gadget.c 124.5 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318
{
	struct usb_request *req = &hs_req->req;
319
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
320 321
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

370
/**
371
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
372 373 374 375 376 377 378 379 380 381 382 383 384
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
385
 */
386 387 388
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
389 390
{
	bool periodic = is_ep_periodic(hs_ep);
391
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
392 393 394 395 396
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
397
	int max_transfer;
398 399 400 401 402 403 404

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

405
	if (periodic && !hsotg->dedicated_fifos) {
406
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
407 408 409
		int size_left;
		int size_done;

410 411 412 413
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
414

415
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
416

417 418
		/*
		 * if shared fifo, we cannot write anything until the
419 420 421
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
422
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
423 424 425
			return -ENOSPC;
		}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
443
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
444 445
			return -ENOSPC;
		}
446
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
447 448
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
449 450 451

		can_write &= 0xffff;
		can_write *= 4;
452
	} else {
453
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
454 455 456 457
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

458
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
459 460 461
			return -ENOSPC;
		}

462
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
463
		can_write *= 4;	/* fifo size is in 32bit quantities. */
464 465
	}

466 467 468 469
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
470

471 472
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
473 474 475
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
476
	if (can_write > 512 && !periodic)
477 478
		can_write = 512;

479 480
	/*
	 * limit the write to one max-packet size worth of data, but allow
481
	 * the transfer to return that it did not run out of fifo space
482 483
	 * doing it.
	 */
484 485
	if (to_write > max_transfer) {
		to_write = max_transfer;
486

487 488
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
489
			dwc2_hsotg_en_gsint(hsotg,
490 491
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
492 493
	}

494 495 496 497
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
498
		pkt_round = to_write % max_transfer;
499

500 501
		/*
		 * Round the write down to an
502 503 504 505 506 507 508 509 510
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

511 512 513 514
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
515

516 517
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
518
			dwc2_hsotg_en_gsint(hsotg,
519 520
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

538
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
539 540 541 542 543 544 545 546 547 548 549

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
550
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
551 552 553 554 555 556
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
557 558
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
559
	} else {
560
		maxsize = 64+64;
561
		if (hs_ep->dir_in)
562
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
563
		else
564 565 566 567 568 569 570
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

571 572 573 574
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
575 576 577 578 579 580 581

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

866
/**
867
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
868 869 870 871 872 873 874 875
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
876 877 878
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
879 880 881 882 883 884 885 886 887 888 889 890
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;
891
	unsigned int dma_reg;
892 893 894 895 896 897 898 899 900 901 902 903 904 905

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

906
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
907 908
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
909 910

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
911
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
912 913
		hs_ep->dir_in ? "in" : "out");

914
	/* If endpoint is stalled, we will restart request later */
915
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
916

917
	if (index && ctrl & DXEPCTL_STALL) {
918 919 920 921
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

922
	length = ureq->length - ureq->actual;
923 924
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
925

926 927 928 929 930
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

949 950 951 952 953
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

954
	if (dir_in && index != 0)
955
		if (hs_ep->isochronous)
956
			epsize = DXEPTSIZ_MC(packets);
957
		else
958
			epsize = DXEPTSIZ_MC(1);
959 960 961
	else
		epsize = 0;

962 963 964 965 966 967 968 969
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
970
			hs_ep->send_zlp = 1;
971 972
	}

973 974
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
975 976 977 978 979 980 981

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

982 983 984 985 986 987 988 989 990 991 992
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
993

994
		/*
995 996 997
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
998
		 */
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1009

1010 1011 1012 1013 1014 1015
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1016
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1017 1018 1019 1020
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1021

1022 1023 1024 1025 1026
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1027 1028
	}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1039
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1040

1041
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1042 1043

	/* For Setup request do not clear NAK */
1044
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1045
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1046

1047
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1048
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1049

1050 1051
	/*
	 * set these, it seems that DMA support increments past the end
1052
	 * of the packet buffer so we need to calculate the length from
1053 1054
	 * this information.
	 */
1055 1056 1057 1058 1059 1060 1061
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1062
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1063 1064
	}

1065 1066 1067 1068
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1069 1070

	/* check ep is enabled */
1071
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1072
		dev_dbg(hsotg->dev,
1073
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1074
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1075

1076
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1077
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1078 1079

	/* enable ep interrupts */
1080
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1081 1082 1083
}

/**
1084
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1085 1086 1087 1088 1089 1090 1091 1092 1093
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1094
 */
1095 1096
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
1097 1098
			     struct usb_request *req)
{
1099
	int ret;
1100

1101 1102 1103
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1114 1115
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1145 1146
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1226
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1227 1228
			      gfp_t gfp_flags)
{
1229 1230
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1231
	struct dwc2_hsotg *hs = hs_ep->parent;
1232
	bool first;
1233
	int ret;
1234 1235 1236 1237 1238

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1239 1240 1241 1242 1243 1244 1245
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

1246 1247 1248 1249 1250
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1251
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1252 1253 1254
	if (ret)
		return ret;

1255 1256
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1257
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1258 1259 1260
		if (ret)
			return ret;
	}
1261 1262 1263 1264 1265 1266
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1267 1268 1269 1270

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1287 1288 1289 1290 1291 1292 1293 1294
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1295

1296 1297 1298
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1299 1300 1301
	return 0;
}

1302
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1303 1304
			      gfp_t gfp_flags)
{
1305
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1306
	struct dwc2_hsotg *hs = hs_ep->parent;
1307 1308 1309 1310
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1311
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1312 1313 1314 1315 1316
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1317
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1318 1319
				      struct usb_request *req)
{
1320
	struct dwc2_hsotg_req *hs_req = our_req(req);
1321 1322 1323 1324 1325

	kfree(hs_req);
}

/**
1326
 * dwc2_hsotg_complete_oursetup - setup completion callback
1327 1328 1329 1330 1331 1332
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1333
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1334 1335
					struct usb_request *req)
{
1336
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1338 1339 1340

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1341
	dwc2_hsotg_ep_free_request(ep, req);
1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1351
 */
1352
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1353 1354
					   u32 windex)
{
1355
	struct dwc2_hsotg_ep *ep;
1356 1357 1358 1359 1360 1361
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1362
	if (idx > hsotg->num_of_eps)
1363 1364
		return NULL;

1365 1366
	ep = index_to_ep(hsotg, idx, dir);

1367 1368 1369 1370 1371 1372
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1373
/**
1374
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1375 1376 1377 1378
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1379
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1380
{
1381
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1395
	dwc2_writel(dctl, hsotg->regs + DCTL);
1396 1397 1398
	return 0;
}

1399
/**
1400
 * dwc2_hsotg_send_reply - send reply to control request
1401 1402 1403 1404 1405 1406 1407 1408
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1409 1410
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1411 1412 1413 1414 1415 1416 1417 1418
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1419
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1420 1421 1422 1423 1424 1425 1426 1427
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1428 1429 1430 1431 1432
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1433
	req->complete = dwc2_hsotg_complete_oursetup;
1434 1435 1436 1437

	if (length)
		memcpy(req->buf, buff, length);

1438
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1448
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1449 1450 1451
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1452
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1453 1454
					struct usb_ctrlrequest *ctrl)
{
1455 1456
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1493
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1494 1495 1496 1497 1498 1499 1500 1501
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1502
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1503

1504 1505 1506 1507 1508 1509
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1510
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1511
{
1512 1513
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1552
/**
1553
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1554 1555 1556
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1557
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1558 1559
					 struct usb_ctrlrequest *ctrl)
{
1560 1561
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1562
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1563
	struct dwc2_hsotg_ep *ep;
1564
	int ret;
1565
	bool halted;
1566 1567 1568
	u32 recip;
	u32 wValue;
	u32 wIndex;
1569 1570 1571 1572

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1587
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1601 1602
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1603
				__func__, wIndex);
1604 1605 1606
			return -ENOENT;
		}

1607
		switch (wValue) {
1608
		case USB_ENDPOINT_HALT:
1609 1610
			halted = ep->halted;

1611
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1612

1613
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1614 1615 1616 1617 1618
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1619

1620 1621 1622 1623 1624 1625
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1626 1627 1628 1629 1630 1631 1632 1633
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1634 1635 1636 1637 1638 1639
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1640 1641 1642
				}

				/* If we have pending request, then start it */
1643
				if (!ep->req) {
1644
					dwc2_gadget_start_next_request(ep);
1645 1646 1647
				}
			}

1648 1649 1650 1651 1652
			break;

		default:
			return -ENOENT;
		}
1653 1654 1655 1656
		break;
	default:
		return -ENOENT;
	}
1657 1658 1659
	return 1;
}

1660
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1661

1662
/**
1663
 * dwc2_hsotg_stall_ep0 - stall ep0
1664 1665 1666 1667
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1668
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1669
{
1670
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1682
	ctrl = dwc2_readl(hsotg->regs + reg);
1683 1684
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1685
	dwc2_writel(ctrl, hsotg->regs + reg);
1686 1687

	dev_dbg(hsotg->dev,
1688
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1689
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1690 1691 1692 1693 1694

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1695
	 dwc2_hsotg_enqueue_setup(hsotg);
1696 1697
}

1698
/**
1699
 * dwc2_hsotg_process_control - process a control request
1700 1701 1702 1703 1704 1705 1706
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1707
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1708 1709
				      struct usb_ctrlrequest *ctrl)
{
1710
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1711 1712 1713
	int ret = 0;
	u32 dcfg;

1714 1715 1716 1717
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1718

1719 1720 1721 1722
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1723
		ep0->dir_in = 1;
1724 1725 1726 1727 1728
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1729 1730 1731 1732

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1733
			hsotg->connected = 1;
1734
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1735
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1736 1737
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1738
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1739 1740 1741

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1742
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1743 1744 1745
			return;

		case USB_REQ_GET_STATUS:
1746
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1747 1748 1749 1750
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1751
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1752 1753 1754 1755 1756 1757 1758
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1759
		spin_unlock(&hsotg->lock);
1760
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1761
		spin_lock(&hsotg->lock);
1762 1763 1764 1765
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1766 1767
	/*
	 * the request is either unhandlable, or is not formatted correctly
1768 1769 1770
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1771
	if (ret < 0)
1772
		dwc2_hsotg_stall_ep0(hsotg);
1773 1774 1775
}

/**
1776
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1777 1778 1779 1780 1781 1782
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1783
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1784 1785
				     struct usb_request *req)
{
1786
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1787
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1788 1789 1790 1791 1792 1793

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1794
	spin_lock(&hsotg->lock);
1795
	if (req->actual == 0)
1796
		dwc2_hsotg_enqueue_setup(hsotg);
1797
	else
1798
		dwc2_hsotg_process_control(hsotg, req->buf);
1799
	spin_unlock(&hsotg->lock);
1800 1801 1802
}

/**
1803
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1804 1805 1806 1807 1808
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1809
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1810 1811
{
	struct usb_request *req = hsotg->ctrl_req;
1812
	struct dwc2_hsotg_req *hs_req = our_req(req);
1813 1814 1815 1816 1817 1818 1819
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1820
	req->complete = dwc2_hsotg_complete_setup;
1821 1822 1823 1824 1825 1826

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1827
	hsotg->eps_out[0]->dir_in = 0;
1828
	hsotg->eps_out[0]->send_zlp = 0;
1829
	hsotg->ep0_state = DWC2_EP0_SETUP;
1830

1831
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1832 1833
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1834 1835 1836 1837
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1838 1839 1840
	}
}

1841 1842
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1843 1844 1845 1846 1847 1848
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1849 1850
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1851
			index);
1852 1853
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1854 1855 1856 1857
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1858

1859 1860 1861 1862 1863 1864 1865
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1866

1867
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1868 1869 1870
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1871
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1872 1873
}

1874
/**
1875
 * dwc2_hsotg_complete_request - complete a request given to us
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1886
 */
1887 1888 1889
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1901 1902 1903 1904
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1905 1906 1907 1908

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1909 1910 1911
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1912
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1913

1914 1915 1916
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1917 1918 1919 1920
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1921 1922

	if (hs_req->req.complete) {
1923
		spin_unlock(&hsotg->lock);
1924
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1925
		spin_lock(&hsotg->lock);
1926 1927
	}

1928 1929 1930 1931
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1932 1933
	/*
	 * Look to see if there is anything else to do. Note, the completion
1934
	 * of the previous request may have caused a new request to be started
1935 1936
	 * so be careful when doing this.
	 */
1937 1938

	if (!hs_ep->req && result >= 0) {
1939
		dwc2_gadget_start_next_request(hs_ep);
1940 1941 1942
	}
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

1994 1995 1996 1997
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2052
/**
2053
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2054 2055 2056 2057 2058 2059 2060 2061
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2062
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2063
{
2064 2065
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2066
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2067 2068 2069 2070
	int to_read;
	int max_req;
	int read_ptr;

2071

2072
	if (!hs_req) {
2073
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2074 2075
		int ptr;

2076
		dev_dbg(hsotg->dev,
2077
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2078 2079 2080 2081
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2082
			(void)dwc2_readl(fifo);
2083 2084 2085 2086 2087 2088 2089 2090

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2091 2092 2093
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2094
	if (to_read > max_req) {
2095 2096
		/*
		 * more data appeared than we where willing
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2108 2109 2110 2111
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2112
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2113 2114 2115
}

/**
2116
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2117
 * @hsotg: The device instance
2118
 * @dir_in: If IN zlp
2119 2120 2121 2122 2123
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2124
 * currently believed that we do not need to wait for any space in
2125 2126
 * the TxFIFO.
 */
2127
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2128
{
2129
	/* eps_out[0] is used in both directions */
2130 2131
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2132

2133
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2179
/**
2180
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2181 2182 2183 2184 2185 2186
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2187
 */
2188
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2189
{
2190
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2191 2192
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2193
	struct usb_request *req = &hs_req->req;
2194
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2195 2196 2197 2198 2199 2200 2201
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2202 2203
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2204 2205
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2206 2207 2208
		return;
	}

2209 2210 2211
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2212 2213 2214
	if (using_dma(hsotg)) {
		unsigned size_done;

2215 2216
		/*
		 * Calculate the size of the transfer by checking how much
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2230 2231
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2232
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2233 2234 2235
		return;
	}

2236 2237 2238 2239
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2240 2241 2242 2243
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2244 2245
	}

2246 2247 2248
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2249
		/* Move to STATUS IN */
2250
		dwc2_hsotg_ep0_zlp(hsotg, true);
2251
		return;
2252 2253
	}

2254 2255 2256 2257 2258 2259 2260
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2261 2262
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2263 2264
	}

2265
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2266 2267 2268
}

/**
2269
 * dwc2_hsotg_handle_rx - RX FIFO has data
2270 2271 2272 2273 2274 2275
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2276
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2277 2278 2279 2280 2281 2282 2283
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2284
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2285
{
2286
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2287 2288 2289 2290
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2291 2292
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2293

2294 2295
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2296

2297
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2298 2299
			__func__, grxstsr, size, epnum);

2300 2301 2302
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2303 2304
		break;

2305
	case GRXSTS_PKTSTS_OUTDONE:
2306
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2307
			dwc2_hsotg_read_frameno(hsotg));
2308 2309

		if (!using_dma(hsotg))
2310
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2311 2312
		break;

2313
	case GRXSTS_PKTSTS_SETUPDONE:
2314 2315
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2316
			dwc2_hsotg_read_frameno(hsotg),
2317
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2318
		/*
2319
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2320 2321 2322 2323
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2324
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2325 2326
		break;

2327
	case GRXSTS_PKTSTS_OUTRX:
2328
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2329 2330
		break;

2331
	case GRXSTS_PKTSTS_SETUPRX:
2332 2333
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2334
			dwc2_hsotg_read_frameno(hsotg),
2335
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2336

2337 2338
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2339
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2340 2341 2342 2343 2344 2345
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2346
		dwc2_hsotg_dump(hsotg);
2347 2348 2349 2350 2351
		break;
	}
}

/**
2352
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2353
 * @mps: The maximum packet size in bytes.
2354
 */
2355
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2356 2357 2358
{
	switch (mps) {
	case 64:
2359
		return D0EPCTL_MPS_64;
2360
	case 32:
2361
		return D0EPCTL_MPS_32;
2362
	case 16:
2363
		return D0EPCTL_MPS_16;
2364
	case 8:
2365
		return D0EPCTL_MPS_8;
2366 2367 2368 2369 2370 2371 2372 2373
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2374
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2375 2376 2377
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2378
 * @mc: The multicount value
2379 2380 2381 2382
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2383
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2384 2385
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2386
{
2387
	struct dwc2_hsotg_ep *hs_ep;
2388 2389 2390
	void __iomem *regs = hsotg->regs;
	u32 reg;

2391 2392 2393 2394
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2395
	if (ep == 0) {
2396 2397
		u32 mps_bytes = mps;

2398
		/* EP0 is a special case */
2399 2400
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2401
			goto bad_mps;
2402
		hs_ep->ep.maxpacket = mps_bytes;
2403
		hs_ep->mc = 1;
2404
	} else {
2405
		if (mps > 1024)
2406
			goto bad_mps;
2407 2408
		hs_ep->mc = mc;
		if (mc > 3)
2409
			goto bad_mps;
2410
		hs_ep->ep.maxpacket = mps;
2411 2412
	}

2413
	if (dir_in) {
2414
		reg = dwc2_readl(regs + DIEPCTL(ep));
2415
		reg &= ~DXEPCTL_MPS_MASK;
2416
		reg |= mps;
2417
		dwc2_writel(reg, regs + DIEPCTL(ep));
2418
	} else {
2419
		reg = dwc2_readl(regs + DOEPCTL(ep));
2420
		reg &= ~DXEPCTL_MPS_MASK;
2421
		reg |= mps;
2422
		dwc2_writel(reg, regs + DOEPCTL(ep));
2423
	}
2424 2425 2426 2427 2428 2429 2430

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2431
/**
2432
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2433 2434 2435
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2436
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2437 2438 2439 2440
{
	int timeout;
	int val;

2441 2442
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2443 2444 2445 2446 2447

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2448
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2449

2450
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2451 2452 2453 2454 2455 2456
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2457
			break;
2458 2459 2460 2461 2462
		}

		udelay(1);
	}
}
2463 2464

/**
2465
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2466 2467 2468 2469 2470 2471
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2472 2473
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
2474
{
2475
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2476

2477 2478 2479 2480 2481 2482
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2483
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2484
					     hs_ep->dir_in, 0);
2485
		return 0;
2486
	}
2487 2488 2489 2490

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2491
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2492 2493 2494 2495 2496 2497
	}

	return 0;
}

/**
2498
 * dwc2_hsotg_complete_in - complete IN transfer
2499 2500 2501 2502 2503 2504
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2505 2506
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2507
{
2508
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2509
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2510 2511 2512 2513 2514 2515 2516
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2517
	/* Finish ZLP handling for IN EP0 transactions */
2518 2519
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2520 2521 2522 2523 2524 2525 2526

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2527
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2528 2529 2530
		if (hsotg->test_mode) {
			int ret;

2531
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2532 2533 2534
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2535
				dwc2_hsotg_stall_ep0(hsotg);
2536 2537 2538
				return;
			}
		}
2539
		dwc2_hsotg_enqueue_setup(hsotg);
2540 2541 2542
		return;
	}

2543 2544
	/*
	 * Calculate the size of the transfer by checking how much is left
2545 2546 2547 2548 2549 2550 2551
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2552 2553 2554 2555 2556 2557 2558 2559
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2560 2561 2562 2563 2564 2565 2566 2567 2568

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2569 2570 2571
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2572 2573
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2574
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2575 2576 2577
		return;
	}

2578
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2579
	if (hs_ep->send_zlp) {
2580
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2581
		hs_ep->send_zlp = 0;
2582 2583 2584 2585
		/* transfer will be completed on next complete interrupt */
		return;
	}

2586 2587
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2588
		dwc2_hsotg_ep0_zlp(hsotg, false);
2589 2590 2591
		return;
	}

2592
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2593 2594
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2707
	u32 tmp;
2708 2709 2710 2711

	if (dir_in || !ep->isochronous)
		return;

2712 2713 2714 2715 2716 2717
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2718 2719
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2777 2778 2779 2780 2781 2782

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2801
/**
2802
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2803 2804 2805 2806 2807
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2808
 */
2809
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2810 2811
			    int dir_in)
{
2812
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2813 2814 2815
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2816
	u32 ints;
2817
	u32 ctrl;
2818

2819
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2820
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2821

2822
	/* Clear endpoint interrupts */
2823
	dwc2_writel(ints, hsotg->regs + epint_reg);
2824

2825 2826 2827 2828 2829 2830
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2831 2832 2833
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2834 2835 2836 2837
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2848
	if (ints & DXEPINT_XFERCOMPL) {
2849
		dev_dbg(hsotg->dev,
2850
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2851 2852
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2853

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2865 2866 2867
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2868
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2869 2870
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2871

2872
			if (idx == 0 && !hs_ep->req)
2873
				dwc2_hsotg_enqueue_setup(hsotg);
2874
		} else if (using_dma(hsotg)) {
2875 2876 2877 2878
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2879 2880
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2881

2882
			dwc2_hsotg_handle_outdone(hsotg, idx);
2883 2884 2885
		}
	}

2886 2887
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2888

2889 2890 2891 2892 2893 2894
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2895
	if (ints & DXEPINT_AHBERR)
2896 2897
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2898
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2899 2900 2901
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2902 2903
			/*
			 * this is the notification we've received a
2904 2905
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2906 2907
			 * the setup here.
			 */
2908 2909 2910 2911

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2912
				dwc2_hsotg_handle_outdone(hsotg, 0);
2913 2914 2915
		}
	}

2916
	if (ints & DXEPINT_STSPHSERCVD) {
2917 2918
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2919 2920 2921 2922 2923
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2924
	if (ints & DXEPINT_BACK2BACKSETUP)
2925 2926
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2940
	if (dir_in && !hs_ep->isochronous) {
2941
		/* not sure if this is important, but we'll clear it anyway */
2942
		if (ints & DXEPINT_INTKNTXFEMP) {
2943 2944 2945 2946 2947
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2948
		if (ints & DXEPINT_INTKNEPMIS) {
2949 2950 2951
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2952 2953 2954

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2955
		    ints & DXEPINT_TXFEMP) {
2956 2957
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2958
			if (!using_dma(hsotg))
2959
				dwc2_hsotg_trytx(hsotg, hs_ep);
2960
		}
2961 2962 2963 2964
	}
}

/**
2965
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2966 2967 2968 2969
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2970
 */
2971
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2972
{
2973
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2974
	int ep0_mps = 0, ep_mps = 8;
2975

2976 2977
	/*
	 * This should signal the finish of the enumeration phase
2978
	 * of the USB handshaking, so we should now know what rate
2979 2980
	 * we connected at.
	 */
2981 2982 2983

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2984 2985
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2986
	 * it seems IN transfers must be a even number of packets we do
2987 2988
	 * not advertise a 64byte MPS on EP0.
	 */
2989 2990

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2991
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2992 2993
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2994 2995
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2996
		ep_mps = 1023;
2997 2998
		break;

2999
	case DSTS_ENUMSPD_HS:
3000 3001
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3002
		ep_mps = 1024;
3003 3004
		break;

3005
	case DSTS_ENUMSPD_LS:
3006
		hsotg->gadget.speed = USB_SPEED_LOW;
3007 3008
		ep0_mps = 8;
		ep_mps = 8;
3009 3010
		/*
		 * note, we don't actually support LS in this driver at the
3011 3012 3013 3014 3015
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3016 3017
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3018

3019 3020 3021 3022
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3023 3024 3025

	if (ep0_mps) {
		int i;
3026
		/* Initialize ep0 for both in and out directions */
3027 3028
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3029 3030
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3031 3032
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3033
			if (hsotg->eps_out[i])
3034 3035
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3036
		}
3037 3038 3039 3040
	}

	/* ensure after enumeration our EP0 is active */

3041
	dwc2_hsotg_enqueue_setup(hsotg);
3042 3043

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3044 3045
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3057
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3058
			      struct dwc2_hsotg_ep *ep,
3059
			      int result)
3060
{
3061
	struct dwc2_hsotg_req *req, *treq;
3062
	unsigned size;
3063

3064
	ep->req = NULL;
3065

3066
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3067
		dwc2_hsotg_complete_request(hsotg, ep, req,
3068
					   result);
3069

3070 3071
	if (!hsotg->dedicated_fifos)
		return;
3072
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3073
	if (size < ep->fifo_size)
3074
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3075 3076 3077
}

/**
3078
 * dwc2_hsotg_disconnect - disconnect service
3079 3080
 * @hsotg: The device state.
 *
3081 3082 3083
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3084
 */
3085
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3086 3087 3088
{
	unsigned ep;

3089 3090 3091 3092
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3093
	hsotg->test_mode = 0;
3094 3095 3096 3097 3098 3099 3100 3101 3102

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
3103 3104

	call_gadget(hsotg, disconnect);
3105
	hsotg->lx_state = DWC2_L3;
3106 3107 3108
}

/**
3109
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3110 3111 3112
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3113
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3114
{
3115
	struct dwc2_hsotg_ep *ep;
3116 3117 3118
	int epno, ret;

	/* look through for any more data to transmit */
3119
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3120 3121 3122 3123
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3124 3125 3126 3127 3128 3129 3130 3131

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3132
		ret = dwc2_hsotg_trytx(hsotg, ep);
3133 3134 3135 3136 3137 3138
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3139 3140 3141
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3142

3143
/**
3144
 * dwc2_hsotg_core_init - issue softreset to the core
3145 3146 3147 3148
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3149
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3150
						bool is_usb_reset)
3151
{
3152
	u32 intmsk;
3153
	u32 val;
3154
	u32 usbcfg;
3155
	u32 dcfg = 0;
3156

3157 3158 3159
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3160
	if (!is_usb_reset)
3161
		if (dwc2_core_reset(hsotg))
3162
			return;
3163 3164 3165 3166 3167 3168

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3169 3170 3171 3172 3173
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3174
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3175 3176
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3177 3178 3179 3180 3181 3182 3183 3184
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3185
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3186

3187
	dwc2_hsotg_init_fifo(hsotg);
3188

3189 3190
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3191

3192
	dcfg |= DCFG_EPMISCNT(1);
3193 3194 3195 3196 3197 3198

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3199 3200 3201 3202
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3203 3204
		break;
	default:
3205 3206
		dcfg |= DCFG_DEVSPD_HS;
	}
3207

3208
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3209 3210

	/* Clear any pending OTG interrupts */
3211
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3212 3213

	/* Clear any pending interrupts */
3214
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3215
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3216
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3217 3218
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3219 3220 3221 3222
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3223

3224
	if (hsotg->params.external_id_pin_ctl <= 0)
3225 3226 3227
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3228

3229
	if (using_dma(hsotg)) {
3230 3231 3232
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3233 3234 3235 3236 3237 3238

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3239 3240 3241 3242
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3243
	}
3244 3245

	/*
3246 3247 3248
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3249 3250
	 */

3251
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3252
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3253
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3254
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3255
		hsotg->regs + DIEPMSK);
3256 3257 3258

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3259
	 * DMA mode we may need this and StsPhseRcvd.
3260
	 */
3261 3262
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3263
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3264
		DOEPMSK_SETUPMSK,
3265
		hsotg->regs + DOEPMSK);
3266

3267 3268 3269 3270
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3271
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3272 3273

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3274 3275
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3276 3277

	/* enable in and out endpoint interrupts */
3278
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3279 3280 3281 3282 3283 3284 3285

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3286
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3287 3288

	/* Enable interrupts for EP0 in and out */
3289 3290
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3291

3292 3293 3294 3295 3296
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3297

3298
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3299 3300

	/*
3301
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3302 3303 3304 3305
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3306
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3307
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3308

3309
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3310 3311
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3312
	       hsotg->regs + DOEPCTL0);
3313 3314

	/* enable, but don't activate EP0in */
3315
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3317

3318
	dwc2_hsotg_enqueue_setup(hsotg);
3319 3320

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3321 3322
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3323 3324

	/* clear global NAKs */
3325 3326 3327 3328
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3329 3330 3331 3332

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3333
	hsotg->lx_state = DWC2_L0;
3334 3335
}

3336
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3337 3338 3339 3340
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3341

3342
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3343
{
3344
	/* remove the soft-disconnect and let's go */
3345
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3346 3347
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3427
/**
3428
 * dwc2_hsotg_irq - handle device interrupt
3429 3430 3431
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3432
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3433
{
3434
	struct dwc2_hsotg *hsotg = pw;
3435 3436 3437 3438
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3439 3440 3441
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3442
	spin_lock(&hsotg->lock);
3443
irq_retry:
3444 3445
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3446 3447 3448 3449 3450 3451

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3482
	if (gintsts & GINTSTS_ENUMDONE) {
3483
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3484

3485
		dwc2_hsotg_irq_enumdone(hsotg);
3486 3487
	}

3488
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3489 3490
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3491
		u32 daint_out, daint_in;
3492 3493
		int ep;

3494
		daint &= daintmsk;
3495 3496
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3497

3498 3499
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3500 3501
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3502
			if (daint_out & 1)
3503
				dwc2_hsotg_epint(hsotg, ep, 0);
3504 3505
		}

3506 3507
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3508
			if (daint_in & 1)
3509
				dwc2_hsotg_epint(hsotg, ep, 1);
3510 3511 3512 3513 3514
		}
	}

	/* check both FIFOs */

3515
	if (gintsts & GINTSTS_NPTXFEMP) {
3516 3517
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3518 3519
		/*
		 * Disable the interrupt to stop it happening again
3520
		 * unless one of these endpoint routines decides that
3521 3522
		 * it needs re-enabling
		 */
3523

3524 3525
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3526 3527
	}

3528
	if (gintsts & GINTSTS_PTXFEMP) {
3529 3530
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3531
		/* See note in GINTSTS_NPTxFEmp */
3532

3533 3534
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3535 3536
	}

3537
	if (gintsts & GINTSTS_RXFLVL) {
3538 3539
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3540
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3541 3542
		 * set.
		 */
3543

3544
		dwc2_hsotg_handle_rx(hsotg);
3545 3546
	}

3547
	if (gintsts & GINTSTS_ERLYSUSP) {
3548
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3549
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3550 3551
	}

3552 3553
	/*
	 * these next two seem to crop-up occasionally causing the core
3554
	 * to shutdown the USB transfer, so try clearing them and logging
3555 3556
	 * the occurrence.
	 */
3557

3558
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3580

3581
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3582 3583
	}

3584
	if (gintsts & GINTSTS_GINNAKEFF) {
3585 3586
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3587
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3588

3589
		dwc2_hsotg_dump(hsotg);
3590 3591
	}

3592 3593
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3594

3595 3596
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3597

3598 3599 3600 3601
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3602 3603 3604 3605

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3606 3607
	spin_unlock(&hsotg->lock);

3608 3609 3610
	return IRQ_HANDLED;
}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3700
/**
3701
 * dwc2_hsotg_ep_enable - enable the given endpoint
3702 3703 3704 3705
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3706
 */
3707
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3708 3709
			       const struct usb_endpoint_descriptor *desc)
{
3710
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3711
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3712
	unsigned long flags;
3713
	unsigned int index = hs_ep->index;
3714 3715 3716
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3717
	u32 mc;
3718
	u32 mask;
3719 3720
	unsigned int dir_in;
	unsigned int i, val, size;
3721
	int ret = 0;
3722 3723 3724 3725 3726 3727 3728

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3729 3730 3731 3732
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3733 3734 3735 3736 3737 3738 3739

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3740
	mps = usb_endpoint_maxp(desc);
3741
	mc = usb_endpoint_maxp_mult(desc);
3742

3743
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3744

3745
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3746
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3747 3748 3749 3750

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			&hs_ep->desc_list_dma, GFP_KERNEL);
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3763
	spin_lock_irqsave(&hsotg->lock, flags);
3764

3765 3766
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3767

3768 3769 3770 3771
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3772
	epctrl |= DXEPCTL_USBACTEP;
3773 3774

	/* update the endpoint state */
3775
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3776 3777

	/* default, set to non-periodic */
3778
	hs_ep->isochronous = 0;
3779
	hs_ep->periodic = 0;
3780
	hs_ep->halted = 0;
3781
	hs_ep->interval = desc->bInterval;
3782

3783 3784
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3785 3786
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3787
		hs_ep->isochronous = 1;
3788
		hs_ep->interval = 1 << (desc->bInterval - 1);
3789
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3790 3791
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3792
		if (dir_in) {
3793
			hs_ep->periodic = 1;
3794 3795 3796 3797 3798 3799 3800 3801
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3802
		break;
3803 3804

	case USB_ENDPOINT_XFER_BULK:
3805
		epctrl |= DXEPCTL_EPTYPE_BULK;
3806 3807 3808
		break;

	case USB_ENDPOINT_XFER_INT:
3809
		if (dir_in)
3810 3811
			hs_ep->periodic = 1;

3812 3813 3814
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3815
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3816 3817 3818
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3819
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3820 3821 3822
		break;
	}

3823 3824
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3825 3826
	 * a unique tx-fifo even if it is non-periodic.
	 */
3827
	if (dir_in && hsotg->dedicated_fifos) {
3828 3829
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3830
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3831
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3832 3833
			if (hsotg->fifo_map & (1<<i))
				continue;
3834
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3835 3836 3837
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3838 3839 3840 3841 3842
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3843
		}
3844
		if (!fifo_index) {
3845 3846
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3847
			ret = -ENOMEM;
3848
			goto error1;
3849
		}
3850 3851 3852 3853
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3854
	}
3855

3856
	/* for non control endpoints, set PID to D0 */
3857
	if (index && !hs_ep->isochronous)
3858
		epctrl |= DXEPCTL_SETD0PID;
3859 3860 3861 3862

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3863
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3864
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3865
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3866 3867

	/* enable the endpoint interrupt */
3868
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3869

3870
error1:
3871
	spin_unlock_irqrestore(&hsotg->lock, flags);
3872 3873 3874 3875 3876 3877 3878 3879 3880

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3881
	return ret;
3882 3883
}

3884
/**
3885
 * dwc2_hsotg_ep_disable - disable given endpoint
3886 3887
 * @ep: The endpoint to disable.
 */
3888
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3889
{
3890
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3891
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3892 3893 3894 3895 3896 3897
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3898
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3899

3900
	if (ep == &hsotg->eps_out[0]->ep) {
3901 3902 3903 3904
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3905 3906 3907 3908 3909 3910 3911 3912
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3913
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3914

3915
	spin_lock_irqsave(&hsotg->lock, flags);
3916

3917
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3918 3919 3920 3921

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3922 3923 3924
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3925 3926

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3927
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3928 3929

	/* disable endpoint interrupts */
3930
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3931

3932 3933 3934
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3935 3936 3937 3938
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3939
	spin_unlock_irqrestore(&hsotg->lock, flags);
3940 3941 3942 3943 3944 3945 3946
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3947
 */
3948
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3949
{
3950
	struct dwc2_hsotg_req *req, *treq;
3951 3952 3953 3954 3955 3956 3957 3958 3959

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3960
/**
3961
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3962 3963 3964
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3965
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3966
{
3967 3968
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3969
	struct dwc2_hsotg *hs = hs_ep->parent;
3970 3971
	unsigned long flags;

3972
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3973

3974
	spin_lock_irqsave(&hs->lock, flags);
3975 3976

	if (!on_list(hs_ep, hs_req)) {
3977
		spin_unlock_irqrestore(&hs->lock, flags);
3978 3979 3980
		return -EINVAL;
	}

3981 3982 3983 3984
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3985
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3986
	spin_unlock_irqrestore(&hs->lock, flags);
3987 3988 3989 3990

	return 0;
}

3991
/**
3992
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3993 3994
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3995 3996 3997 3998 3999
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4000
 */
4001
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4002
{
4003
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4004
	struct dwc2_hsotg *hs = hs_ep->parent;
4005 4006 4007
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4008
	u32 xfertype;
4009 4010 4011

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4012 4013
	if (index == 0) {
		if (value)
4014
			dwc2_hsotg_stall_ep0(hs);
4015 4016 4017 4018 4019 4020
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4021 4022 4023 4024 4025
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4026 4027 4028 4029 4030 4031
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4032 4033
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4034
		epctl = dwc2_readl(hs->regs + epreg);
4035 4036

		if (value) {
4037
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4038 4039 4040 4041 4042 4043 4044 4045 4046
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
4047
		dwc2_writel(epctl, hs->regs + epreg);
4048
	} else {
4049

4050
		epreg = DOEPCTL(index);
4051
		epctl = dwc2_readl(hs->regs + epreg);
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
4062
		dwc2_writel(epctl, hs->regs + epreg);
4063
	}
4064

4065 4066
	hs_ep->halted = value;

4067 4068 4069
	return 0;
}

4070
/**
4071
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4072 4073 4074
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4075
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4076
{
4077
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4078
	struct dwc2_hsotg *hs = hs_ep->parent;
4079 4080 4081 4082
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4083
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4084 4085 4086 4087 4088
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4089 4090 4091 4092 4093 4094 4095 4096
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4097
	/* note, don't believe we have any call for the fifo routines */
4098 4099
};

4100
/**
4101
 * dwc2_hsotg_init - initalize the usb core
4102 4103
 * @hsotg: The driver state
 */
4104
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4105
{
4106
	u32 trdtim;
4107
	u32 usbcfg;
4108 4109
	/* unmask subset of endpoint interrupts */

4110 4111 4112
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4113

4114 4115 4116
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4117

4118
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4119 4120

	/* Be in disconnected state until gadget is registered */
4121
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4122 4123 4124 4125

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4126 4127
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4128

4129
	dwc2_hsotg_init_fifo(hsotg);
4130

4131 4132 4133 4134 4135
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4136
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4137
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4138 4139 4140
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4141

4142 4143
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4144 4145
}

4146
/**
4147
 * dwc2_hsotg_udc_start - prepare the udc for work
4148 4149 4150 4151 4152 4153
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4154
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4155
			   struct usb_gadget_driver *driver)
4156
{
4157
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4158
	unsigned long flags;
4159 4160 4161
	int ret;

	if (!hsotg) {
4162
		pr_err("%s: called with no device\n", __func__);
4163 4164 4165 4166 4167 4168 4169 4170
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4171
	if (driver->max_speed < USB_SPEED_FULL)
4172 4173
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4174
	if (!driver->setup) {
4175 4176 4177 4178 4179 4180 4181 4182
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4183
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4184 4185
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4186 4187 4188 4189
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4190 4191
	}

4192 4193
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4194

4195
	spin_lock_irqsave(&hsotg->lock, flags);
4196 4197 4198 4199 4200
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4201
	hsotg->enabled = 0;
4202 4203
	spin_unlock_irqrestore(&hsotg->lock, flags);

4204
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4205

4206 4207 4208 4209 4210 4211 4212
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4213
/**
4214
 * dwc2_hsotg_udc_stop - stop the udc
4215 4216 4217 4218 4219
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4220
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4221
{
4222
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4223
	unsigned long flags = 0;
4224 4225 4226 4227 4228 4229
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4230 4231
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4232
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4233
		if (hsotg->eps_out[ep])
4234
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4235
	}
4236

4237 4238
	spin_lock_irqsave(&hsotg->lock, flags);

4239
	hsotg->driver = NULL;
4240
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4241
	hsotg->enabled = 0;
4242

4243 4244
	spin_unlock_irqrestore(&hsotg->lock, flags);

4245 4246
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4247

4248 4249
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4250 4251 4252 4253

	return 0;
}

4254
/**
4255
 * dwc2_hsotg_gadget_getframe - read the frame number
4256 4257 4258 4259
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4260
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4261
{
4262
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4263 4264
}

4265
/**
4266
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4267 4268 4269 4270 4271
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4272
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4273
{
4274
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4275 4276
	unsigned long flags = 0;

4277 4278 4279 4280 4281 4282 4283 4284
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4285 4286 4287

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4288
		hsotg->enabled = 1;
4289 4290
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4291
	} else {
4292 4293
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4294
		hsotg->enabled = 0;
4295 4296 4297 4298 4299 4300 4301 4302
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4303
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4304 4305 4306 4307 4308 4309 4310
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4311 4312 4313 4314 4315 4316 4317
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4318
	if (is_active) {
4319
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4320

4321
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4322
		if (hsotg->enabled)
4323
			dwc2_hsotg_core_connect(hsotg);
4324
	} else {
4325 4326
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4327 4328 4329 4330 4331 4332
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4333
/**
4334
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4335 4336 4337 4338 4339
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4340
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4341 4342 4343 4344 4345 4346 4347 4348
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4349 4350 4351 4352 4353 4354 4355
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4356 4357 4358
};

/**
4359
 * dwc2_hsotg_initep - initialise a single endpoint
4360 4361 4362 4363 4364 4365 4366 4367
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4368 4369
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
4370 4371
				       int epnum,
				       bool dir_in)
4372 4373 4374 4375 4376
{
	char *dir;

	if (epnum == 0)
		dir = "";
4377
	else if (dir_in)
4378
		dir = "in";
4379 4380
	else
		dir = "out";
4381

4382
	hs_ep->dir_in = dir_in;
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4396 4397 4398 4399 4400 4401

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4402
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4403

4404 4405 4406
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4407 4408 4409 4410
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4411 4412 4413 4414 4415 4416 4417 4418
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4419 4420
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4421 4422 4423 4424
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4425
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4426
		if (dir_in)
4427
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4428
		else
4429
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4430 4431 4432
	}
}

4433
/**
4434
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4435 4436 4437 4438
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4439
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4440
{
4441 4442 4443 4444
	u32 cfg;
	u32 ep_type;
	u32 i;

4445
	/* check hardware configuration */
4446

4447 4448
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4449 4450
	/* Add ep0 */
	hsotg->num_of_eps++;
4451

4452
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4453 4454 4455
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4456
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4457 4458
	hsotg->eps_out[0] = hsotg->eps_in[0];

4459
	cfg = hsotg->hw_params.dev_ep_dirs;
4460
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4461 4462 4463 4464
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4465
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4466 4467 4468 4469 4470 4471
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4472
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4473 4474 4475 4476 4477
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4478 4479
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4480

4481 4482 4483 4484
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4485
	return 0;
4486 4487
}

4488
/**
4489
 * dwc2_hsotg_dump - dump state of the udc
4490 4491
 * @param: The device state
 */
4492
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4493
{
M
Mark Brown 已提交
4494
#ifdef DEBUG
4495 4496 4497 4498 4499 4500
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4501 4502
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4503

4504
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4505
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4506 4507

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4508
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4509 4510 4511

	/* show periodic fifo settings */

4512
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4513
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4514
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4515 4516
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4517 4518
	}

4519
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4520 4521
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4522 4523 4524
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4525

4526
		val = dwc2_readl(regs + DOEPCTL(idx));
4527 4528
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4529 4530 4531
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4532 4533 4534 4535

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4536
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4537
#endif
4538 4539
}

4540
/**
4541 4542 4543
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4544
 */
4545
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4546
{
4547
	struct device *dev = hsotg->dev;
4548 4549
	int epnum;
	int ret;
4550

4551 4552
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4553 4554
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4555

4556
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4557
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4558
	hsotg->gadget.name = dev_name(dev);
4559 4560
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4561 4562
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4563

4564
	ret = dwc2_hsotg_hw_cfg(hsotg);
4565 4566
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4567
		return ret;
4568 4569
	}

4570 4571
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4572
	if (!hsotg->ctrl_buff)
4573
		return -ENOMEM;
4574 4575 4576

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4577
	if (!hsotg->ep0_buff)
4578
		return -ENOMEM;
4579

4580 4581 4582 4583 4584 4585
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4586
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4587
				dev_name(hsotg->dev), hsotg);
4588
	if (ret < 0) {
4589
		dev_err(dev, "cannot claim IRQ for gadget\n");
4590
		return ret;
4591 4592
	}

4593 4594 4595 4596
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4597
		return -EINVAL;
4598 4599 4600 4601 4602
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4603
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4604 4605 4606

	/* allocate EP0 request */

4607
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4608 4609 4610
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4611
		return -ENOMEM;
4612
	}
4613 4614

	/* initialise the endpoints now the core has been initialised */
4615 4616
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4617
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4618 4619
								epnum, 1);
		if (hsotg->eps_out[epnum])
4620
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4621 4622
								epnum, 0);
	}
4623

4624
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4625
	if (ret)
4626
		return ret;
4627

4628
	dwc2_hsotg_dump(hsotg);
4629 4630 4631 4632

	return 0;
}

4633
/**
4634
 * dwc2_hsotg_remove - remove function for hsotg driver
4635 4636
 * @pdev: The platform information for the driver
 */
4637
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4638
{
4639
	usb_del_gadget_udc(&hsotg->gadget);
4640

4641 4642 4643
	return 0;
}

4644
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4645 4646 4647
{
	unsigned long flags;

4648
	if (hsotg->lx_state != DWC2_L0)
4649
		return 0;
4650

4651 4652 4653
	if (hsotg->driver) {
		int ep;

4654 4655 4656
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4657 4658
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4659 4660
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4661 4662
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4663

4664 4665
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4666
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4667
			if (hsotg->eps_out[ep])
4668
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4669
		}
4670 4671
	}

4672
	return 0;
4673 4674
}

4675
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4676 4677 4678
{
	unsigned long flags;

4679
	if (hsotg->lx_state == DWC2_L2)
4680
		return 0;
4681

4682 4683 4684
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4685

4686
		spin_lock_irqsave(&hsotg->lock, flags);
4687
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4688
		if (hsotg->enabled)
4689
			dwc2_hsotg_core_connect(hsotg);
4690 4691
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4692

4693
	return 0;
4694
}
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}