gadget.c 101.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189 190
	unsigned int ep;
	unsigned int addr;
191
	int timeout;
192 193
	u32 val;

194 195 196 197
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

198
	/* set RX/NPTX FIFO sizes */
199 200
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 202
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
203

204 205
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
206 207
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
208 209
	 * known values.
	 */
210 211

	/* start at the end of the GNPTXFSIZ, rounded up */
212
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213

214
	/*
215
	 * Configure fifos sizes from provided configuration and assign
216 217
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
218
	 */
219 220 221
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
222
		val = addr;
223 224
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
225
			  "insufficient fifo memory");
226
		addr += hsotg->g_tx_fifo_sz[ep];
227

228
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229
	}
230

231 232 233 234
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
235

236
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 239 240 241

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
242
		val = dwc2_readl(hsotg->regs + GRSTCTL);
243

244
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 246 247 248 249 250
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
251
			break;
252 253 254 255 256 257
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 259 260 261 262 263 264 265
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
266
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267
						      gfp_t flags)
268
{
269
	struct dwc2_hsotg_req *req;
270

271
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
287
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 289 290 291 292
{
	return hs_ep->periodic;
}

/**
293
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294 295 296 297
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
298
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299
 * of a request to ensure the buffer is ready for access by the caller.
300
 */
301 302 303
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
304 305 306 307 308 309 310
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

311
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 313 314
}

/**
315
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316 317 318 319 320 321 322 323 324 325 326 327 328
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
329
 */
330 331 332
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
333 334
{
	bool periodic = is_ep_periodic(hs_ep);
335
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 337 338 339 340
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
341
	int max_transfer;
342 343 344 345 346 347 348

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

349
	if (periodic && !hsotg->dedicated_fifos) {
350
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 352 353
		int size_left;
		int size_done;

354 355 356 357
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
358

359
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360

361 362
		/*
		 * if shared fifo, we cannot write anything until the
363 364 365
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
366
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 368 369
			return -ENOSPC;
		}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
387
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 389
			return -ENOSPC;
		}
390
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
392 393 394

		can_write &= 0xffff;
		can_write *= 4;
395
	} else {
396
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
397 398 399 400
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

401
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
402 403 404
			return -ENOSPC;
		}

405
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
406
		can_write *= 4;	/* fifo size is in 32bit quantities. */
407 408
	}

409 410 411 412
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
413

414 415
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
416 417 418
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
419
	if (can_write > 512 && !periodic)
420 421
		can_write = 512;

422 423
	/*
	 * limit the write to one max-packet size worth of data, but allow
424
	 * the transfer to return that it did not run out of fifo space
425 426
	 * doing it.
	 */
427 428
	if (to_write > max_transfer) {
		to_write = max_transfer;
429

430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
432
			dwc2_hsotg_en_gsint(hsotg,
433 434
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
435 436
	}

437 438 439 440
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
441
		pkt_round = to_write % max_transfer;
442

443 444
		/*
		 * Round the write down to an
445 446 447 448 449 450 451 452 453
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

454 455 456 457
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
458

459 460
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
461
			dwc2_hsotg_en_gsint(hsotg,
462 463
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

481
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
482 483 484 485 486 487 488 489 490 491 492

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
493
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
494 495 496 497 498 499
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
500 501
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
502
	} else {
503
		maxsize = 64+64;
504
		if (hs_ep->dir_in)
505
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
506
		else
507 508 509 510 511 512 513
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

514 515 516 517
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
518 519 520 521 522 523 524 525

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
526
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
527 528 529 530 531 532 533 534
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
535 536 537
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

564 565
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
566 567

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
568
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
569 570
		hs_ep->dir_in ? "in" : "out");

571
	/* If endpoint is stalled, we will restart request later */
572
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
573

574
	if (index && ctrl & DXEPCTL_STALL) {
575 576 577 578
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

579
	length = ureq->length - ureq->actual;
580 581
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

602 603 604 605 606
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

607
	if (dir_in && index != 0)
608
		if (hs_ep->isochronous)
609
			epsize = DXEPTSIZ_MC(packets);
610
		else
611
			epsize = DXEPTSIZ_MC(1);
612 613 614
	else
		epsize = 0;

615 616 617 618 619 620 621 622
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
623
			hs_ep->send_zlp = 1;
624 625
	}

626 627
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
628 629 630 631 632 633 634 635

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
636
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
637

638
	if (using_dma(hsotg) && !continuing) {
639 640
		unsigned int dma_reg;

641 642
		/*
		 * write DMA address to control register, buffer already
643
		 * synced by dwc2_hsotg_ep_queue().
644
		 */
645

646
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
647
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
648

649
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
650
			__func__, &ureq->dma, dma_reg);
651 652
	}

653
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
654

655
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
656 657

	/* For Setup request do not clear NAK */
658
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
659
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
660

661
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
662
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
663

664 665
	/*
	 * set these, it seems that DMA support increments past the end
666
	 * of the packet buffer so we need to calculate the length from
667 668
	 * this information.
	 */
669 670 671 672 673 674 675
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

676
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
677 678
	}

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
689

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
692 693

	/* enable ep interrupts */
694
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697
}

/**
698
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
699 700 701 702 703 704 705 706 707
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709 710
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
711 712
			     struct usb_request *req)
{
713
	struct dwc2_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

733 734
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

764 765
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

786
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
787 788
			      gfp_t gfp_flags)
{
789 790
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
791
	struct dwc2_hsotg *hs = hs_ep->parent;
792
	bool first;
793
	int ret;
794 795 796 797 798

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

799 800 801 802 803 804 805
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

806 807 808 809 810
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

811
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
812 813 814
	if (ret)
		return ret;

815 816
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
817
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
818 819 820 821 822 823 824 825
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
826
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
827 828 829 830

	return 0;
}

831
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
832 833
			      gfp_t gfp_flags)
{
834
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
835
	struct dwc2_hsotg *hs = hs_ep->parent;
836 837 838 839
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
840
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
841 842 843 844 845
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

846
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
847 848
				      struct usb_request *req)
{
849
	struct dwc2_hsotg_req *hs_req = our_req(req);
850 851 852 853 854

	kfree(hs_req);
}

/**
855
 * dwc2_hsotg_complete_oursetup - setup completion callback
856 857 858 859 860 861
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
862
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
863 864
					struct usb_request *req)
{
865
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
866
	struct dwc2_hsotg *hsotg = hs_ep->parent;
867 868 869

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

870
	dwc2_hsotg_ep_free_request(ep, req);
871 872 873 874 875 876 877 878 879
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
880
 */
881
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
882 883
					   u32 windex)
{
884
	struct dwc2_hsotg_ep *ep;
885 886 887 888 889 890
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

891
	if (idx > hsotg->num_of_eps)
892 893
		return NULL;

894 895
	ep = index_to_ep(hsotg, idx, dir);

896 897 898 899 900 901
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

902
/**
903
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
904 905 906 907
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
908
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
909
{
910
	int dctl = dwc2_readl(hsotg->regs + DCTL);
911 912 913 914 915 916 917 918 919 920 921 922 923

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
924
	dwc2_writel(dctl, hsotg->regs + DCTL);
925 926 927
	return 0;
}

928
/**
929
 * dwc2_hsotg_send_reply - send reply to control request
930 931 932 933 934 935 936 937
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
938 939
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
940 941 942 943 944 945 946 947
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

948
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
949 950 951 952 953 954 955 956
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
957 958 959 960 961
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
962
	req->complete = dwc2_hsotg_complete_oursetup;
963 964 965 966

	if (length)
		memcpy(req->buf, buff, length);

967
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
968 969 970 971 972 973 974 975 976
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
977
 * dwc2_hsotg_process_req_status - process request GET_STATUS
978 979 980
 * @hsotg: The device state
 * @ctrl: USB control request
 */
981
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
982 983
					struct usb_ctrlrequest *ctrl)
{
984 985
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1022
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1023 1024 1025 1026 1027 1028 1029 1030
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1031
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1032

1033 1034 1035 1036 1037 1038
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1039
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1040 1041 1042 1043
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1044
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1083
/**
1084
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1085 1086 1087
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1088
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1089 1090
					 struct usb_ctrlrequest *ctrl)
{
1091 1092
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1093
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1094
	struct dwc2_hsotg_ep *ep;
1095
	int ret;
1096
	bool halted;
1097 1098 1099
	u32 recip;
	u32 wValue;
	u32 wIndex;
1100 1101 1102 1103

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1118
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1132 1133
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1134
				__func__, wIndex);
1135 1136 1137
			return -ENOENT;
		}

1138
		switch (wValue) {
1139
		case USB_ENDPOINT_HALT:
1140 1141
			halted = ep->halted;

1142
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1143

1144
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1145 1146 1147 1148 1149
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1150

1151 1152 1153 1154 1155 1156
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1157 1158 1159 1160 1161 1162 1163 1164
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1165 1166 1167 1168 1169 1170
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1171 1172 1173
				}

				/* If we have pending request, then start it */
1174
				if (!ep->req) {
1175
					dwc2_gadget_start_next_request(ep);
1176 1177 1178
				}
			}

1179 1180 1181 1182 1183
			break;

		default:
			return -ENOENT;
		}
1184 1185 1186 1187
		break;
	default:
		return -ENOENT;
	}
1188 1189 1190
	return 1;
}

1191
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1192

1193
/**
1194
 * dwc2_hsotg_stall_ep0 - stall ep0
1195 1196 1197 1198
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1199
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1200
{
1201
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1213
	ctrl = dwc2_readl(hsotg->regs + reg);
1214 1215
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1216
	dwc2_writel(ctrl, hsotg->regs + reg);
1217 1218

	dev_dbg(hsotg->dev,
1219
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1220
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1221 1222 1223 1224 1225

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1226
	 dwc2_hsotg_enqueue_setup(hsotg);
1227 1228
}

1229
/**
1230
 * dwc2_hsotg_process_control - process a control request
1231 1232 1233 1234 1235 1236 1237
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1238
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1239 1240
				      struct usb_ctrlrequest *ctrl)
{
1241
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1242 1243 1244
	int ret = 0;
	u32 dcfg;

1245 1246 1247 1248
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1249

1250 1251 1252 1253
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1254
		ep0->dir_in = 1;
1255 1256 1257 1258 1259
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1260 1261 1262 1263

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1264
			hsotg->connected = 1;
1265
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1266
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1267 1268
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1269
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1270 1271 1272

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1273
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1274 1275 1276
			return;

		case USB_REQ_GET_STATUS:
1277
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1278 1279 1280 1281
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1282
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1283 1284 1285 1286 1287 1288 1289
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1290
		spin_unlock(&hsotg->lock);
1291
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1292
		spin_lock(&hsotg->lock);
1293 1294 1295 1296
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1297 1298
	/*
	 * the request is either unhandlable, or is not formatted correctly
1299 1300 1301
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1302
	if (ret < 0)
1303
		dwc2_hsotg_stall_ep0(hsotg);
1304 1305 1306
}

/**
1307
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1308 1309 1310 1311 1312 1313
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1314
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1315 1316
				     struct usb_request *req)
{
1317
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1318
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1319 1320 1321 1322 1323 1324

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1325
	spin_lock(&hsotg->lock);
1326
	if (req->actual == 0)
1327
		dwc2_hsotg_enqueue_setup(hsotg);
1328
	else
1329
		dwc2_hsotg_process_control(hsotg, req->buf);
1330
	spin_unlock(&hsotg->lock);
1331 1332 1333
}

/**
1334
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1335 1336 1337 1338 1339
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1340
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1341 1342
{
	struct usb_request *req = hsotg->ctrl_req;
1343
	struct dwc2_hsotg_req *hs_req = our_req(req);
1344 1345 1346 1347 1348 1349 1350
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1351
	req->complete = dwc2_hsotg_complete_setup;
1352 1353 1354 1355 1356 1357

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1358
	hsotg->eps_out[0]->dir_in = 0;
1359
	hsotg->eps_out[0]->send_zlp = 0;
1360
	hsotg->ep0_state = DWC2_EP0_SETUP;
1361

1362
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1363 1364
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1365 1366 1367 1368
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1369 1370 1371
	}
}

1372 1373
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1374 1375 1376 1377 1378 1379
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1380 1381 1382 1383 1384 1385
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1386

1387 1388 1389
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1390

1391
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1392 1393 1394
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1395
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1396 1397
}

1398
/**
1399
 * dwc2_hsotg_complete_request - complete a request given to us
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1410
 */
1411 1412 1413
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1425 1426 1427 1428
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1429 1430 1431 1432

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1433 1434 1435
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1436
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1437

1438 1439 1440
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1441 1442 1443 1444
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1445 1446

	if (hs_req->req.complete) {
1447
		spin_unlock(&hsotg->lock);
1448
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1449
		spin_lock(&hsotg->lock);
1450 1451
	}

1452 1453
	/*
	 * Look to see if there is anything else to do. Note, the completion
1454
	 * of the previous request may have caused a new request to be started
1455 1456
	 * so be careful when doing this.
	 */
1457 1458

	if (!hs_ep->req && result >= 0) {
1459
		dwc2_gadget_start_next_request(hs_ep);
1460 1461 1462 1463
	}
}

/**
1464
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1465 1466 1467 1468 1469 1470 1471 1472
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1473
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1474
{
1475 1476
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1477
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1478 1479 1480 1481
	int to_read;
	int max_req;
	int read_ptr;

1482

1483
	if (!hs_req) {
1484
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1485 1486
		int ptr;

1487
		dev_dbg(hsotg->dev,
1488
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1489 1490 1491 1492
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1493
			(void)dwc2_readl(fifo);
1494 1495 1496 1497 1498 1499 1500 1501

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1502 1503 1504
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1505
	if (to_read > max_req) {
1506 1507
		/*
		 * more data appeared than we where willing
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1519 1520 1521 1522
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1523
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1524 1525 1526
}

/**
1527
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1528
 * @hsotg: The device instance
1529
 * @dir_in: If IN zlp
1530 1531 1532 1533 1534
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1535
 * currently believed that we do not need to wait for any space in
1536 1537
 * the TxFIFO.
 */
1538
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1539
{
1540
	/* eps_out[0] is used in both directions */
1541 1542
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1543

1544
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1560
/**
1561
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1562 1563 1564 1565 1566 1567
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1568
 */
1569
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1570
{
1571
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1572 1573
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1574
	struct usb_request *req = &hs_req->req;
1575
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1576 1577 1578 1579 1580 1581 1582
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1583 1584
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1585 1586
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1587 1588 1589
		return;
	}

1590 1591 1592
	if (using_dma(hsotg)) {
		unsigned size_done;

1593 1594
		/*
		 * Calculate the size of the transfer by checking how much
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1608 1609
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1610
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1611 1612 1613
		return;
	}

1614 1615 1616 1617
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1618 1619 1620 1621
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1622 1623
	}

1624 1625
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1626
		dwc2_hsotg_ep0_zlp(hsotg, true);
1627
		return;
1628 1629
	}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
	}

1640
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1641 1642 1643
}

/**
1644
 * dwc2_hsotg_read_frameno - read current frame number
1645 1646 1647
 * @hsotg: The device instance
 *
 * Return the current frame number
1648
 */
1649
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1650 1651 1652
{
	u32 dsts;

1653
	dsts = dwc2_readl(hsotg->regs + DSTS);
1654 1655
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1656 1657 1658 1659 1660

	return dsts;
}

/**
1661
 * dwc2_hsotg_handle_rx - RX FIFO has data
1662 1663 1664 1665 1666 1667
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1668
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1669 1670 1671 1672 1673 1674 1675
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1676
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1677
{
1678
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1679 1680 1681 1682
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1683 1684
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1685

1686 1687
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1688

1689
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1690 1691
			__func__, grxstsr, size, epnum);

1692 1693 1694
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1695 1696
		break;

1697
	case GRXSTS_PKTSTS_OUTDONE:
1698
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1699
			dwc2_hsotg_read_frameno(hsotg));
1700 1701

		if (!using_dma(hsotg))
1702
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1703 1704
		break;

1705
	case GRXSTS_PKTSTS_SETUPDONE:
1706 1707
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1708
			dwc2_hsotg_read_frameno(hsotg),
1709
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1710
		/*
1711
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1712 1713 1714 1715
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1716
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1717 1718
		break;

1719
	case GRXSTS_PKTSTS_OUTRX:
1720
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1721 1722
		break;

1723
	case GRXSTS_PKTSTS_SETUPRX:
1724 1725
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1726
			dwc2_hsotg_read_frameno(hsotg),
1727
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1728

1729 1730
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1731
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1732 1733 1734 1735 1736 1737
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1738
		dwc2_hsotg_dump(hsotg);
1739 1740 1741 1742 1743
		break;
	}
}

/**
1744
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1745
 * @mps: The maximum packet size in bytes.
1746
 */
1747
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1748 1749 1750
{
	switch (mps) {
	case 64:
1751
		return D0EPCTL_MPS_64;
1752
	case 32:
1753
		return D0EPCTL_MPS_32;
1754
	case 16:
1755
		return D0EPCTL_MPS_16;
1756
	case 8:
1757
		return D0EPCTL_MPS_8;
1758 1759 1760 1761 1762 1763 1764 1765
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1766
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1767 1768 1769 1770 1771 1772 1773
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1774
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1775
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1776
{
1777
	struct dwc2_hsotg_ep *hs_ep;
1778 1779
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1780
	u32 mcval;
1781 1782
	u32 reg;

1783 1784 1785 1786
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1787 1788
	if (ep == 0) {
		/* EP0 is a special case */
1789
		mpsval = dwc2_hsotg_ep0_mps(mps);
1790 1791
		if (mpsval > 3)
			goto bad_mps;
1792
		hs_ep->ep.maxpacket = mps;
1793
		hs_ep->mc = 1;
1794
	} else {
1795
		mpsval = mps & DXEPCTL_MPS_MASK;
1796
		if (mpsval > 1024)
1797
			goto bad_mps;
1798 1799 1800 1801
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1802
		hs_ep->ep.maxpacket = mpsval;
1803 1804
	}

1805
	if (dir_in) {
1806
		reg = dwc2_readl(regs + DIEPCTL(ep));
1807 1808
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1809
		dwc2_writel(reg, regs + DIEPCTL(ep));
1810
	} else {
1811
		reg = dwc2_readl(regs + DOEPCTL(ep));
1812
		reg &= ~DXEPCTL_MPS_MASK;
1813
		reg |= mpsval;
1814
		dwc2_writel(reg, regs + DOEPCTL(ep));
1815
	}
1816 1817 1818 1819 1820 1821 1822

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1823
/**
1824
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1825 1826 1827
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1828
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1829 1830 1831 1832
{
	int timeout;
	int val;

1833 1834
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1835 1836 1837 1838 1839

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1840
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1841

1842
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1843 1844 1845 1846 1847 1848
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1849
			break;
1850 1851 1852 1853 1854
		}

		udelay(1);
	}
}
1855 1856

/**
1857
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1858 1859 1860 1861 1862 1863
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1864 1865
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1866
{
1867
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1868

1869 1870 1871 1872 1873 1874
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1875
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1876
					     hs_ep->dir_in, 0);
1877
		return 0;
1878
	}
1879 1880 1881 1882

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1883
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1884 1885 1886 1887 1888 1889
	}

	return 0;
}

/**
1890
 * dwc2_hsotg_complete_in - complete IN transfer
1891 1892 1893 1894 1895 1896
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1897 1898
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1899
{
1900
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1901
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1902 1903 1904 1905 1906 1907 1908
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1909
	/* Finish ZLP handling for IN EP0 transactions */
1910 1911
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1912
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1913 1914 1915
		if (hsotg->test_mode) {
			int ret;

1916
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1917 1918 1919
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1920
				dwc2_hsotg_stall_ep0(hsotg);
1921 1922 1923
				return;
			}
		}
1924
		dwc2_hsotg_enqueue_setup(hsotg);
1925 1926 1927
		return;
	}

1928 1929
	/*
	 * Calculate the size of the transfer by checking how much is left
1930 1931 1932 1933 1934 1935 1936 1937
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1938
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1939 1940 1941 1942 1943 1944 1945 1946 1947

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1948 1949 1950
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1951 1952
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1953
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1954 1955 1956
		return;
	}

1957
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1958
	if (hs_ep->send_zlp) {
1959
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1960
		hs_ep->send_zlp = 0;
1961 1962 1963 1964
		/* transfer will be completed on next complete interrupt */
		return;
	}

1965 1966
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1967
		dwc2_hsotg_ep0_zlp(hsotg, false);
1968 1969 1970
		return;
	}

1971
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2090
/**
2091
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2092 2093 2094 2095 2096
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2097
 */
2098
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2099 2100
			    int dir_in)
{
2101
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2102 2103 2104
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2105
	u32 ints;
2106
	u32 ctrl;
2107

2108
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2109
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2110

2111
	/* Clear endpoint interrupts */
2112
	dwc2_writel(ints, hsotg->regs + epint_reg);
2113

2114 2115 2116 2117 2118 2119
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2120 2121 2122
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2123 2124 2125 2126
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2127
	if (ints & DXEPINT_XFERCOMPL) {
2128 2129 2130
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2131

2132
		dev_dbg(hsotg->dev,
2133
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2134 2135
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2136

2137 2138 2139 2140
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2141
		if (dir_in) {
2142
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2143

2144
			if (idx == 0 && !hs_ep->req)
2145
				dwc2_hsotg_enqueue_setup(hsotg);
2146
		} else if (using_dma(hsotg)) {
2147 2148 2149 2150
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2151

2152
			dwc2_hsotg_handle_outdone(hsotg, idx);
2153 2154 2155
		}
	}

2156
	if (ints & DXEPINT_EPDISBLD) {
2157 2158
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

2159
		if (dir_in) {
2160
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2161

2162
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2163

2164 2165
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2166
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2167

2168
				dctl |= DCTL_CGNPINNAK;
2169
				dwc2_writel(dctl, hsotg->regs + DCTL);
2170 2171 2172 2173
			}
		}
	}

2174 2175 2176 2177 2178 2179
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2180
	if (ints & DXEPINT_AHBERR)
2181 2182
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2183
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2184 2185 2186
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2187 2188
			/*
			 * this is the notification we've received a
2189 2190
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2191 2192
			 * the setup here.
			 */
2193 2194 2195 2196

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2197
				dwc2_hsotg_handle_outdone(hsotg, 0);
2198 2199 2200
		}
	}

2201
	if (ints & DXEPINT_BACK2BACKSETUP)
2202 2203
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2204
	if (dir_in && !hs_ep->isochronous) {
2205
		/* not sure if this is important, but we'll clear it anyway */
2206
		if (ints & DXEPINT_INTKNTXFEMP) {
2207 2208 2209 2210 2211
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2212
		if (ints & DXEPINT_INTKNEPMIS) {
2213 2214 2215
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2216 2217 2218

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2219
		    ints & DXEPINT_TXFEMP) {
2220 2221
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2222
			if (!using_dma(hsotg))
2223
				dwc2_hsotg_trytx(hsotg, hs_ep);
2224
		}
2225 2226 2227 2228
	}
}

/**
2229
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2230 2231 2232 2233
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2234
 */
2235
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2236
{
2237
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2238
	int ep0_mps = 0, ep_mps = 8;
2239

2240 2241
	/*
	 * This should signal the finish of the enumeration phase
2242
	 * of the USB handshaking, so we should now know what rate
2243 2244
	 * we connected at.
	 */
2245 2246 2247

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2248 2249
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2250
	 * it seems IN transfers must be a even number of packets we do
2251 2252
	 * not advertise a 64byte MPS on EP0.
	 */
2253 2254

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2255
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2256 2257
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2258 2259
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2260
		ep_mps = 1023;
2261 2262
		break;

2263
	case DSTS_ENUMSPD_HS:
2264 2265
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2266
		ep_mps = 1024;
2267 2268
		break;

2269
	case DSTS_ENUMSPD_LS:
2270
		hsotg->gadget.speed = USB_SPEED_LOW;
2271 2272
		/*
		 * note, we don't actually support LS in this driver at the
2273 2274 2275 2276 2277
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2278 2279
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2280

2281 2282 2283 2284
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2285 2286 2287

	if (ep0_mps) {
		int i;
2288
		/* Initialize ep0 for both in and out directions */
2289 2290
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2291 2292
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2293
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2294
			if (hsotg->eps_out[i])
2295
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2296
		}
2297 2298 2299 2300
	}

	/* ensure after enumeration our EP0 is active */

2301
	dwc2_hsotg_enqueue_setup(hsotg);
2302 2303

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2304 2305
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2317
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2318
			      struct dwc2_hsotg_ep *ep,
2319
			      int result)
2320
{
2321
	struct dwc2_hsotg_req *req, *treq;
2322
	unsigned size;
2323

2324
	ep->req = NULL;
2325

2326
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2327
		dwc2_hsotg_complete_request(hsotg, ep, req,
2328
					   result);
2329

2330 2331
	if (!hsotg->dedicated_fifos)
		return;
2332
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2333
	if (size < ep->fifo_size)
2334
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2335 2336 2337
}

/**
2338
 * dwc2_hsotg_disconnect - disconnect service
2339 2340
 * @hsotg: The device state.
 *
2341 2342 2343
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2344
 */
2345
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2346 2347 2348
{
	unsigned ep;

2349 2350 2351 2352
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2353
	hsotg->test_mode = 0;
2354 2355 2356 2357 2358 2359 2360 2361 2362

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2363 2364

	call_gadget(hsotg, disconnect);
2365
	hsotg->lx_state = DWC2_L3;
2366 2367 2368
}

/**
2369
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2370 2371 2372
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2373
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2374
{
2375
	struct dwc2_hsotg_ep *ep;
2376 2377 2378
	int epno, ret;

	/* look through for any more data to transmit */
2379
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2380 2381 2382 2383
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2384 2385 2386 2387 2388 2389 2390 2391

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2392
		ret = dwc2_hsotg_trytx(hsotg, ep);
2393 2394 2395 2396 2397 2398
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2399 2400 2401
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2402

2403
/**
2404
 * dwc2_hsotg_core_init - issue softreset to the core
2405 2406 2407 2408
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2409
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2410
						bool is_usb_reset)
2411
{
2412
	u32 intmsk;
2413
	u32 val;
2414
	u32 usbcfg;
2415

2416 2417 2418
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2419
	if (!is_usb_reset)
2420
		if (dwc2_core_reset(hsotg))
2421
			return;
2422 2423 2424 2425 2426 2427

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2428 2429 2430 2431 2432
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2433
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2434
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2435 2436 2437
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2438

2439
	dwc2_hsotg_init_fifo(hsotg);
2440

2441 2442
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2443

2444
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2445 2446

	/* Clear any pending OTG interrupts */
2447
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2448 2449

	/* Clear any pending interrupts */
2450
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2451
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2452
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2453 2454
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2455 2456
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2457 2458 2459 2460 2461

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2462 2463

	if (using_dma(hsotg))
2464 2465 2466
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2467
	else
2468 2469 2470 2471
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2472 2473

	/*
2474 2475 2476
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2477 2478
	 */

2479
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2480
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2481 2482 2483 2484
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2485 2486 2487 2488 2489

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2490
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2491 2492 2493 2494
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2495

2496
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2497 2498

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2499 2500
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2501 2502

	/* enable in and out endpoint interrupts */
2503
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2504 2505 2506 2507 2508 2509 2510

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2511
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2512 2513

	/* Enable interrupts for EP0 in and out */
2514 2515
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2516

2517 2518 2519 2520 2521
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2522

2523
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2524 2525

	/*
2526
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2527 2528 2529 2530
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2531
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2532
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2533

2534
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2535 2536
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2537
	       hsotg->regs + DOEPCTL0);
2538 2539

	/* enable, but don't activate EP0in */
2540
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2541
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2542

2543
	dwc2_hsotg_enqueue_setup(hsotg);
2544 2545

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2546 2547
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2548 2549

	/* clear global NAKs */
2550 2551 2552 2553
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2554 2555 2556 2557

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2558
	hsotg->lx_state = DWC2_L0;
2559 2560
}

2561
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2562 2563 2564 2565
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2566

2567
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2568
{
2569
	/* remove the soft-disconnect and let's go */
2570
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2571 2572
}

2573
/**
2574
 * dwc2_hsotg_irq - handle device interrupt
2575 2576 2577
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2578
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2579
{
2580
	struct dwc2_hsotg *hsotg = pw;
2581 2582 2583 2584
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2585 2586 2587
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2588
	spin_lock(&hsotg->lock);
2589
irq_retry:
2590 2591
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2592 2593 2594 2595 2596 2597

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2628
	if (gintsts & GINTSTS_ENUMDONE) {
2629
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2630

2631
		dwc2_hsotg_irq_enumdone(hsotg);
2632 2633
	}

2634
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2635 2636
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2637
		u32 daint_out, daint_in;
2638 2639
		int ep;

2640
		daint &= daintmsk;
2641 2642
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2643

2644 2645
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2646 2647
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2648
			if (daint_out & 1)
2649
				dwc2_hsotg_epint(hsotg, ep, 0);
2650 2651
		}

2652 2653
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2654
			if (daint_in & 1)
2655
				dwc2_hsotg_epint(hsotg, ep, 1);
2656 2657 2658 2659 2660
		}
	}

	/* check both FIFOs */

2661
	if (gintsts & GINTSTS_NPTXFEMP) {
2662 2663
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2664 2665
		/*
		 * Disable the interrupt to stop it happening again
2666
		 * unless one of these endpoint routines decides that
2667 2668
		 * it needs re-enabling
		 */
2669

2670 2671
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2672 2673
	}

2674
	if (gintsts & GINTSTS_PTXFEMP) {
2675 2676
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2677
		/* See note in GINTSTS_NPTxFEmp */
2678

2679 2680
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2681 2682
	}

2683
	if (gintsts & GINTSTS_RXFLVL) {
2684 2685
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2686
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2687 2688
		 * set.
		 */
2689

2690
		dwc2_hsotg_handle_rx(hsotg);
2691 2692
	}

2693
	if (gintsts & GINTSTS_ERLYSUSP) {
2694
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2695
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2696 2697
	}

2698 2699
	/*
	 * these next two seem to crop-up occasionally causing the core
2700
	 * to shutdown the USB transfer, so try clearing them and logging
2701 2702
	 * the occurrence.
	 */
2703

2704
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2705 2706
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2707
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2708

2709
		dwc2_hsotg_dump(hsotg);
2710 2711
	}

2712
	if (gintsts & GINTSTS_GINNAKEFF) {
2713 2714
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2715
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2716

2717
		dwc2_hsotg_dump(hsotg);
2718 2719
	}

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	if (gintsts & GINTSTS_INCOMPL_SOIN) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_in[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DIEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
	}

	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DOEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
	}

2754 2755 2756 2757
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2758 2759 2760 2761

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2762 2763
	spin_unlock(&hsotg->lock);

2764 2765 2766 2767
	return IRQ_HANDLED;
}

/**
2768
 * dwc2_hsotg_ep_enable - enable the given endpoint
2769 2770 2771 2772
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2773
 */
2774
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2775 2776
			       const struct usb_endpoint_descriptor *desc)
{
2777
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2778
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2779
	unsigned long flags;
2780
	unsigned int index = hs_ep->index;
2781 2782 2783
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2784 2785
	unsigned int dir_in;
	unsigned int i, val, size;
2786
	int ret = 0;
2787 2788 2789 2790 2791 2792 2793

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2794 2795 2796 2797
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2798 2799 2800 2801 2802 2803 2804

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2805
	mps = usb_endpoint_maxp(desc);
2806

2807
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2808

2809
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2810
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2811 2812 2813 2814

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2815
	spin_lock_irqsave(&hsotg->lock, flags);
2816

2817 2818
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2819

2820 2821 2822 2823
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2824
	epctrl |= DXEPCTL_USBACTEP;
2825

2826 2827
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2828 2829 2830 2831 2832
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2833
	epctrl |= DXEPCTL_SNAK;
2834 2835

	/* update the endpoint state */
2836
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2837 2838

	/* default, set to non-periodic */
2839
	hs_ep->isochronous = 0;
2840
	hs_ep->periodic = 0;
2841
	hs_ep->halted = 0;
2842
	hs_ep->interval = desc->bInterval;
2843

2844 2845
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2846 2847
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2848
		hs_ep->isochronous = 1;
2849
		hs_ep->interval = 1 << (desc->bInterval - 1);
2850 2851 2852
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2853 2854

	case USB_ENDPOINT_XFER_BULK:
2855
		epctrl |= DXEPCTL_EPTYPE_BULK;
2856 2857 2858
		break;

	case USB_ENDPOINT_XFER_INT:
2859
		if (dir_in)
2860 2861
			hs_ep->periodic = 1;

2862 2863 2864
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

2865
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2866 2867 2868
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2869
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2870 2871 2872
		break;
	}

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2884 2885
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2886 2887
	 * a unique tx-fifo even if it is non-periodic.
	 */
2888
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2889 2890
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2891
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2892
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2893 2894
			if (hsotg->fifo_map & (1<<i))
				continue;
2895
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2896 2897 2898
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2899 2900 2901 2902 2903
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2904
		}
2905
		if (!fifo_index) {
2906 2907
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2908 2909 2910
			ret = -ENOMEM;
			goto error;
		}
2911 2912 2913 2914
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2915
	}
2916

2917 2918
	/* for non control endpoints, set PID to D0 */
	if (index)
2919
		epctrl |= DXEPCTL_SETD0PID;
2920 2921 2922 2923

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2924
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2925
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2926
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2927 2928

	/* enable the endpoint interrupt */
2929
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2930

2931
error:
2932
	spin_unlock_irqrestore(&hsotg->lock, flags);
2933
	return ret;
2934 2935
}

2936
/**
2937
 * dwc2_hsotg_ep_disable - disable given endpoint
2938 2939
 * @ep: The endpoint to disable.
 */
2940
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2941
{
2942
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2943
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2944 2945 2946 2947 2948 2949
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2950
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2951

2952
	if (ep == &hsotg->eps_out[0]->ep) {
2953 2954 2955 2956
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2957
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2958

2959
	spin_lock_irqsave(&hsotg->lock, flags);
2960

2961 2962 2963
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2964

2965
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2966 2967 2968
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2969 2970

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2971
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2972 2973

	/* disable endpoint interrupts */
2974
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2975

2976 2977 2978
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2979
	spin_unlock_irqrestore(&hsotg->lock, flags);
2980 2981 2982 2983 2984 2985 2986
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2987
 */
2988
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2989
{
2990
	struct dwc2_hsotg_req *req, *treq;
2991 2992 2993 2994 2995 2996 2997 2998 2999

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3035 3036
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3037 3038 3039

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3040
						GINTSTS_GOUTNAKEFF, 100))
3041
			dev_warn(hsotg->dev,
3042
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3067
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3068 3069 3070
	}
}

3071
/**
3072
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3073 3074 3075
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3076
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3077
{
3078 3079
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3080
	struct dwc2_hsotg *hs = hs_ep->parent;
3081 3082
	unsigned long flags;

3083
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3084

3085
	spin_lock_irqsave(&hs->lock, flags);
3086 3087

	if (!on_list(hs_ep, hs_req)) {
3088
		spin_unlock_irqrestore(&hs->lock, flags);
3089 3090 3091
		return -EINVAL;
	}

3092 3093 3094 3095
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3096
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3097
	spin_unlock_irqrestore(&hs->lock, flags);
3098 3099 3100 3101

	return 0;
}

3102
/**
3103
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3104 3105
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3106 3107 3108 3109 3110
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3111
 */
3112
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3113
{
3114
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3115
	struct dwc2_hsotg *hs = hs_ep->parent;
3116 3117 3118
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3119
	u32 xfertype;
3120 3121 3122

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3123 3124
	if (index == 0) {
		if (value)
3125
			dwc2_hsotg_stall_ep0(hs);
3126 3127 3128 3129 3130 3131
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3132 3133 3134 3135 3136
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3137 3138 3139 3140 3141 3142
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3143 3144
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3145
		epctl = dwc2_readl(hs->regs + epreg);
3146 3147

		if (value) {
3148
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3149 3150 3151 3152 3153 3154 3155 3156 3157
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3158
		dwc2_writel(epctl, hs->regs + epreg);
3159
	} else {
3160

3161
		epreg = DOEPCTL(index);
3162
		epctl = dwc2_readl(hs->regs + epreg);
3163

3164 3165 3166 3167 3168 3169 3170 3171 3172
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3173
		dwc2_writel(epctl, hs->regs + epreg);
3174
	}
3175

3176 3177
	hs_ep->halted = value;

3178 3179 3180
	return 0;
}

3181
/**
3182
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3183 3184 3185
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3186
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3187
{
3188
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3189
	struct dwc2_hsotg *hs = hs_ep->parent;
3190 3191 3192 3193
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3194
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3195 3196 3197 3198 3199
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3200 3201 3202 3203 3204 3205 3206 3207
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3208
	/* note, don't believe we have any call for the fifo routines */
3209 3210
};

3211
/**
3212
 * dwc2_hsotg_init - initalize the usb core
3213 3214
 * @hsotg: The driver state
 */
3215
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3216
{
3217
	u32 trdtim;
3218
	u32 usbcfg;
3219 3220
	/* unmask subset of endpoint interrupts */

3221 3222 3223
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3224

3225 3226 3227
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3228

3229
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3230 3231

	/* Be in disconnected state until gadget is registered */
3232
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3233 3234 3235 3236

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3237 3238
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3239

3240
	dwc2_hsotg_init_fifo(hsotg);
3241

3242 3243 3244 3245 3246
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3247
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3248
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3249 3250 3251
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3252

3253 3254
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3255 3256
}

3257
/**
3258
 * dwc2_hsotg_udc_start - prepare the udc for work
3259 3260 3261 3262 3263 3264
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3265
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3266
			   struct usb_gadget_driver *driver)
3267
{
3268
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3269
	unsigned long flags;
3270 3271 3272
	int ret;

	if (!hsotg) {
3273
		pr_err("%s: called with no device\n", __func__);
3274 3275 3276 3277 3278 3279 3280 3281
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3282
	if (driver->max_speed < USB_SPEED_FULL)
3283 3284
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3285
	if (!driver->setup) {
3286 3287 3288 3289 3290 3291 3292 3293
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3294
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3295 3296
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3297 3298 3299 3300
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3301 3302
	}

3303 3304
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3305

3306
	spin_lock_irqsave(&hsotg->lock, flags);
3307 3308
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3309
	hsotg->enabled = 0;
3310 3311
	spin_unlock_irqrestore(&hsotg->lock, flags);

3312
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3313

3314 3315 3316 3317 3318 3319 3320
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3321
/**
3322
 * dwc2_hsotg_udc_stop - stop the udc
3323 3324 3325 3326 3327
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3328
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3329
{
3330
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3331
	unsigned long flags = 0;
3332 3333 3334 3335 3336 3337
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3338 3339
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3340
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3341
		if (hsotg->eps_out[ep])
3342
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3343
	}
3344

3345 3346
	spin_lock_irqsave(&hsotg->lock, flags);

3347
	hsotg->driver = NULL;
3348
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3349
	hsotg->enabled = 0;
3350

3351 3352
	spin_unlock_irqrestore(&hsotg->lock, flags);

3353 3354
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3355

3356 3357
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3358 3359 3360 3361

	return 0;
}

3362
/**
3363
 * dwc2_hsotg_gadget_getframe - read the frame number
3364 3365 3366 3367
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3368
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3369
{
3370
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3371 3372
}

3373
/**
3374
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3375 3376 3377 3378 3379
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3380
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3381
{
3382
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3383 3384
	unsigned long flags = 0;

3385 3386 3387 3388 3389 3390 3391 3392
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3393 3394 3395

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3396
		hsotg->enabled = 1;
3397 3398
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3399
	} else {
3400 3401
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3402
		hsotg->enabled = 0;
3403 3404 3405 3406 3407 3408 3409 3410
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3411
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3412 3413 3414 3415 3416 3417 3418
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3419 3420 3421 3422 3423 3424 3425
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3426
	if (is_active) {
3427
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3428

3429
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3430
		if (hsotg->enabled)
3431
			dwc2_hsotg_core_connect(hsotg);
3432
	} else {
3433 3434
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3435 3436 3437 3438 3439 3440
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3441
/**
3442
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3443 3444 3445 3446 3447
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3448
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3449 3450 3451 3452 3453 3454 3455 3456
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3457 3458 3459 3460 3461 3462 3463
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3464 3465 3466
};

/**
3467
 * dwc2_hsotg_initep - initialise a single endpoint
3468 3469 3470 3471 3472 3473 3474 3475
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3476 3477
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3478 3479
				       int epnum,
				       bool dir_in)
3480 3481 3482 3483 3484
{
	char *dir;

	if (epnum == 0)
		dir = "";
3485
	else if (dir_in)
3486
		dir = "in";
3487 3488
	else
		dir = "out";
3489

3490
	hs_ep->dir_in = dir_in;
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3504
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3505
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3506

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3520 3521
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3522 3523 3524 3525
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3526
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3527
		if (dir_in)
3528
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3529
		else
3530
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3531 3532 3533
	}
}

3534
/**
3535
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3536 3537 3538 3539
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3540
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3541
{
3542 3543 3544 3545
	u32 cfg;
	u32 ep_type;
	u32 i;

3546
	/* check hardware configuration */
3547

3548 3549
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3550 3551
	/* Add ep0 */
	hsotg->num_of_eps++;
3552

3553
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3554 3555 3556
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3557
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3558 3559
	hsotg->eps_out[0] = hsotg->eps_in[0];

3560
	cfg = hsotg->hw_params.dev_ep_dirs;
3561
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3562 3563 3564 3565
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3566
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3567 3568 3569 3570 3571 3572
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3573
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3574 3575 3576 3577 3578
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3579 3580
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3581

3582 3583 3584 3585
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3586
	return 0;
3587 3588
}

3589
/**
3590
 * dwc2_hsotg_dump - dump state of the udc
3591 3592
 * @param: The device state
 */
3593
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3594
{
M
Mark Brown 已提交
3595
#ifdef DEBUG
3596 3597 3598 3599 3600 3601
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3602 3603
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3604

3605
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3606
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3607 3608

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3609
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3610 3611 3612

	/* show periodic fifo settings */

3613
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3614
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3615
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3616 3617
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3618 3619
	}

3620
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3621 3622
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3623 3624 3625
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3626

3627
		val = dwc2_readl(regs + DOEPCTL(idx));
3628 3629
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3630 3631 3632
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3633 3634 3635 3636

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3637
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3638
#endif
3639 3640
}

3641
#ifdef CONFIG_OF
3642
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3643 3644
{
	struct device_node *np = hsotg->dev->of_node;
3645 3646
	u32 len = 0;
	u32 i = 0;
3647 3648 3649

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3681 3682
}
#else
3683
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3684 3685
#endif

3686
/**
3687 3688 3689
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3690
 */
3691
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3692
{
3693
	struct device *dev = hsotg->dev;
3694 3695
	int epnum;
	int ret;
3696
	int i;
3697
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3698

3699 3700 3701 3702 3703
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3704
	dwc2_hsotg_of_probe(hsotg);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3716 3717 3718 3719 3720 3721 3722
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3723

3724
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3725
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3726
	hsotg->gadget.name = dev_name(dev);
3727 3728
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3729 3730
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3731

3732
	ret = dwc2_hsotg_hw_cfg(hsotg);
3733 3734
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3735
		return ret;
3736 3737
	}

3738 3739 3740 3741
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
3742
		return -ENOMEM;
3743 3744 3745 3746 3747 3748
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
3749
		return -ENOMEM;
3750 3751
	}

3752
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3753
				dev_name(hsotg->dev), hsotg);
3754
	if (ret < 0) {
3755
		dev_err(dev, "cannot claim IRQ for gadget\n");
3756
		return ret;
3757 3758
	}

3759 3760 3761 3762
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3763
		return -EINVAL;
3764 3765 3766 3767 3768
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3769
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3770 3771 3772

	/* allocate EP0 request */

3773
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3774 3775 3776
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3777
		return -ENOMEM;
3778
	}
3779 3780

	/* initialise the endpoints now the core has been initialised */
3781 3782
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3783
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3784 3785
								epnum, 1);
		if (hsotg->eps_out[epnum])
3786
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3787 3788
								epnum, 0);
	}
3789

3790
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3791
	if (ret)
3792
		return ret;
3793

3794
	dwc2_hsotg_dump(hsotg);
3795 3796 3797 3798

	return 0;
}

3799
/**
3800
 * dwc2_hsotg_remove - remove function for hsotg driver
3801 3802
 * @pdev: The platform information for the driver
 */
3803
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3804
{
3805
	usb_del_gadget_udc(&hsotg->gadget);
3806

3807 3808 3809
	return 0;
}

3810
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3811 3812 3813
{
	unsigned long flags;

3814
	if (hsotg->lx_state != DWC2_L0)
3815
		return 0;
3816

3817 3818 3819
	if (hsotg->driver) {
		int ep;

3820 3821 3822
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3823 3824
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3825 3826
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3827 3828
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3829

3830 3831
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3832
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3833
			if (hsotg->eps_out[ep])
3834
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3835
		}
3836 3837
	}

3838
	return 0;
3839 3840
}

3841
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3842 3843 3844
{
	unsigned long flags;

3845
	if (hsotg->lx_state == DWC2_L2)
3846
		return 0;
3847

3848 3849 3850
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3851

3852
		spin_lock_irqsave(&hsotg->lock, flags);
3853
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3854
		if (hsotg->enabled)
3855
			dwc2_hsotg_core_connect(hsotg);
3856 3857
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3858

3859
	return 0;
3860
}
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}