873 1874
 * the TxFIFO.
 */
1875
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1876
{
1877
	/* eps_out[0] is used in both directions */
1878 1879
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1880

1881
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

1927
/**
1928
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1929 1930 1931 1932 1933 1934
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1935
 */
1936
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1937
{
1938
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1939 1940
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1941
	struct usb_request *req = &hs_req->req;
1942
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1943 1944 1945 1946 1947 1948 1949
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1950 1951
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1952 1953
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1954 1955 1956
		return;
	}

1957 1958 1959
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

1960 1961 1962
	if (using_dma(hsotg)) {
		unsigned size_done;

1963 1964
		/*
		 * Calculate the size of the transfer by checking how much
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1978 1979
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1980
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1981 1982 1983
		return;
	}

1984 1985 1986 1987
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1988 1989 1990 1991
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1992 1993
	}

1994 1995 1996
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1997
		/* Move to STATUS IN */
1998
		dwc2_hsotg_ep0_zlp(hsotg, true);
1999
		return;
2000 2001
	}

2002 2003 2004 2005 2006 2007 2008
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2009 2010
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2011 2012
	}

2013
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2014 2015 2016
}

/**
2017
 * dwc2_hsotg_handle_rx - RX FIFO has data
2018 2019 2020 2021 2022 2023
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2024
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2025 2026 2027 2028 2029 2030 2031
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2032
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2033
{
2034
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2035 2036 2037 2038
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2039 2040
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2041

2042 2043
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2044

2045
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2046 2047
			__func__, grxstsr, size, epnum);

2048 2049 2050
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2051 2052
		break;

2053
	case GRXSTS_PKTSTS_OUTDONE:
2054
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2055
			dwc2_hsotg_read_frameno(hsotg));
2056 2057

		if (!using_dma(hsotg))
2058
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2059 2060
		break;

2061
	case GRXSTS_PKTSTS_SETUPDONE:
2062 2063
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2064
			dwc2_hsotg_read_frameno(hsotg),
2065
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2066
		/*
2067
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2068 2069 2070 2071
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2072
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2073 2074
		break;

2075
	case GRXSTS_PKTSTS_OUTRX:
2076
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2077 2078
		break;

2079
	case GRXSTS_PKTSTS_SETUPRX:
2080 2081
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2082
			dwc2_hsotg_read_frameno(hsotg),
2083
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2084

2085 2086
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2087
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2088 2089 2090 2091 2092 2093
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2094
		dwc2_hsotg_dump(hsotg);
2095 2096 2097 2098 2099
		break;
	}
}

/**
2100
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2101
 * @mps: The maximum packet size in bytes.
2102
 */
2103
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2104 2105 2106
{
	switch (mps) {
	case 64:
2107
		return D0EPCTL_MPS_64;
2108
	case 32:
2109
		return D0EPCTL_MPS_32;
2110
	case 16:
2111
		return D0EPCTL_MPS_16;
2112
	case 8:
2113
		return D0EPCTL_MPS_8;
2114 2115 2116 2117 2118 2119 2120 2121
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2122
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2123 2124 2125
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2126
 * @mc: The multicount value
2127 2128 2129 2130
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2131
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2132 2133
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2134
{
2135
	struct dwc2_hsotg_ep *hs_ep;
2136 2137 2138
	void __iomem *regs = hsotg->regs;
	u32 reg;

2139 2140 2141 2142
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2143
	if (ep == 0) {
2144 2145
		u32 mps_bytes = mps;

2146
		/* EP0 is a special case */
2147 2148
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2149
			goto bad_mps;
2150
		hs_ep->ep.maxpacket = mps_bytes;
2151
		hs_ep->mc = 1;
2152
	} else {
2153
		if (mps > 1024)
2154
			goto bad_mps;
2155 2156
		hs_ep->mc = mc;
		if (mc > 3)
2157
			goto bad_mps;
2158
		hs_ep->ep.maxpacket = mps;
2159 2160
	}

2161
	if (dir_in) {
2162
		reg = dwc2_readl(regs + DIEPCTL(ep));
2163
		reg &= ~DXEPCTL_MPS_MASK;
2164
		reg |= mps;
2165
		dwc2_writel(reg, regs + DIEPCTL(ep));
2166
	} else {
2167
		reg = dwc2_readl(regs + DOEPCTL(ep));
2168
		reg &= ~DXEPCTL_MPS_MASK;
2169
		reg |= mps;
2170
		dwc2_writel(reg, regs + DOEPCTL(ep));
2171
	}
2172 2173 2174 2175 2176 2177 2178

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2179
/**
2180
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2181 2182 2183
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2184
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2185 2186 2187 2188
{
	int timeout;
	int val;

2189 2190
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2191 2192 2193 2194 2195

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2196
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2197

2198
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2199 2200 2201 2202 2203 2204
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2205
			break;
2206 2207 2208 2209 2210
		}

		udelay(1);
	}
}
2211 2212

/**
2213
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2214 2215 2216 2217 2218 2219
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2220 2221
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
2222
{
2223
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2224

2225 2226 2227 2228 2229 2230
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2231
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2232
					     hs_ep->dir_in, 0);
2233
		return 0;
2234
	}
2235 2236 2237 2238

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2239
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2240 2241 2242 2243 2244 2245
	}

	return 0;
}

/**
2246
 * dwc2_hsotg_complete_in - complete IN transfer
2247 2248 2249 2250 2251 2252
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2253 2254
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2255
{
2256
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2257
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2258 2259 2260 2261 2262 2263 2264
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2265
	/* Finish ZLP handling for IN EP0 transactions */
2266 2267
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2268
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2269 2270 2271
		if (hsotg->test_mode) {
			int ret;

2272
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2273 2274 2275
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2276
				dwc2_hsotg_stall_ep0(hsotg);
2277 2278 2279
				return;
			}
		}
2280
		dwc2_hsotg_enqueue_setup(hsotg);
2281 2282 2283
		return;
	}

2284 2285
	/*
	 * Calculate the size of the transfer by checking how much is left
2286 2287 2288 2289 2290 2291 2292
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2293 2294 2295 2296 2297 2298 2299 2300
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2301 2302 2303 2304 2305 2306 2307 2308 2309

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2310 2311 2312
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2313 2314
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2315
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2316 2317 2318
		return;
	}

2319
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2320
	if (hs_ep->send_zlp) {
2321
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2322
		hs_ep->send_zlp = 0;
2323 2324 2325 2326
		/* transfer will be completed on next complete interrupt */
		return;
	}

2327 2328
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2329
		dwc2_hsotg_ep0_zlp(hsotg, false);
2330 2331 2332
		return;
	}

2333
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2520
/**
2521
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2522 2523 2524 2525 2526
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2527
 */
2528
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2529 2530
			    int dir_in)
{
2531
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2532 2533 2534
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2535
	u32 ints;
2536
	u32 ctrl;
2537

2538
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2539
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2540

2541
	/* Clear endpoint interrupts */
2542
	dwc2_writel(ints, hsotg->regs + epint_reg);
2543

2544 2545 2546 2547 2548 2549
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2550 2551 2552
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2553 2554 2555 2556
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2557
	if (ints & DXEPINT_XFERCOMPL) {
2558
		dev_dbg(hsotg->dev,
2559
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2560 2561
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2562

2563 2564 2565 2566
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2567
		if (dir_in) {
2568 2569 2570
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2571
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2572 2573
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2574

2575
			if (idx == 0 && !hs_ep->req)
2576
				dwc2_hsotg_enqueue_setup(hsotg);
2577
		} else if (using_dma(hsotg)) {
2578 2579 2580 2581
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2582 2583
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2584

2585
			dwc2_hsotg_handle_outdone(hsotg, idx);
2586 2587 2588
		}
	}

2589 2590
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2591

2592 2593 2594 2595 2596 2597
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2598
	if (ints & DXEPINT_AHBERR)
2599 2600
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2601
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2602 2603 2604
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2605 2606
			/*
			 * this is the notification we've received a
2607 2608
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2609 2610
			 * the setup here.
			 */
2611 2612 2613 2614

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2615
				dwc2_hsotg_handle_outdone(hsotg, 0);
2616 2617 2618
		}
	}

2619
	if (ints & DXEPINT_STSPHSERCVD) {
2620 2621
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2622 2623 2624 2625 2626
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2627
	if (ints & DXEPINT_BACK2BACKSETUP)
2628 2629
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2630
	if (dir_in && !hs_ep->isochronous) {
2631
		/* not sure if this is important, but we'll clear it anyway */
2632
		if (ints & DXEPINT_INTKNTXFEMP) {
2633 2634 2635 2636 2637
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2638
		if (ints & DXEPINT_INTKNEPMIS) {
2639 2640 2641
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2642 2643 2644

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2645
		    ints & DXEPINT_TXFEMP) {
2646 2647
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2648
			if (!using_dma(hsotg))
2649
				dwc2_hsotg_trytx(hsotg, hs_ep);
2650
		}
2651 2652 2653 2654
	}
}

/**
2655
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2656 2657 2658 2659
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2660
 */
2661
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2662
{
2663
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2664
	int ep0_mps = 0, ep_mps = 8;
2665

2666 2667
	/*
	 * This should signal the finish of the enumeration phase
2668
	 * of the USB handshaking, so we should now know what rate
2669 2670
	 * we connected at.
	 */
2671 2672 2673

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2674 2675
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2676
	 * it seems IN transfers must be a even number of packets we do
2677 2678
	 * not advertise a 64byte MPS on EP0.
	 */
2679 2680

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2681
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2682 2683
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2684 2685
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2686
		ep_mps = 1023;
2687 2688
		break;

2689
	case DSTS_ENUMSPD_HS:
2690 2691
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2692
		ep_mps = 1024;
2693 2694
		break;

2695
	case DSTS_ENUMSPD_LS:
2696
		hsotg->gadget.speed = USB_SPEED_LOW;
2697 2698
		/*
		 * note, we don't actually support LS in this driver at the
2699 2700 2701 2702 2703
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2704 2705
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2706

2707 2708 2709 2710
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2711 2712 2713

	if (ep0_mps) {
		int i;
2714
		/* Initialize ep0 for both in and out directions */
2715 2716
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
2717 2718
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2719 2720
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
2721
			if (hsotg->eps_out[i])
2722 2723
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
2724
		}
2725 2726 2727 2728
	}

	/* ensure after enumeration our EP0 is active */

2729
	dwc2_hsotg_enqueue_setup(hsotg);
2730 2731

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2732 2733
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2745
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2746
			      struct dwc2_hsotg_ep *ep,
2747
			      int result)
2748
{
2749
	struct dwc2_hsotg_req *req, *treq;
2750
	unsigned size;
2751

2752
	ep->req = NULL;
2753

2754
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2755
		dwc2_hsotg_complete_request(hsotg, ep, req,
2756
					   result);
2757

2758 2759
	if (!hsotg->dedicated_fifos)
		return;
2760
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2761
	if (size < ep->fifo_size)
2762
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2763 2764 2765
}

/**
2766
 * dwc2_hsotg_disconnect - disconnect service
2767 2768
 * @hsotg: The device state.
 *
2769 2770 2771
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2772
 */
2773
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2774 2775 2776
{
	unsigned ep;

2777 2778 2779 2780
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2781
	hsotg->test_mode = 0;
2782 2783 2784 2785 2786 2787 2788 2789 2790

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2791 2792

	call_gadget(hsotg, disconnect);
2793
	hsotg->lx_state = DWC2_L3;
2794 2795 2796
}

/**
2797
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2798 2799 2800
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2801
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2802
{
2803
	struct dwc2_hsotg_ep *ep;
2804 2805 2806
	int epno, ret;

	/* look through for any more data to transmit */
2807
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2808 2809 2810 2811
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2812 2813 2814 2815 2816 2817 2818 2819

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2820
		ret = dwc2_hsotg_trytx(hsotg, ep);
2821 2822 2823 2824 2825 2826
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2827 2828 2829
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2830

2831
/**
2832
 * dwc2_hsotg_core_init - issue softreset to the core
2833 2834 2835 2836
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2837
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2838
						bool is_usb_reset)
2839
{
2840
	u32 intmsk;
2841
	u32 val;
2842
	u32 usbcfg;
2843

2844 2845 2846
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2847
	if (!is_usb_reset)
2848
		if (dwc2_core_reset(hsotg))
2849
			return;
2850 2851 2852 2853 2854 2855

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2856 2857 2858 2859 2860
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2861
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2862
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2863 2864 2865
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2866

2867
	dwc2_hsotg_init_fifo(hsotg);
2868

2869 2870
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2871

2872
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2873 2874

	/* Clear any pending OTG interrupts */
2875
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2876 2877

	/* Clear any pending interrupts */
2878
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2879
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2880
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2881 2882
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2883 2884 2885 2886
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2887

2888
	if (hsotg->params.external_id_pin_ctl <= 0)
2889 2890 2891
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2892

2893
	if (using_dma(hsotg)) {
2894 2895 2896
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2897 2898 2899 2900 2901 2902

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
2903 2904 2905 2906
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2907
	}
2908 2909

	/*
2910 2911 2912
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2913 2914
	 */

2915
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2916
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2917
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2918
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2919
		hsotg->regs + DIEPMSK);
2920 2921 2922

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2923
	 * DMA mode we may need this and StsPhseRcvd.
2924
	 */
2925 2926
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
2927
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2928
		DOEPMSK_SETUPMSK,
2929
		hsotg->regs + DOEPMSK);
2930

2931
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2932 2933

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2934 2935
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2936 2937

	/* enable in and out endpoint interrupts */
2938
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2939 2940 2941 2942 2943 2944 2945

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2946
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2947 2948

	/* Enable interrupts for EP0 in and out */
2949 2950
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2951

2952 2953 2954 2955 2956
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2957

2958
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2959 2960

	/*
2961
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2962 2963 2964 2965
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2966
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2967
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2968

2969
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2970 2971
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2972
	       hsotg->regs + DOEPCTL0);
2973 2974

	/* enable, but don't activate EP0in */
2975
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2976
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2977

2978
	dwc2_hsotg_enqueue_setup(hsotg);
2979 2980

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2981 2982
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2983 2984

	/* clear global NAKs */
2985 2986 2987 2988
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2989 2990 2991 2992

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2993
	hsotg->lx_state = DWC2_L0;
2994 2995
}

2996
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2997 2998 2999 3000
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3001

3002
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3003
{
3004
	/* remove the soft-disconnect and let's go */
3005
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3087
/**
3088
 * dwc2_hsotg_irq - handle device interrupt
3089 3090 3091
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3092
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3093
{
3094
	struct dwc2_hsotg *hsotg = pw;
3095 3096 3097 3098
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3099 3100 3101
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3102
	spin_lock(&hsotg->lock);
3103
irq_retry:
3104 3105
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3106 3107 3108 3109 3110 3111

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3142
	if (gintsts & GINTSTS_ENUMDONE) {
3143
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3144

3145
		dwc2_hsotg_irq_enumdone(hsotg);
3146 3147
	}

3148
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3149 3150
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3151
		u32 daint_out, daint_in;
3152 3153
		int ep;

3154
		daint &= daintmsk;
3155 3156
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3157

3158 3159
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3160 3161
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3162
			if (daint_out & 1)
3163
				dwc2_hsotg_epint(hsotg, ep, 0);
3164 3165
		}

3166 3167
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3168
			if (daint_in & 1)
3169
				dwc2_hsotg_epint(hsotg, ep, 1);
3170 3171 3172 3173 3174
		}
	}

	/* check both FIFOs */

3175
	if (gintsts & GINTSTS_NPTXFEMP) {
3176 3177
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3178 3179
		/*
		 * Disable the interrupt to stop it happening again
3180
		 * unless one of these endpoint routines decides that
3181 3182
		 * it needs re-enabling
		 */
3183

3184 3185
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3186 3187
	}

3188
	if (gintsts & GINTSTS_PTXFEMP) {
3189 3190
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3191
		/* See note in GINTSTS_NPTxFEmp */
3192

3193 3194
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3195 3196
	}

3197
	if (gintsts & GINTSTS_RXFLVL) {
3198 3199
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3200
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3201 3202
		 * set.
		 */
3203

3204
		dwc2_hsotg_handle_rx(hsotg);
3205 3206
	}

3207
	if (gintsts & GINTSTS_ERLYSUSP) {
3208
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3209
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3210 3211
	}

3212 3213
	/*
	 * these next two seem to crop-up occasionally causing the core
3214
	 * to shutdown the USB transfer, so try clearing them and logging
3215 3216
	 * the occurrence.
	 */
3217

3218
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3240

3241
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3242 3243
	}

3244
	if (gintsts & GINTSTS_GINNAKEFF) {
3245 3246
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3247
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3248

3249
		dwc2_hsotg_dump(hsotg);
3250 3251
	}

3252 3253
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3254

3255 3256
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3257

3258 3259 3260 3261
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3262 3263 3264 3265

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3266 3267
	spin_unlock(&hsotg->lock);

3268 3269 3270 3271
	return IRQ_HANDLED;
}

/**
3272
 * dwc2_hsotg_ep_enable - enable the given endpoint
3273 3274 3275 3276
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3277
 */
3278
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3279 3280
			       const struct usb_endpoint_descriptor *desc)
{
3281
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3282
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3283
	unsigned long flags;
3284
	unsigned int index = hs_ep->index;
3285 3286 3287
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3288
	u32 mc;
3289
	u32 mask;
3290 3291
	unsigned int dir_in;
	unsigned int i, val, size;
3292
	int ret = 0;
3293 3294 3295 3296 3297 3298 3299

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3300 3301 3302 3303
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3304 3305 3306 3307 3308 3309 3310

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3311
	mps = usb_endpoint_maxp(desc);
3312
	mc = usb_endpoint_maxp_mult(desc);
3313

3314
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3315

3316
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3317
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3318 3319 3320 3321

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			&hs_ep->desc_list_dma, GFP_KERNEL);
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3334
	spin_lock_irqsave(&hsotg->lock, flags);
3335

3336 3337
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3338

3339 3340 3341 3342
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3343
	epctrl |= DXEPCTL_USBACTEP;
3344 3345

	/* update the endpoint state */
3346
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3347 3348

	/* default, set to non-periodic */
3349
	hs_ep->isochronous = 0;
3350
	hs_ep->periodic = 0;
3351
	hs_ep->halted = 0;
3352
	hs_ep->interval = desc->bInterval;
3353

3354 3355
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3356 3357
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3358
		hs_ep->isochronous = 1;
3359
		hs_ep->interval = 1 << (desc->bInterval - 1);
3360
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3361 3362
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3363
		if (dir_in) {
3364
			hs_ep->periodic = 1;
3365 3366 3367 3368 3369 3370 3371 3372
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3373
		break;
3374 3375

	case USB_ENDPOINT_XFER_BULK:
3376
		epctrl |= DXEPCTL_EPTYPE_BULK;
3377 3378 3379
		break;

	case USB_ENDPOINT_XFER_INT:
3380
		if (dir_in)
3381 3382
			hs_ep->periodic = 1;

3383 3384 3385
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3386
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3387 3388 3389
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3390
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3391 3392 3393
		break;
	}

3394 3395
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3396 3397
	 * a unique tx-fifo even if it is non-periodic.
	 */
3398
	if (dir_in && hsotg->dedicated_fifos) {
3399 3400
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3401
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3402
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3403 3404
			if (hsotg->fifo_map & (1<<i))
				continue;
3405
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3406 3407 3408
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3409 3410 3411 3412 3413
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3414
		}
3415
		if (!fifo_index) {
3416 3417
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3418
			ret = -ENOMEM;
3419
			goto error1;
3420
		}
3421 3422 3423 3424
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3425
	}
3426

3427
	/* for non control endpoints, set PID to D0 */
3428
	if (index && !hs_ep->isochronous)
3429
		epctrl |= DXEPCTL_SETD0PID;
3430 3431 3432 3433

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3434
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3435
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3436
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3437 3438

	/* enable the endpoint interrupt */
3439
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3440

3441
error1:
3442
	spin_unlock_irqrestore(&hsotg->lock, flags);
3443 3444 3445 3446 3447 3448 3449 3450 3451

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3452
	return ret;
3453 3454
}

3455
/**
3456
 * dwc2_hsotg_ep_disable - disable given endpoint
3457 3458
 * @ep: The endpoint to disable.
 */
3459
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3460
{
3461
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3462
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3463 3464 3465 3466 3467 3468
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3469
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3470

3471
	if (ep == &hsotg->eps_out[0]->ep) {
3472 3473 3474 3475
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3476 3477 3478 3479 3480 3481 3482 3483
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3484
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3485

3486
	spin_lock_irqsave(&hsotg->lock, flags);
3487

3488
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3489 3490 3491
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3492 3493

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3494
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3495 3496

	/* disable endpoint interrupts */
3497
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3498

3499 3500 3501
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3502 3503 3504 3505
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3506
	spin_unlock_irqrestore(&hsotg->lock, flags);
3507 3508 3509 3510 3511 3512 3513
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3514
 */
3515
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3516
{
3517
	struct dwc2_hsotg_req *req, *treq;
3518 3519 3520 3521 3522 3523 3524 3525 3526

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3562 3563
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3564 3565 3566

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3567
						GINTSTS_GOUTNAKEFF, 100))
3568
			dev_warn(hsotg->dev,
3569
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3594
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3595 3596 3597
	}
}

3598
/**
3599
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3600 3601 3602
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3603
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3604
{
3605 3606
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3607
	struct dwc2_hsotg *hs = hs_ep->parent;
3608 3609
	unsigned long flags;

3610
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3611

3612
	spin_lock_irqsave(&hs->lock, flags);
3613 3614

	if (!on_list(hs_ep, hs_req)) {
3615
		spin_unlock_irqrestore(&hs->lock, flags);
3616 3617 3618
		return -EINVAL;
	}

3619 3620 3621 3622
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3623
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3624
	spin_unlock_irqrestore(&hs->lock, flags);
3625 3626 3627 3628

	return 0;
}

3629
/**
3630
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3631 3632
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3633 3634 3635 3636 3637
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3638
 */
3639
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3640
{
3641
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3642
	struct dwc2_hsotg *hs = hs_ep->parent;
3643 3644 3645
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3646
	u32 xfertype;
3647 3648 3649

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3650 3651
	if (index == 0) {
		if (value)
3652
			dwc2_hsotg_stall_ep0(hs);
3653 3654 3655 3656 3657 3658
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3659 3660 3661 3662 3663
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3664 3665 3666 3667 3668 3669
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3670 3671
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3672
		epctl = dwc2_readl(hs->regs + epreg);
3673 3674

		if (value) {
3675
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3676 3677 3678 3679 3680 3681 3682 3683 3684
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3685
		dwc2_writel(epctl, hs->regs + epreg);
3686
	} else {
3687

3688
		epreg = DOEPCTL(index);
3689
		epctl = dwc2_readl(hs->regs + epreg);
3690

3691 3692 3693 3694 3695 3696 3697 3698 3699
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3700
		dwc2_writel(epctl, hs->regs + epreg);
3701
	}
3702

3703 3704
	hs_ep->halted = value;

3705 3706 3707
	return 0;
}

3708
/**
3709
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3710 3711 3712
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3713
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3714
{
3715
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3716
	struct dwc2_hsotg *hs = hs_ep->parent;
3717 3718 3719 3720
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3721
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3722 3723 3724 3725 3726
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3727 3728 3729 3730 3731 3732 3733 3734
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3735
	/* note, don't believe we have any call for the fifo routines */
3736 3737
};

3738
/**
3739
 * dwc2_hsotg_init - initalize the usb core
3740 3741
 * @hsotg: The driver state
 */
3742
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3743
{
3744
	u32 trdtim;
3745
	u32 usbcfg;
3746 3747
	/* unmask subset of endpoint interrupts */

3748 3749 3750
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3751

3752 3753 3754
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3755

3756
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3757 3758

	/* Be in disconnected state until gadget is registered */
3759
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3760 3761 3762 3763

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3764 3765
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3766

3767
	dwc2_hsotg_init_fifo(hsotg);
3768

3769 3770 3771 3772 3773
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3774
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3775
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3776 3777 3778
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3779

3780 3781
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3782 3783
}

3784
/**
3785
 * dwc2_hsotg_udc_start - prepare the udc for work
3786 3787 3788 3789 3790 3791
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3792
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3793
			   struct usb_gadget_driver *driver)
3794
{
3795
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3796
	unsigned long flags;
3797 3798 3799
	int ret;

	if (!hsotg) {
3800
		pr_err("%s: called with no device\n", __func__);
3801 3802 3803 3804 3805 3806 3807 3808
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3809
	if (driver->max_speed < USB_SPEED_FULL)
3810 3811
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3812
	if (!driver->setup) {
3813 3814 3815 3816 3817 3818 3819 3820
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3821
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3822 3823
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3824 3825 3826 3827
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3828 3829
	}

3830 3831
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3832

3833
	spin_lock_irqsave(&hsotg->lock, flags);
3834 3835 3836 3837 3838
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

3839
	hsotg->enabled = 0;
3840 3841
	spin_unlock_irqrestore(&hsotg->lock, flags);

3842
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3843

3844 3845 3846 3847 3848 3849 3850
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3851
/**
3852
 * dwc2_hsotg_udc_stop - stop the udc
3853 3854 3855 3856 3857
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3858
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3859
{
3860
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3861
	unsigned long flags = 0;
3862 3863 3864 3865 3866 3867
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3868 3869
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3870
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3871
		if (hsotg->eps_out[ep])
3872
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3873
	}
3874

3875 3876
	spin_lock_irqsave(&hsotg->lock, flags);

3877
	hsotg->driver = NULL;
3878
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3879
	hsotg->enabled = 0;
3880

3881 3882
	spin_unlock_irqrestore(&hsotg->lock, flags);

3883 3884
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3885

3886 3887
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3888 3889 3890 3891

	return 0;
}

3892
/**
3893
 * dwc2_hsotg_gadget_getframe - read the frame number
3894 3895 3896 3897
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3898
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3899
{
3900
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3901 3902
}

3903
/**
3904
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3905 3906 3907 3908 3909
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3910
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3911
{
3912
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3913 3914
	unsigned long flags = 0;

3915 3916 3917 3918 3919 3920 3921 3922
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3923 3924 3925

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3926
		hsotg->enabled = 1;
3927 3928
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3929
	} else {
3930 3931
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3932
		hsotg->enabled = 0;
3933 3934 3935 3936 3937 3938 3939 3940
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3941
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3942 3943 3944 3945 3946 3947 3948
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3949 3950 3951 3952 3953 3954 3955
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3956
	if (is_active) {
3957
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3958

3959
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3960
		if (hsotg->enabled)
3961
			dwc2_hsotg_core_connect(hsotg);
3962
	} else {
3963 3964
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3965 3966 3967 3968 3969 3970
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3971
/**
3972
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3973 3974 3975 3976 3977
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3978
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3979 3980 3981 3982 3983 3984 3985 3986
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3987 3988 3989 3990 3991 3992 3993
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3994 3995 3996
};

/**
3997
 * dwc2_hsotg_initep - initialise a single endpoint
3998 3999 4000 4001 4002 4003 4004 4005
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4006 4007
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
4008 4009
				       int epnum,
				       bool dir_in)
4010 4011 4012 4013 4014
{
	char *dir;

	if (epnum == 0)
		dir = "";
4015
	else if (dir_in)
4016
		dir = "in";
4017 4018
	else
		dir = "out";
4019

4020
	hs_ep->dir_in = dir_in;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4034
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
4035
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4050 4051
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4052 4053 4054 4055
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4056
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4057
		if (dir_in)
4058
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4059
		else
4060
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4061 4062 4063
	}
}

4064
/**
4065
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4066 4067 4068 4069
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4070
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4071
{
4072 4073 4074 4075
	u32 cfg;
	u32 ep_type;
	u32 i;

4076
	/* check hardware configuration */
4077

4078 4079
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4080 4081
	/* Add ep0 */
	hsotg->num_of_eps++;
4082

4083
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4084 4085 4086
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4087
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4088 4089
	hsotg->eps_out[0] = hsotg->eps_in[0];

4090
	cfg = hsotg->hw_params.dev_ep_dirs;
4091
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4092 4093 4094 4095
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4096
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4097 4098 4099 4100 4101 4102
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4103
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4104 4105 4106 4107 4108
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4109 4110
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4111

4112 4113 4114 4115
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4116
	return 0;
4117 4118
}

4119
/**
4120
 * dwc2_hsotg_dump - dump state of the udc
4121 4122
 * @param: The device state
 */
4123
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4124
{
M
Mark Brown 已提交
4125
#ifdef DEBUG
4126 4127 4128 4129 4130 4131
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4132 4133
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4134

4135
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4136
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4137 4138

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4139
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4140 4141 4142

	/* show periodic fifo settings */

4143
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4144
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4145
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4146 4147
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4148 4149
	}

4150
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4151 4152
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4153 4154 4155
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4156

4157
		val = dwc2_readl(regs + DOEPCTL(idx));
4158 4159
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4160 4161 4162
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4163 4164 4165 4166

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4167
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4168
#endif
4169 4170
}

4171
/**
4172 4173 4174
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4175
 */
4176
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4177
{
4178
	struct device *dev = hsotg->dev;
4179 4180
	int epnum;
	int ret;
4181

4182 4183
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4184 4185
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4186

4187
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4188
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4189
	hsotg->gadget.name = dev_name(dev);
4190 4191
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4192 4193
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4194

4195
	ret = dwc2_hsotg_hw_cfg(hsotg);
4196 4197
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4198
		return ret;
4199 4200
	}

4201 4202
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4203
	if (!hsotg->ctrl_buff)
4204
		return -ENOMEM;
4205 4206 4207

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4208
	if (!hsotg->ep0_buff)
4209
		return -ENOMEM;
4210

4211 4212 4213 4214 4215 4216
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4217
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4218
				dev_name(hsotg->dev), hsotg);
4219
	if (ret < 0) {
4220
		dev_err(dev, "cannot claim IRQ for gadget\n");
4221
		return ret;
4222 4223
	}

4224 4225 4226 4227
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4228
		return -EINVAL;
4229 4230 4231 4232 4233
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4234
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4235 4236 4237

	/* allocate EP0 request */

4238
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4239 4240 4241
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4242
		return -ENOMEM;
4243
	}
4244 4245

	/* initialise the endpoints now the core has been initialised */
4246 4247
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4248
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4249 4250
								epnum, 1);
		if (hsotg->eps_out[epnum])
4251
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4252 4253
								epnum, 0);
	}
4254

4255
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4256
	if (ret)
4257
		return ret;
4258

4259
	dwc2_hsotg_dump(hsotg);
4260 4261 4262 4263

	return 0;
}

4264
/**
4265
 * dwc2_hsotg_remove - remove function for hsotg driver
4266 4267
 * @pdev: The platform information for the driver
 */
4268
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4269
{
4270
	usb_del_gadget_udc(&hsotg->gadget);
4271

4272 4273 4274
	return 0;
}

4275
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4276 4277 4278
{
	unsigned long flags;

4279
	if (hsotg->lx_state != DWC2_L0)
4280
		return 0;
4281

4282 4283 4284
	if (hsotg->driver) {
		int ep;

4285 4286 4287
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4288 4289
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4290 4291
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4292 4293
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4294

4295 4296
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4297
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4298
			if (hsotg->eps_out[ep])
4299
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4300
		}
4301 4302
	}

4303
	return 0;
4304 4305
}

4306
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4307 4308 4309
{
	unsigned long flags;

4310
	if (hsotg->lx_state == DWC2_L2)
4311
		return 0;
4312

4313 4314 4315
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4316

4317
		spin_lock_irqsave(&hsotg->lock, flags);
4318
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4319
		if (hsotg->enabled)
4320
			dwc2_hsotg_core_connect(hsotg);
4321 4322
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4323

4324
	return 0;
4325
}
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}