gadget.c 96.6 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

184 185 186 187 188
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
189

190 191
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
192 193
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
194 195
	 * known values.
	 */
196 197

	/* start at the end of the GNPTXFSIZ, rounded up */
198
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
199

200
	/*
201
	 * Configure fifos sizes from provided configuration and assign
202 203
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
204
	 */
205 206 207
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
208
		val = addr;
209 210
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
211
			  "insufficient fifo memory");
212
		addr += hsotg->g_tx_fifo_sz[ep];
213

214
		writel(val, hsotg->regs + DPTXFSIZN(ep));
215
	}
216

217 218 219 220
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
221

222 223
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224 225 226 227

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
228
		val = readl(hsotg->regs + GRSTCTL);
229

230
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231 232 233 234 235 236
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
237
			break;
238 239 240 241 242 243
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605
	else
		epsize = 0;

606 607 608 609 610 611 612 613
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
614
			hs_ep->send_zlp = 1;
615 616
	}

617 618
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
619 620 621 622 623 624 625 626 627 628

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

629
	if (using_dma(hsotg) && !continuing) {
630 631
		unsigned int dma_reg;

632 633 634 635
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
636

637
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 639
		writel(ureq->dma, hsotg->regs + dma_reg);

640
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641
			__func__, &ureq->dma, dma_reg);
642 643
	}

644 645
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
646

647
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
648 649

	/* For Setup request do not clear NAK */
650
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
651
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652

653 654 655
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

656 657
	/*
	 * set these, it seems that DMA support increments past the end
658
	 * of the packet buffer so we need to calculate the length from
659 660
	 * this information.
	 */
661 662 663 664 665 666 667 668 669 670
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

671 672 673 674
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
675
	if (dir_in)
676
		writel(DIEPMSK_INTKNTXFEMPMSK,
677
		       hsotg->regs + DIEPINT(index));
678

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688 689
			 index, readl(hsotg->regs + epctrl_reg));

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, readl(hsotg->regs + epctrl_reg));
692 693 694

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697 698 699 700 701 702 703 704 705 706 707
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
710 711 712 713
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
738
	struct dwc2_hsotg *hs = hs_ep->parent;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

766 767 768 769
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
770
	struct dwc2_hsotg *hs = hs_ep->parent;
771 772 773 774 775 776 777 778 779 780
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
801
	struct dwc2_hsotg *hsotg = hs_ep->parent;
802 803 804 805 806 807 808 809 810 811 812 813 814

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
815
 */
816
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
817 818
					   u32 windex)
{
819
	struct s3c_hsotg_ep *ep;
820 821 822 823 824 825
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

826
	if (idx > hsotg->num_of_eps)
827 828
		return NULL;

829 830
	ep = index_to_ep(hsotg, idx, dir);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
866 867 868 869 870
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
890
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
891 892
					struct usb_ctrlrequest *ctrl)
{
893
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

956 957 958 959 960
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
961
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
962 963
					 struct usb_ctrlrequest *ctrl)
{
964
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
965 966
	struct s3c_hsotg_req *hs_req;
	bool restart;
967 968
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
969
	int ret;
970
	bool halted;
971 972 973 974 975 976 977 978 979 980 981 982 983 984

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
985 986
			halted = ep->halted;

987
			s3c_hsotg_ep_sethalt(&ep->ep, set);
988 989 990 991 992 993 994

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
995

996 997 998 999 1000 1001
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1002 1003 1004 1005 1006 1007 1008 1009
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1010 1011
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1034
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1035

1036 1037 1038 1039 1040 1041
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1042
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1043
{
1044
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1057 1058
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1059 1060 1061
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1062
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1063 1064 1065 1066 1067 1068 1069 1070 1071
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1072 1073 1074 1075 1076 1077 1078 1079 1080
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1081
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1082 1083
				      struct usb_ctrlrequest *ctrl)
{
1084
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1085 1086 1087 1088 1089 1090 1091
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1092 1093 1094 1095
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1096
		ep0->dir_in = 1;
1097 1098 1099 1100 1101
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1102 1103 1104 1105

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1106
			hsotg->connected = 1;
1107
			dcfg = readl(hsotg->regs + DCFG);
1108
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1109 1110
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1111
			writel(dcfg, hsotg->regs + DCFG);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1132
		spin_unlock(&hsotg->lock);
1133
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1134
		spin_lock(&hsotg->lock);
1135 1136 1137 1138
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1139 1140
	/*
	 * the request is either unhandlable, or is not formatted correctly
1141 1142 1143
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1144 1145
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1160
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1161 1162 1163 1164 1165 1166

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1167
	spin_lock(&hsotg->lock);
1168 1169 1170 1171
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1172
	spin_unlock(&hsotg->lock);
1173 1174 1175 1176 1177 1178 1179 1180 1181
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1182
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1200
	hsotg->eps_out[0]->dir_in = 0;
1201
	hsotg->eps_out[0]->send_zlp = 0;
1202
	hsotg->ep0_state = DWC2_EP0_SETUP;
1203

1204
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1205 1206
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1207 1208 1209 1210
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1211 1212 1213
	}
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1247
 */
1248
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1263 1264 1265 1266
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1277 1278 1279 1280
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1281 1282

	if (hs_req->req.complete) {
1283
		spin_unlock(&hsotg->lock);
1284
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1285
		spin_lock(&hsotg->lock);
1286 1287
	}

1288 1289
	/*
	 * Look to see if there is anything else to do. Note, the completion
1290
	 * of the previous request may have caused a new request to be started
1291 1292
	 * so be careful when doing this.
	 */
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1313
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1314
{
1315
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1316
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1317
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1318 1319 1320 1321
	int to_read;
	int max_req;
	int read_ptr;

1322

1323
	if (!hs_req) {
1324
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1325 1326
		int ptr;

1327
		dev_dbg(hsotg->dev,
1328
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1342 1343 1344
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1345
	if (to_read > max_req) {
1346 1347
		/*
		 * more data appeared than we where willing
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1359 1360 1361 1362
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1363
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1364 1365 1366
}

/**
1367
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1368
 * @hsotg: The device instance
1369
 * @dir_in: If IN zlp
1370 1371 1372 1373 1374
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1375
 * currently believed that we do not need to wait for any space in
1376 1377
 * the TxFIFO.
 */
1378
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1379
{
1380
	/* eps_out[0] is used in both directions */
1381 1382
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1383

1384
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1395
 */
1396
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1397
{
1398
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1399
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1400 1401
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1402
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1403 1404 1405 1406 1407 1408 1409
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1410 1411 1412 1413 1414 1415 1416
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1417 1418 1419
	if (using_dma(hsotg)) {
		unsigned size_done;

1420 1421
		/*
		 * Calculate the size of the transfer by checking how much
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1435 1436 1437 1438 1439 1440
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1441 1442 1443 1444
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1445 1446 1447 1448
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1449 1450
	}

1451 1452 1453 1454
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1455 1456
	}

1457
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1458 1459 1460 1461 1462 1463 1464
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1465
 */
1466
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1467 1468 1469
{
	u32 dsts;

1470 1471 1472
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1485
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1486 1487 1488 1489 1490 1491 1492
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1493
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1494
{
1495
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1496 1497 1498 1499
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1500 1501
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1502

1503 1504
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1505 1506 1507 1508 1509

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1510 1511 1512
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1513 1514
		break;

1515
	case GRXSTS_PKTSTS_OUTDONE:
1516 1517 1518 1519
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1520
			s3c_hsotg_handle_outdone(hsotg, epnum);
1521 1522
		break;

1523
	case GRXSTS_PKTSTS_SETUPDONE:
1524 1525 1526
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1527
			readl(hsotg->regs + DOEPCTL(0)));
1528 1529 1530 1531 1532 1533 1534
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1535 1536
		break;

1537
	case GRXSTS_PKTSTS_OUTRX:
1538 1539 1540
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1541
	case GRXSTS_PKTSTS_SETUPRX:
1542 1543 1544
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1545
			readl(hsotg->regs + DOEPCTL(0)));
1546

1547 1548
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1564
 */
1565 1566 1567 1568
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1569
		return D0EPCTL_MPS_64;
1570
	case 32:
1571
		return D0EPCTL_MPS_32;
1572
	case 16:
1573
		return D0EPCTL_MPS_16;
1574
	case 8:
1575
		return D0EPCTL_MPS_8;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1592
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1593
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1594
{
1595
	struct s3c_hsotg_ep *hs_ep;
1596 1597
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1598
	u32 mcval;
1599 1600
	u32 reg;

1601 1602 1603 1604
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1605 1606 1607 1608 1609
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1610
		hs_ep->ep.maxpacket = mps;
1611
		hs_ep->mc = 1;
1612
	} else {
1613
		mpsval = mps & DXEPCTL_MPS_MASK;
1614
		if (mpsval > 1024)
1615
			goto bad_mps;
1616 1617 1618 1619
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1620
		hs_ep->ep.maxpacket = mpsval;
1621 1622
	}

1623 1624 1625 1626 1627 1628
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1629
		reg = readl(regs + DOEPCTL(ep));
1630
		reg &= ~DXEPCTL_MPS_MASK;
1631
		reg |= mpsval;
1632
		writel(reg, regs + DOEPCTL(ep));
1633
	}
1634 1635 1636 1637 1638 1639 1640

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1641 1642 1643 1644 1645
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1646
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1647 1648 1649 1650
{
	int timeout;
	int val;

1651
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1652
		hsotg->regs + GRSTCTL);
1653 1654 1655 1656 1657

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1658
		val = readl(hsotg->regs + GRSTCTL);
1659

1660
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1661 1662 1663 1664 1665 1666
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1667
			break;
1668 1669 1670 1671 1672
		}

		udelay(1);
	}
}
1673 1674 1675 1676 1677 1678 1679 1680 1681

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1682
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1683 1684 1685 1686
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1687 1688 1689 1690 1691 1692 1693 1694
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1695
		return 0;
1696
	}
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1715
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1716 1717 1718
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1719
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1720 1721 1722 1723 1724 1725 1726
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1727
	/* Finish ZLP handling for IN EP0 transactions */
1728 1729
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1730
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1731
		s3c_hsotg_enqueue_setup(hsotg);
1732 1733 1734
		return;
	}

1735 1736
	/*
	 * Calculate the size of the transfer by checking how much is left
1737 1738 1739 1740 1741 1742 1743 1744
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1745
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1746 1747 1748 1749 1750 1751 1752 1753 1754

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1755 1756 1757
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1758 1759 1760
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1761 1762 1763
		return;
	}

1764
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1765
	if (hs_ep->send_zlp) {
1766
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1767
		hs_ep->send_zlp = 0;
1768 1769 1770 1771
		/* transfer will be completed on next complete interrupt */
		return;
	}

1772 1773 1774 1775 1776 1777 1778
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1779 1780 1781 1782 1783 1784 1785 1786 1787
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1788
 */
1789
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1790 1791
			    int dir_in)
{
1792
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1793 1794 1795
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1796
	u32 ints;
1797
	u32 ctrl;
1798 1799

	ints = readl(hsotg->regs + epint_reg);
1800
	ctrl = readl(hsotg->regs + epctl_reg);
1801

1802 1803 1804
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1805 1806 1807 1808 1809 1810
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1811 1812 1813
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1814 1815 1816 1817
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1818
	if (ints & DXEPINT_XFERCOMPL) {
1819
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1820 1821
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1822
			else
1823
				ctrl |= DXEPCTL_SETODDFR;
1824 1825 1826
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1827
		dev_dbg(hsotg->dev,
1828
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1829 1830 1831
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1832 1833 1834 1835
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1836 1837 1838
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1839
			if (idx == 0 && !hs_ep->req)
1840 1841
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1842 1843 1844 1845
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1846

1847
			s3c_hsotg_handle_outdone(hsotg, idx);
1848 1849 1850
		}
	}

1851
	if (ints & DXEPINT_EPDISBLD) {
1852 1853
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1854 1855 1856
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1857
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1858

1859 1860
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1861
				int dctl = readl(hsotg->regs + DCTL);
1862

1863
				dctl |= DCTL_CGNPINNAK;
1864
				writel(dctl, hsotg->regs + DCTL);
1865 1866 1867 1868
			}
		}
	}

1869
	if (ints & DXEPINT_AHBERR)
1870 1871
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1872
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1873 1874 1875
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1876 1877
			/*
			 * this is the notification we've received a
1878 1879
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1880 1881
			 * the setup here.
			 */
1882 1883 1884 1885

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1886
				s3c_hsotg_handle_outdone(hsotg, 0);
1887 1888 1889
		}
	}

1890
	if (ints & DXEPINT_BACK2BACKSETUP)
1891 1892
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1893
	if (dir_in && !hs_ep->isochronous) {
1894
		/* not sure if this is important, but we'll clear it anyway */
1895
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1896 1897 1898 1899 1900
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1901
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1902 1903 1904
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1905 1906 1907

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1908
		    ints & DIEPMSK_TXFIFOEMPTY) {
1909 1910
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1911 1912
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1913
		}
1914 1915 1916 1917 1918 1919 1920 1921 1922
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1923
 */
1924
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1925
{
1926
	u32 dsts = readl(hsotg->regs + DSTS);
1927
	int ep0_mps = 0, ep_mps = 8;
1928

1929 1930
	/*
	 * This should signal the finish of the enumeration phase
1931
	 * of the USB handshaking, so we should now know what rate
1932 1933
	 * we connected at.
	 */
1934 1935 1936

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1937 1938
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1939
	 * it seems IN transfers must be a even number of packets we do
1940 1941
	 * not advertise a 64byte MPS on EP0.
	 */
1942 1943

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1944 1945 1946
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1947 1948
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1949
		ep_mps = 1023;
1950 1951
		break;

1952
	case DSTS_ENUMSPD_HS:
1953 1954
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1955
		ep_mps = 1024;
1956 1957
		break;

1958
	case DSTS_ENUMSPD_LS:
1959
		hsotg->gadget.speed = USB_SPEED_LOW;
1960 1961
		/*
		 * note, we don't actually support LS in this driver at the
1962 1963 1964 1965 1966
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1967 1968
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1969

1970 1971 1972 1973
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1974 1975 1976

	if (ep0_mps) {
		int i;
1977 1978 1979 1980 1981 1982 1983 1984 1985
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1986 1987 1988 1989 1990 1991 1992
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1993 1994
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2006
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2007
			      struct s3c_hsotg_ep *ep,
2008
			      int result)
2009 2010
{
	struct s3c_hsotg_req *req, *treq;
2011
	unsigned size;
2012

2013
	ep->req = NULL;
2014

2015
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2016 2017
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2018

2019 2020 2021 2022 2023
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2024 2025 2026
}

/**
2027
 * s3c_hsotg_disconnect - disconnect service
2028 2029
 * @hsotg: The device state.
 *
2030 2031 2032
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2033
 */
2034
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2035 2036 2037
{
	unsigned ep;

2038 2039 2040 2041
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2042 2043 2044 2045 2046 2047 2048 2049 2050

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2051 2052 2053

	call_gadget(hsotg, disconnect);
}
2054
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2055 2056 2057 2058 2059 2060

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2061
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2062 2063 2064 2065 2066
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2067
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2068 2069 2070 2071
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2087 2088 2089
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2090

2091 2092 2093 2094 2095
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2096
 */
2097
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2098 2099 2100 2101 2102 2103 2104
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2105
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2106

2107
	timeout = 10000;
2108
	do {
2109
		grstctl = readl(hsotg->regs + GRSTCTL);
2110
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2111

2112
	if (grstctl & GRSTCTL_CSFTRST) {
2113 2114 2115 2116
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2117
	timeout = 10000;
2118 2119

	while (1) {
2120
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2121 2122 2123 2124 2125 2126 2127 2128

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2129
		if (!(grstctl & GRSTCTL_AHBIDLE))
2130 2131 2132 2133 2134 2135 2136 2137 2138
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2139 2140 2141 2142 2143 2144
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2145
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2155
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2156
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2157 2158 2159

	s3c_hsotg_init_fifo(hsotg);

2160
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2161

2162
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2163 2164

	/* Clear any pending OTG interrupts */
2165
	writel(0xffffffff, hsotg->regs + GOTGINT);
2166 2167

	/* Clear any pending interrupts */
2168
	writel(0xffffffff, hsotg->regs + GINTSTS);
2169

2170 2171 2172 2173 2174 2175
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2176 2177

	if (using_dma(hsotg))
2178
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2179
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2180
		       hsotg->regs + GAHBCFG);
2181
	else
2182 2183 2184
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2185
		       hsotg->regs + GAHBCFG);
2186 2187

	/*
2188 2189 2190
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2191 2192
	 */

2193 2194
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2195 2196 2197 2198
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2199 2200 2201 2202 2203

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2204 2205 2206 2207 2208
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2209

2210
	writel(0, hsotg->regs + DAINTMSK);
2211 2212

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2213 2214
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2215 2216

	/* enable in and out endpoint interrupts */
2217
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2218 2219 2220 2221 2222 2223 2224

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2225
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2226 2227 2228 2229 2230

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2231
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2232
	udelay(10);  /* see openiboot */
2233
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2234

2235
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2236 2237

	/*
2238
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2239 2240 2241 2242
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2243 2244
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2245

2246
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2247 2248
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2249
	       hsotg->regs + DOEPCTL0);
2250 2251

	/* enable, but don't activate EP0in */
2252
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2253
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2254 2255 2256 2257

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2258 2259
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2260 2261

	/* clear global NAKs */
2262
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2263
	       hsotg->regs + DCTL);
2264 2265 2266 2267

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2268
	hsotg->last_rst = jiffies;
2269 2270
}

2271
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2272 2273 2274 2275
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2276

2277
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2278
{
2279
	/* remove the soft-disconnect and let's go */
2280
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2281 2282
}

2283 2284 2285 2286 2287 2288 2289
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2290
	struct dwc2_hsotg *hsotg = pw;
2291 2292 2293 2294
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2295
	spin_lock(&hsotg->lock);
2296
irq_retry:
2297 2298
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2299 2300 2301 2302 2303 2304

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2305 2306
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2307 2308

		s3c_hsotg_irq_enumdone(hsotg);
2309 2310
	}

2311
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2312
		u32 daint = readl(hsotg->regs + DAINT);
2313 2314
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2315 2316
		int ep;

2317
		daint &= daintmsk;
2318 2319
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2320

2321 2322
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2323 2324
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2325 2326 2327 2328
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2329 2330
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2331 2332 2333 2334 2335
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2336
	if (gintsts & GINTSTS_USBRST) {
2337

2338
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2339

2340
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2341
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2342
			readl(hsotg->regs + GNPTXSTS));
2343

2344
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2345

2346 2347 2348
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2349
		if (usb_status & GOTGCTL_BSESVLD) {
2350 2351
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2352

2353
				kill_all_requests(hsotg, hsotg->eps_out[0],
2354
							  -ECONNRESET);
2355

2356 2357
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2358 2359
			}
		}
2360 2361 2362 2363
	}

	/* check both FIFOs */

2364
	if (gintsts & GINTSTS_NPTXFEMP) {
2365 2366
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2367 2368
		/*
		 * Disable the interrupt to stop it happening again
2369
		 * unless one of these endpoint routines decides that
2370 2371
		 * it needs re-enabling
		 */
2372

2373
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2374 2375 2376
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2377
	if (gintsts & GINTSTS_PTXFEMP) {
2378 2379
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2380
		/* See note in GINTSTS_NPTxFEmp */
2381

2382
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2383 2384 2385
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2386
	if (gintsts & GINTSTS_RXFLVL) {
2387 2388
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2389
		 * we need to retry s3c_hsotg_handle_rx if this is still
2390 2391
		 * set.
		 */
2392 2393 2394 2395

		s3c_hsotg_handle_rx(hsotg);
	}

2396
	if (gintsts & GINTSTS_ERLYSUSP) {
2397
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2398
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2399 2400
	}

2401 2402
	/*
	 * these next two seem to crop-up occasionally causing the core
2403
	 * to shutdown the USB transfer, so try clearing them and logging
2404 2405
	 * the occurrence.
	 */
2406

2407
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2408 2409
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2410
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2411 2412

		s3c_hsotg_dump(hsotg);
2413 2414
	}

2415
	if (gintsts & GINTSTS_GINNAKEFF) {
2416 2417
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2418
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2419 2420

		s3c_hsotg_dump(hsotg);
2421 2422
	}

2423 2424 2425 2426
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2427 2428 2429 2430

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2431 2432
	spin_unlock(&hsotg->lock);

2433 2434 2435 2436 2437 2438 2439 2440 2441
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2442
 */
2443 2444 2445 2446
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2447
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2448
	unsigned long flags;
2449
	unsigned int index = hs_ep->index;
2450 2451 2452
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2453 2454
	unsigned int dir_in;
	unsigned int i, val, size;
2455
	int ret = 0;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2471
	mps = usb_endpoint_maxp(desc);
2472 2473 2474

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2475
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2476 2477 2478 2479 2480
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2481
	spin_lock_irqsave(&hsotg->lock, flags);
2482

2483 2484
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2485

2486 2487 2488 2489
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2490
	epctrl |= DXEPCTL_USBACTEP;
2491

2492 2493
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2494 2495 2496 2497 2498
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2499
	epctrl |= DXEPCTL_SNAK;
2500 2501

	/* update the endpoint state */
2502
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2503 2504

	/* default, set to non-periodic */
2505
	hs_ep->isochronous = 0;
2506
	hs_ep->periodic = 0;
2507
	hs_ep->halted = 0;
2508
	hs_ep->interval = desc->bInterval;
2509

2510 2511 2512
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2513 2514
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2515 2516
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2517 2518 2519 2520
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2521 2522

	case USB_ENDPOINT_XFER_BULK:
2523
		epctrl |= DXEPCTL_EPTYPE_BULK;
2524 2525 2526
		break;

	case USB_ENDPOINT_XFER_INT:
2527
		if (dir_in)
2528 2529
			hs_ep->periodic = 1;

2530
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2531 2532 2533
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2534
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2535 2536 2537
		break;
	}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2549 2550
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2551 2552
	 * a unique tx-fifo even if it is non-periodic.
	 */
2553
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2554 2555
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2556
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2557
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2558 2559 2560 2561 2562 2563
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2564 2565 2566 2567 2568
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2569
		}
2570
		if (!fifo_index) {
2571 2572
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2573 2574 2575
			ret = -ENOMEM;
			goto error;
		}
2576 2577 2578 2579
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2580
	}
2581

2582 2583
	/* for non control endpoints, set PID to D0 */
	if (index)
2584
		epctrl |= DXEPCTL_SETD0PID;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2596
error:
2597
	spin_unlock_irqrestore(&hsotg->lock, flags);
2598
	return ret;
2599 2600
}

2601 2602 2603 2604
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2605
static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2606 2607
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2609 2610 2611 2612 2613 2614
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2615
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2616

2617
	if (ep == &hsotg->eps_out[0]->ep) {
2618 2619 2620 2621
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2622
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2623

2624
	spin_lock_irqsave(&hsotg->lock, flags);
2625

2626 2627 2628
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2629 2630

	ctrl = readl(hsotg->regs + epctrl_reg);
2631 2632 2633
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2634 2635 2636 2637 2638 2639 2640

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2641 2642 2643
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2644
	spin_unlock_irqrestore(&hsotg->lock, flags);
2645 2646 2647
	return 0;
}

2648 2649 2650 2651
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	return s3c_hsotg_ep_disable_force(ep, false);
}
2652 2653 2654 2655
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2656
 */
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2669 2670 2671 2672 2673
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2674 2675 2676 2677
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2678
	struct dwc2_hsotg *hs = hs_ep->parent;
2679 2680
	unsigned long flags;

2681
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2682

2683
	spin_lock_irqsave(&hs->lock, flags);
2684 2685

	if (!on_list(hs_ep, hs_req)) {
2686
		spin_unlock_irqrestore(&hs->lock, flags);
2687 2688 2689 2690
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2691
	spin_unlock_irqrestore(&hs->lock, flags);
2692 2693 2694 2695

	return 0;
}

2696 2697 2698 2699 2700
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2701 2702 2703
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2704
	struct dwc2_hsotg *hs = hs_ep->parent;
2705 2706 2707
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2708
	u32 xfertype;
2709 2710 2711

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2712 2713 2714 2715 2716 2717 2718 2719 2720
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2737
	} else {
2738

2739 2740
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2752
	}
2753

2754 2755
	hs_ep->halted = value;

2756 2757 2758
	return 0;
}

2759 2760 2761 2762 2763 2764 2765 2766
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2767
	struct dwc2_hsotg *hs = hs_ep->parent;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2778 2779 2780 2781 2782
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2783
	.queue		= s3c_hsotg_ep_queue_lock,
2784
	.dequeue	= s3c_hsotg_ep_dequeue,
2785
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2786
	/* note, don't believe we have any call for the fifo routines */
2787 2788
};

2789 2790
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2791
 * @hsotg: The driver state
2792 2793 2794 2795
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2796
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2797 2798 2799 2800
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2801

2802
	if (hsotg->uphy)
2803
		usb_phy_init(hsotg->uphy);
2804
	else if (hsotg->plat && hsotg->plat->phy_init)
2805
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2806 2807 2808 2809
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2810 2811 2812 2813
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2814
 * @hsotg: The driver state
2815 2816 2817 2818
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2819
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2820 2821 2822
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2823
	if (hsotg->uphy)
2824
		usb_phy_shutdown(hsotg->uphy);
2825
	else if (hsotg->plat && hsotg->plat->phy_exit)
2826
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2827 2828 2829 2830
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2831 2832
}

2833 2834 2835 2836
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2837
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2838 2839 2840
{
	/* unmask subset of endpoint interrupts */

2841 2842 2843
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2844

2845 2846 2847
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2848

2849
	writel(0, hsotg->regs + DAINTMSK);
2850 2851

	/* Be in disconnected state until gadget is registered */
2852
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2853 2854 2855

	if (0) {
		/* post global nak until we're ready */
2856
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2857
		       hsotg->regs + DCTL);
2858 2859 2860 2861 2862
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2863 2864
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2865 2866 2867 2868

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2869
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2870
	       hsotg->regs + GUSBCFG);
2871

2872 2873
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2884 2885
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2886
{
2887
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2888
	unsigned long flags;
2889 2890 2891
	int ret;

	if (!hsotg) {
2892
		pr_err("%s: called with no device\n", __func__);
2893 2894 2895 2896 2897 2898 2899 2900
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2901
	if (driver->max_speed < USB_SPEED_FULL)
2902 2903
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2904
	if (!driver->setup) {
2905 2906 2907 2908
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2909
	mutex_lock(&hsotg->init_mutex);
2910 2911 2912 2913
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2914
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2915 2916
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2917 2918
	clk_enable(hsotg->clk);

2919 2920
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2921
	if (ret) {
2922
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2923 2924 2925
		goto err;
	}

2926
	s3c_hsotg_phy_enable(hsotg);
2927 2928
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2929

2930 2931 2932
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2933
	hsotg->enabled = 0;
2934 2935
	spin_unlock_irqrestore(&hsotg->lock, flags);

2936
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2937

2938 2939
	mutex_unlock(&hsotg->init_mutex);

2940 2941 2942
	return 0;

err:
2943
	mutex_unlock(&hsotg->init_mutex);
2944 2945 2946 2947
	hsotg->driver = NULL;
	return ret;
}

2948 2949 2950 2951 2952 2953 2954
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2955
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2956
{
2957
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2958
	unsigned long flags = 0;
2959 2960 2961 2962 2963
	int ep;

	if (!hsotg)
		return -ENODEV;

2964 2965
	mutex_lock(&hsotg->init_mutex);

2966
	/* all endpoints should be shutdown */
2967 2968 2969 2970 2971 2972
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2973

2974 2975
	spin_lock_irqsave(&hsotg->lock, flags);

2976
	hsotg->driver = NULL;
2977
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2978
	hsotg->enabled = 0;
2979

2980 2981
	spin_unlock_irqrestore(&hsotg->lock, flags);

2982 2983
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2984 2985
	s3c_hsotg_phy_disable(hsotg);

2986
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2987

2988 2989
	clk_disable(hsotg->clk);

2990 2991
	mutex_unlock(&hsotg->init_mutex);

2992 2993 2994
	return 0;
}

2995 2996 2997 2998 2999 3000
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3001 3002 3003 3004 3005
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3006 3007 3008 3009 3010 3011 3012 3013 3014
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3015
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3016 3017
	unsigned long flags = 0;

3018
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3019

3020
	mutex_lock(&hsotg->init_mutex);
3021 3022
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3023
		clk_enable(hsotg->clk);
3024
		hsotg->enabled = 1;
3025
		s3c_hsotg_core_connect(hsotg);
3026
	} else {
3027
		s3c_hsotg_core_disconnect(hsotg);
3028
		s3c_hsotg_disconnect(hsotg);
3029
		hsotg->enabled = 0;
3030
		clk_disable(hsotg->clk);
3031 3032 3033 3034
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3035
	mutex_unlock(&hsotg->init_mutex);
3036 3037 3038 3039

	return 0;
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3079
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3080
	.get_frame	= s3c_hsotg_gadget_getframe,
3081 3082
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3083
	.pullup                 = s3c_hsotg_pullup,
3084
	.vbus_session		= s3c_hsotg_vbus_session,
3085
	.vbus_draw		= s3c_hsotg_vbus_draw,
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3098
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3099
				       struct s3c_hsotg_ep *hs_ep,
3100 3101
				       int epnum,
				       bool dir_in)
3102 3103 3104 3105 3106
{
	char *dir;

	if (epnum == 0)
		dir = "";
3107
	else if (dir_in)
3108
		dir = "in";
3109 3110
	else
		dir = "out";
3111

3112
	hs_ep->dir_in = dir_in;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3126
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3127 3128
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3129 3130
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3131 3132 3133 3134
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3135
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3136 3137 3138 3139
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3140 3141 3142
	}
}

3143 3144 3145 3146 3147 3148
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3149
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3150
{
3151 3152 3153 3154
	u32 cfg;
	u32 ep_type;
	u32 i;

3155
	/* check hardware configuration */
3156

3157 3158 3159 3160
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3161

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3190

3191 3192
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3193

3194 3195 3196 3197
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3198
	return 0;
3199 3200
}

3201 3202 3203 3204
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3205
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3206
{
M
Mark Brown 已提交
3207
#ifdef DEBUG
3208 3209 3210 3211 3212 3213
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3214 3215
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3216 3217

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3218
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3219 3220

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3221
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3222 3223 3224

	/* show periodic fifo settings */

3225
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3226
		val = readl(regs + DPTXFSIZN(idx));
3227
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3228 3229
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3230 3231
	}

3232
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3233 3234
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3235 3236 3237
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3238

3239
		val = readl(regs + DOEPCTL(idx));
3240 3241
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3242 3243 3244
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3245 3246 3247 3248

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3249
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3250
#endif
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3264
	struct dwc2_hsotg *hsotg = seq->private;
3265 3266 3267 3268
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3269 3270 3271
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3272 3273

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3274
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3275 3276

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3277 3278
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3279 3280

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3281 3282
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3283 3284

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3285 3286
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3287

3288
	seq_puts(seq, "\nEndpoint status:\n");
3289

3290
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3291 3292
		u32 in, out;

3293 3294
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3295 3296 3297 3298

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3299 3300
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3301 3302 3303 3304

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3305
		seq_puts(seq, "\n");
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3331
 */
3332 3333
static int fifo_show(struct seq_file *seq, void *v)
{
3334
	struct dwc2_hsotg *hsotg = seq->private;
3335 3336 3337 3338
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3339
	seq_puts(seq, "Non-periodic FIFOs:\n");
3340
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3341

3342
	val = readl(regs + GNPTXFSIZ);
3343
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3344 3345
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3346

3347
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3348

3349
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3350
		val = readl(regs + DPTXFSIZN(idx));
3351 3352

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3353 3354
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3386
 */
3387 3388 3389
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3390
	struct dwc2_hsotg *hsotg = ep->parent;
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3403 3404
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3405 3406

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3407 3408
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3409 3410

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3411 3412
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3413 3414

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3415 3416
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3417

3418
	seq_puts(seq, "\n");
3419 3420 3421 3422 3423 3424
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3425
	spin_lock_irqsave(&hsotg->lock, flags);
3426 3427 3428

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3429
			seq_puts(seq, "not showing more requests...\n");
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3440
	spin_unlock_irqrestore(&hsotg->lock, flags);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3466
 */
3467
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3493
	/* Create one file for each out endpoint */
3494
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3495
		struct s3c_hsotg_ep *ep;
3496

3497 3498 3499 3500
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3520 3521 3522 3523 3524 3525 3526 3527
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3528
 */
3529
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3530 3531 3532
{
	unsigned epidx;

3533
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3534 3535 3536 3537
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3538 3539 3540 3541 3542 3543 3544
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3545 3546 3547 3548
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3549 3550
	u32 len = 0;
	u32 i = 0;
3551 3552 3553

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3585 3586 3587 3588 3589
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3590
/**
3591 3592 3593
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3594
 */
3595
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3596
{
3597 3598
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3599 3600
	int epnum;
	int ret;
3601
	int i;
3602
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3603

3604 3605 3606
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3607 3608
	s3c_hsotg_of_probe(hsotg);

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3622
	/*
3623 3624
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3625
	 */
3626 3627 3628 3629 3630 3631 3632 3633 3634
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3635 3636 3637 3638
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3639
		if (phy_get_bus_width(hsotg->phy) == 8)
3640 3641
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3642

3643
	hsotg->clk = devm_clk_get(dev, "otg");
3644
	if (IS_ERR(hsotg->clk)) {
3645
		hsotg->clk = NULL;
3646
		dev_dbg(dev, "cannot get otg clock\n");
3647 3648
	}

3649
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3650 3651 3652 3653 3654
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3655 3656 3657 3658 3659 3660
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3661

3662 3663 3664 3665 3666
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3667
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3668 3669 3670
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3671
		goto err_clk;
3672 3673 3674 3675 3676 3677
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3678
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3679
		goto err_clk;
3680 3681
	}

3682 3683
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3684

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3698
	s3c_hsotg_corereset(hsotg);
3699 3700 3701 3702 3703 3704
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3705
	s3c_hsotg_init(hsotg);
3706

3707 3708 3709
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3726 3727
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3728 3729 3730 3731 3732
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3733
		dev_err(dev, "cannot claim IRQ for gadget\n");
3734
		goto err_supplies;
3735 3736
	}

3737 3738 3739 3740
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3741
		ret = -EINVAL;
3742 3743 3744 3745 3746 3747
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3748
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3749 3750 3751

	/* allocate EP0 request */

3752
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3753 3754 3755
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3756
		ret = -ENOMEM;
3757
		goto err_supplies;
3758
	}
3759 3760

	/* initialise the endpoints now the core has been initialised */
3761 3762 3763 3764 3765 3766 3767 3768
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3769

3770
	/* disable power and clock */
3771
	s3c_hsotg_phy_disable(hsotg);
3772 3773 3774 3775

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3776
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3777
		goto err_supplies;
3778 3779
	}

3780
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3781
	if (ret)
3782
		goto err_supplies;
3783

3784 3785 3786 3787 3788 3789
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3790
err_supplies:
3791
	s3c_hsotg_phy_disable(hsotg);
3792
err_clk:
3793
	clk_disable_unprepare(hsotg->clk);
3794

3795 3796
	return ret;
}
3797
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3798

3799 3800 3801 3802
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3803
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3804
{
3805
	usb_del_gadget_udc(&hsotg->gadget);
3806
	s3c_hsotg_delete_debug(hsotg);
3807
	clk_disable_unprepare(hsotg->clk);
3808

3809 3810
	return 0;
}
3811
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3812

3813
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3814 3815 3816 3817
{
	unsigned long flags;
	int ret = 0;

3818 3819
	mutex_lock(&hsotg->init_mutex);

3820 3821 3822
	if (hsotg->driver) {
		int ep;

3823 3824 3825
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3826 3827 3828 3829 3830 3831
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3832

3833
		s3c_hsotg_phy_disable(hsotg);
3834

3835 3836 3837 3838 3839 3840
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3841 3842 3843

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3844
		clk_disable(hsotg->clk);
3845 3846
	}

3847 3848
	mutex_unlock(&hsotg->init_mutex);

3849 3850
	return ret;
}
3851
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3852

3853
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3854 3855 3856 3857
{
	unsigned long flags;
	int ret = 0;

3858 3859
	mutex_lock(&hsotg->init_mutex);

3860 3861 3862
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3863 3864

		clk_enable(hsotg->clk);
3865
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3866
					    hsotg->supplies);
3867

3868
		s3c_hsotg_phy_enable(hsotg);
3869

3870 3871 3872 3873 3874 3875
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3876
	mutex_unlock(&hsotg->init_mutex);
3877 3878 3879

	return ret;
}
3880
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);