gadget.c 106.1 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189 190
	unsigned int ep;
	unsigned int addr;
191
	int timeout;
192 193
	u32 val;

194 195 196 197
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

198
	/* set RX/NPTX FIFO sizes */
199 200
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 202
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
203

204 205
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
206 207
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
208 209
	 * known values.
	 */
210 211

	/* start at the end of the GNPTXFSIZ, rounded up */
212
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213

214
	/*
215
	 * Configure fifos sizes from provided configuration and assign
216 217
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
218
	 */
219 220 221
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
222
		val = addr;
223 224
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
225
			  "insufficient fifo memory");
226
		addr += hsotg->g_tx_fifo_sz[ep];
227

228
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229
	}
230

231 232 233 234
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
235

236
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 239 240 241

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
242
		val = dwc2_readl(hsotg->regs + GRSTCTL);
243

244
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 246 247 248 249 250
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
251
			break;
252 253 254 255 256 257
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 259 260 261 262 263 264 265
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
266
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267
						      gfp_t flags)
268
{
269
	struct dwc2_hsotg_req *req;
270

271
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
287
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 289 290 291 292
{
	return hs_ep->periodic;
}

/**
293
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294 295 296 297
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
298
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299
 * of a request to ensure the buffer is ready for access by the caller.
300
 */
301 302 303
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
304 305 306 307 308 309 310
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

311
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 313 314
}

/**
315
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316 317 318 319 320 321 322 323 324 325 326 327 328
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
329
 */
330 331 332
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
333 334
{
	bool periodic = is_ep_periodic(hs_ep);
335
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 337 338 339 340
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
341
	int max_transfer;
342 343 344 345 346 347 348

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

349
	if (periodic && !hsotg->dedicated_fifos) {
350
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 352 353
		int size_left;
		int size_done;

354 355 356 357
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
358

359
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360

361 362
		/*
		 * if shared fifo, we cannot write anything until the
363 364 365
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
366
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 368 369
			return -ENOSPC;
		}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
387
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 389
			return -ENOSPC;
		}
390
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
392 393 394

		can_write &= 0xffff;
		can_write *= 4;
395
	} else {
396
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
397 398 399 400
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

401
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
402 403 404
			return -ENOSPC;
		}

405
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
406
		can_write *= 4;	/* fifo size is in 32bit quantities. */
407 408
	}

409 410 411 412
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
413

414 415
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
416 417 418
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
419
	if (can_write > 512 && !periodic)
420 421
		can_write = 512;

422 423
	/*
	 * limit the write to one max-packet size worth of data, but allow
424
	 * the transfer to return that it did not run out of fifo space
425 426
	 * doing it.
	 */
427 428
	if (to_write > max_transfer) {
		to_write = max_transfer;
429

430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
432
			dwc2_hsotg_en_gsint(hsotg,
433 434
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
435 436
	}

437 438 439 440
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
441
		pkt_round = to_write % max_transfer;
442

443 444
		/*
		 * Round the write down to an
445 446 447 448 449 450 451 452 453
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

454 455 456 457
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
458

459 460
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
461
			dwc2_hsotg_en_gsint(hsotg,
462 463
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

481
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
482 483 484 485 486 487 488 489 490 491 492

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
493
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
494 495 496 497 498 499
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
500 501
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
502
	} else {
503
		maxsize = 64+64;
504
		if (hs_ep->dir_in)
505
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
506
		else
507 508 509 510 511 512 513
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

514 515 516 517
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
518 519 520 521 522 523 524

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

542
/**
543
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
544 545 546 547 548 549 550 551
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
552 553 554
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

581 582
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
583 584

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
585
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
586 587
		hs_ep->dir_in ? "in" : "out");

588
	/* If endpoint is stalled, we will restart request later */
589
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
590

591
	if (index && ctrl & DXEPCTL_STALL) {
592 593 594 595
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

596
	length = ureq->length - ureq->actual;
597 598
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

619 620 621 622 623
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

624
	if (dir_in && index != 0)
625
		if (hs_ep->isochronous)
626
			epsize = DXEPTSIZ_MC(packets);
627
		else
628
			epsize = DXEPTSIZ_MC(1);
629 630 631
	else
		epsize = 0;

632 633 634 635 636 637 638 639
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
640
			hs_ep->send_zlp = 1;
641 642
	}

643 644
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
645 646 647 648 649 650 651 652

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
653
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
654

655
	if (using_dma(hsotg) && !continuing) {
656 657
		unsigned int dma_reg;

658 659
		/*
		 * write DMA address to control register, buffer already
660
		 * synced by dwc2_hsotg_ep_queue().
661
		 */
662

663
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
664
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
665

666
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
667
			__func__, &ureq->dma, dma_reg);
668 669
	}

670 671 672 673 674 675 676 677 678 679
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

680
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
681

682
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
683 684

	/* For Setup request do not clear NAK */
685
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
686
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
687

688
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
689
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
690

691 692
	/*
	 * set these, it seems that DMA support increments past the end
693
	 * of the packet buffer so we need to calculate the length from
694 695
	 * this information.
	 */
696 697 698 699 700 701 702
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

703
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
704 705
	}

706 707 708 709
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
710 711

	/* check ep is enabled */
712
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
713
		dev_dbg(hsotg->dev,
714
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
715
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
716

717
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
718
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
719 720

	/* enable ep interrupts */
721
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
722 723 724
}

/**
725
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
726 727 728 729 730 731 732 733 734
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
735
 */
736 737
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
738 739
			     struct usb_request *req)
{
740
	struct dwc2_hsotg_req *hs_req = our_req(req);
741
	int ret;
742 743 744 745 746

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

747 748 749
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
750 751 752 753 754 755 756 757 758 759

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

760 761
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

791 792
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

837
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
838 839
			      gfp_t gfp_flags)
{
840 841
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
842
	struct dwc2_hsotg *hs = hs_ep->parent;
843
	bool first;
844
	int ret;
845 846 847 848 849

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

850 851 852 853 854 855 856
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

857 858 859 860 861
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

862
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
863 864 865
	if (ret)
		return ret;

866 867
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
868
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
869 870 871 872 873 874 875
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

876 877 878 879 880 881 882 883
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
884

885 886 887
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
888 889 890
	return 0;
}

891
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
892 893
			      gfp_t gfp_flags)
{
894
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
895
	struct dwc2_hsotg *hs = hs_ep->parent;
896 897 898 899
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
900
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
901 902 903 904 905
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

906
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
907 908
				      struct usb_request *req)
{
909
	struct dwc2_hsotg_req *hs_req = our_req(req);
910 911 912 913 914

	kfree(hs_req);
}

/**
915
 * dwc2_hsotg_complete_oursetup - setup completion callback
916 917 918 919 920 921
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
922
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
923 924
					struct usb_request *req)
{
925
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
926
	struct dwc2_hsotg *hsotg = hs_ep->parent;
927 928 929

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

930
	dwc2_hsotg_ep_free_request(ep, req);
931 932 933 934 935 936 937 938 939
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
940
 */
941
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
942 943
					   u32 windex)
{
944
	struct dwc2_hsotg_ep *ep;
945 946 947 948 949 950
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

951
	if (idx > hsotg->num_of_eps)
952 953
		return NULL;

954 955
	ep = index_to_ep(hsotg, idx, dir);

956 957 958 959 960 961
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

962
/**
963
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
964 965 966 967
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
968
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
969
{
970
	int dctl = dwc2_readl(hsotg->regs + DCTL);
971 972 973 974 975 976 977 978 979 980 981 982 983

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
984
	dwc2_writel(dctl, hsotg->regs + DCTL);
985 986 987
	return 0;
}

988
/**
989
 * dwc2_hsotg_send_reply - send reply to control request
990 991 992 993 994 995 996 997
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
998 999
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1000 1001 1002 1003 1004 1005 1006 1007
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1008
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1009 1010 1011 1012 1013 1014 1015 1016
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1017 1018 1019 1020 1021
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1022
	req->complete = dwc2_hsotg_complete_oursetup;
1023 1024 1025 1026

	if (length)
		memcpy(req->buf, buff, length);

1027
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1037
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1038 1039 1040
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1041
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1042 1043
					struct usb_ctrlrequest *ctrl)
{
1044 1045
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1082
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1083 1084 1085 1086 1087 1088 1089 1090
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1091
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1092

1093 1094 1095 1096 1097 1098
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1099
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1100 1101 1102 1103
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1104
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1143
/**
1144
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1145 1146 1147
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1148
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1149 1150
					 struct usb_ctrlrequest *ctrl)
{
1151 1152
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1153
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1154
	struct dwc2_hsotg_ep *ep;
1155
	int ret;
1156
	bool halted;
1157 1158 1159
	u32 recip;
	u32 wValue;
	u32 wIndex;
1160 1161 1162 1163

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1178
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1192 1193
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1194
				__func__, wIndex);
1195 1196 1197
			return -ENOENT;
		}

1198
		switch (wValue) {
1199
		case USB_ENDPOINT_HALT:
1200 1201
			halted = ep->halted;

1202
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1203

1204
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1205 1206 1207 1208 1209
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1210

1211 1212 1213 1214 1215 1216
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1217 1218 1219 1220 1221 1222 1223 1224
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1225 1226 1227 1228 1229 1230
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1231 1232 1233
				}

				/* If we have pending request, then start it */
1234
				if (!ep->req) {
1235
					dwc2_gadget_start_next_request(ep);
1236 1237 1238
				}
			}

1239 1240 1241 1242 1243
			break;

		default:
			return -ENOENT;
		}
1244 1245 1246 1247
		break;
	default:
		return -ENOENT;
	}
1248 1249 1250
	return 1;
}

1251
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1252

1253
/**
1254
 * dwc2_hsotg_stall_ep0 - stall ep0
1255 1256 1257 1258
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1259
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1260
{
1261
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1273
	ctrl = dwc2_readl(hsotg->regs + reg);
1274 1275
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1276
	dwc2_writel(ctrl, hsotg->regs + reg);
1277 1278

	dev_dbg(hsotg->dev,
1279
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1280
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1281 1282 1283 1284 1285

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1286
	 dwc2_hsotg_enqueue_setup(hsotg);
1287 1288
}

1289
/**
1290
 * dwc2_hsotg_process_control - process a control request
1291 1292 1293 1294 1295 1296 1297
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1298
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1299 1300
				      struct usb_ctrlrequest *ctrl)
{
1301
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1302 1303 1304
	int ret = 0;
	u32 dcfg;

1305 1306 1307 1308
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1309

1310 1311 1312 1313
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1314
		ep0->dir_in = 1;
1315 1316 1317 1318 1319
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1320 1321 1322 1323

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1324
			hsotg->connected = 1;
1325
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1326
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1327 1328
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1329
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1330 1331 1332

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1333
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1334 1335 1336
			return;

		case USB_REQ_GET_STATUS:
1337
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1338 1339 1340 1341
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1342
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1343 1344 1345 1346 1347 1348 1349
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1350
		spin_unlock(&hsotg->lock);
1351
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1352
		spin_lock(&hsotg->lock);
1353 1354 1355 1356
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1357 1358
	/*
	 * the request is either unhandlable, or is not formatted correctly
1359 1360 1361
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1362
	if (ret < 0)
1363
		dwc2_hsotg_stall_ep0(hsotg);
1364 1365 1366
}

/**
1367
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1368 1369 1370 1371 1372 1373
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1374
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1375 1376
				     struct usb_request *req)
{
1377
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1378
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1379 1380 1381 1382 1383 1384

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1385
	spin_lock(&hsotg->lock);
1386
	if (req->actual == 0)
1387
		dwc2_hsotg_enqueue_setup(hsotg);
1388
	else
1389
		dwc2_hsotg_process_control(hsotg, req->buf);
1390
	spin_unlock(&hsotg->lock);
1391 1392 1393
}

/**
1394
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1395 1396 1397 1398 1399
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1400
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1401 1402
{
	struct usb_request *req = hsotg->ctrl_req;
1403
	struct dwc2_hsotg_req *hs_req = our_req(req);
1404 1405 1406 1407 1408 1409 1410
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1411
	req->complete = dwc2_hsotg_complete_setup;
1412 1413 1414 1415 1416 1417

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1418
	hsotg->eps_out[0]->dir_in = 0;
1419
	hsotg->eps_out[0]->send_zlp = 0;
1420
	hsotg->ep0_state = DWC2_EP0_SETUP;
1421

1422
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1423 1424
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1425 1426 1427 1428
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1429 1430 1431
	}
}

1432 1433
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1434 1435 1436 1437 1438 1439
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1440 1441 1442 1443 1444 1445
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1446

1447 1448 1449
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1450

1451
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1452 1453 1454
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1455
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1456 1457
}

1458
/**
1459
 * dwc2_hsotg_complete_request - complete a request given to us
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1470
 */
1471 1472 1473
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1485 1486 1487 1488
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1489 1490 1491 1492

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1493 1494 1495
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1496
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1497

1498 1499 1500
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1501 1502 1503 1504
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1505 1506

	if (hs_req->req.complete) {
1507
		spin_unlock(&hsotg->lock);
1508
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1509
		spin_lock(&hsotg->lock);
1510 1511
	}

1512 1513
	/*
	 * Look to see if there is anything else to do. Note, the completion
1514
	 * of the previous request may have caused a new request to be started
1515 1516
	 * so be careful when doing this.
	 */
1517 1518

	if (!hs_ep->req && result >= 0) {
1519
		dwc2_gadget_start_next_request(hs_ep);
1520 1521 1522 1523
	}
}

/**
1524
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1525 1526 1527 1528 1529 1530 1531 1532
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1533
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1534
{
1535 1536
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1537
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1538 1539 1540 1541
	int to_read;
	int max_req;
	int read_ptr;

1542

1543
	if (!hs_req) {
1544
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1545 1546
		int ptr;

1547
		dev_dbg(hsotg->dev,
1548
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1549 1550 1551 1552
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1553
			(void)dwc2_readl(fifo);
1554 1555 1556 1557 1558 1559 1560 1561

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1562 1563 1564
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1565
	if (to_read > max_req) {
1566 1567
		/*
		 * more data appeared than we where willing
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1579 1580 1581 1582
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1583
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1584 1585 1586
}

/**
1587
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1588
 * @hsotg: The device instance
1589
 * @dir_in: If IN zlp
1590 1591 1592 1593 1594
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1595
 * currently believed that we do not need to wait for any space in
1596 1597
 * the TxFIFO.
 */
1598
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1599
{
1600
	/* eps_out[0] is used in both directions */
1601 1602
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1603

1604
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1620
/**
1621
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1622 1623 1624 1625 1626 1627
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1628
 */
1629
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1630
{
1631
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1632 1633
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1634
	struct usb_request *req = &hs_req->req;
1635
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1636 1637 1638 1639 1640 1641 1642
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1643 1644
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1645 1646
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1647 1648 1649
		return;
	}

1650 1651 1652
	if (using_dma(hsotg)) {
		unsigned size_done;

1653 1654
		/*
		 * Calculate the size of the transfer by checking how much
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1668 1669
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1670
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1671 1672 1673
		return;
	}

1674 1675 1676 1677
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1678 1679 1680 1681
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1682 1683
	}

1684 1685
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1686
		dwc2_hsotg_ep0_zlp(hsotg, true);
1687
		return;
1688 1689
	}

1690 1691 1692 1693 1694 1695 1696
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1697 1698
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
1699 1700
	}

1701
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1702 1703 1704
}

/**
1705
 * dwc2_hsotg_handle_rx - RX FIFO has data
1706 1707 1708 1709 1710 1711
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1712
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1713 1714 1715 1716 1717 1718 1719
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1720
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1721
{
1722
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1723 1724 1725 1726
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1727 1728
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1729

1730 1731
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1732

1733
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1734 1735
			__func__, grxstsr, size, epnum);

1736 1737 1738
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1739 1740
		break;

1741
	case GRXSTS_PKTSTS_OUTDONE:
1742
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1743
			dwc2_hsotg_read_frameno(hsotg));
1744 1745

		if (!using_dma(hsotg))
1746
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1747 1748
		break;

1749
	case GRXSTS_PKTSTS_SETUPDONE:
1750 1751
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1752
			dwc2_hsotg_read_frameno(hsotg),
1753
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1754
		/*
1755
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1756 1757 1758 1759
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1760
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1761 1762
		break;

1763
	case GRXSTS_PKTSTS_OUTRX:
1764
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1765 1766
		break;

1767
	case GRXSTS_PKTSTS_SETUPRX:
1768 1769
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1770
			dwc2_hsotg_read_frameno(hsotg),
1771
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1772

1773 1774
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1775
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1776 1777 1778 1779 1780 1781
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1782
		dwc2_hsotg_dump(hsotg);
1783 1784 1785 1786 1787
		break;
	}
}

/**
1788
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1789
 * @mps: The maximum packet size in bytes.
1790
 */
1791
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1792 1793 1794
{
	switch (mps) {
	case 64:
1795
		return D0EPCTL_MPS_64;
1796
	case 32:
1797
		return D0EPCTL_MPS_32;
1798
	case 16:
1799
		return D0EPCTL_MPS_16;
1800
	case 8:
1801
		return D0EPCTL_MPS_8;
1802 1803 1804 1805 1806 1807 1808 1809
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1810
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1811 1812 1813 1814 1815 1816 1817
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1818
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1819
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1820
{
1821
	struct dwc2_hsotg_ep *hs_ep;
1822 1823
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1824
	u32 mcval;
1825 1826
	u32 reg;

1827 1828 1829 1830
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1831 1832
	if (ep == 0) {
		/* EP0 is a special case */
1833
		mpsval = dwc2_hsotg_ep0_mps(mps);
1834 1835
		if (mpsval > 3)
			goto bad_mps;
1836
		hs_ep->ep.maxpacket = mps;
1837
		hs_ep->mc = 1;
1838
	} else {
1839
		mpsval = mps & DXEPCTL_MPS_MASK;
1840
		if (mpsval > 1024)
1841
			goto bad_mps;
1842 1843 1844 1845
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1846
		hs_ep->ep.maxpacket = mpsval;
1847 1848
	}

1849
	if (dir_in) {
1850
		reg = dwc2_readl(regs + DIEPCTL(ep));
1851 1852
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1853
		dwc2_writel(reg, regs + DIEPCTL(ep));
1854
	} else {
1855
		reg = dwc2_readl(regs + DOEPCTL(ep));
1856
		reg &= ~DXEPCTL_MPS_MASK;
1857
		reg |= mpsval;
1858
		dwc2_writel(reg, regs + DOEPCTL(ep));
1859
	}
1860 1861 1862 1863 1864 1865 1866

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1867
/**
1868
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1869 1870 1871
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1872
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1873 1874 1875 1876
{
	int timeout;
	int val;

1877 1878
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1879 1880 1881 1882 1883

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1884
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1885

1886
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1887 1888 1889 1890 1891 1892
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1893
			break;
1894 1895 1896 1897 1898
		}

		udelay(1);
	}
}
1899 1900

/**
1901
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1902 1903 1904 1905 1906 1907
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1908 1909
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1910
{
1911
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1912

1913 1914 1915 1916 1917 1918
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1919
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1920
					     hs_ep->dir_in, 0);
1921
		return 0;
1922
	}
1923 1924 1925 1926

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1927
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1928 1929 1930 1931 1932 1933
	}

	return 0;
}

/**
1934
 * dwc2_hsotg_complete_in - complete IN transfer
1935 1936 1937 1938 1939 1940
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1941 1942
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1943
{
1944
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1945
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1946 1947 1948 1949 1950 1951 1952
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1953
	/* Finish ZLP handling for IN EP0 transactions */
1954 1955
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1956
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1957 1958 1959
		if (hsotg->test_mode) {
			int ret;

1960
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1961 1962 1963
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1964
				dwc2_hsotg_stall_ep0(hsotg);
1965 1966 1967
				return;
			}
		}
1968
		dwc2_hsotg_enqueue_setup(hsotg);
1969 1970 1971
		return;
	}

1972 1973
	/*
	 * Calculate the size of the transfer by checking how much is left
1974 1975 1976 1977 1978 1979 1980 1981
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1982
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1983 1984 1985 1986 1987 1988 1989 1990 1991

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1992 1993 1994
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1995 1996
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1997
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1998 1999 2000
		return;
	}

2001
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2002
	if (hs_ep->send_zlp) {
2003
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2004
		hs_ep->send_zlp = 0;
2005 2006 2007 2008
		/* transfer will be completed on next complete interrupt */
		return;
	}

2009 2010
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2011
		dwc2_hsotg_ep0_zlp(hsotg, false);
2012 2013 2014
		return;
	}

2015
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2016 2017
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2202
/**
2203
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2204 2205 2206 2207 2208
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2209
 */
2210
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2211 2212
			    int dir_in)
{
2213
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2214 2215 2216
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2217
	u32 ints;
2218
	u32 ctrl;
2219

2220
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2221
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2222

2223
	/* Clear endpoint interrupts */
2224
	dwc2_writel(ints, hsotg->regs + epint_reg);
2225

2226 2227 2228 2229 2230 2231
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2232 2233 2234
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2235 2236 2237 2238
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2239 2240
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2241

2242
	if (ints & DXEPINT_XFERCOMPL) {
2243
		dev_dbg(hsotg->dev,
2244
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2245 2246
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2247

2248 2249 2250 2251
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2252
		if (dir_in) {
2253 2254 2255
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2256
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2257 2258
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2259

2260
			if (idx == 0 && !hs_ep->req)
2261
				dwc2_hsotg_enqueue_setup(hsotg);
2262
		} else if (using_dma(hsotg)) {
2263 2264 2265 2266
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2267 2268
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2269

2270
			dwc2_hsotg_handle_outdone(hsotg, idx);
2271 2272 2273
		}
	}

2274 2275
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2276

2277 2278 2279 2280 2281 2282
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2283
	if (ints & DXEPINT_AHBERR)
2284 2285
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2286
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2287 2288 2289
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2290 2291
			/*
			 * this is the notification we've received a
2292 2293
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2294 2295
			 * the setup here.
			 */
2296 2297 2298 2299

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2300
				dwc2_hsotg_handle_outdone(hsotg, 0);
2301 2302 2303
		}
	}

2304
	if (ints & DXEPINT_BACK2BACKSETUP)
2305 2306
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2307
	if (dir_in && !hs_ep->isochronous) {
2308
		/* not sure if this is important, but we'll clear it anyway */
2309
		if (ints & DXEPINT_INTKNTXFEMP) {
2310 2311 2312 2313 2314
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2315
		if (ints & DXEPINT_INTKNEPMIS) {
2316 2317 2318
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2319 2320 2321

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2322
		    ints & DXEPINT_TXFEMP) {
2323 2324
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2325
			if (!using_dma(hsotg))
2326
				dwc2_hsotg_trytx(hsotg, hs_ep);
2327
		}
2328 2329 2330 2331
	}
}

/**
2332
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2333 2334 2335 2336
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2337
 */
2338
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2339
{
2340
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2341
	int ep0_mps = 0, ep_mps = 8;
2342

2343 2344
	/*
	 * This should signal the finish of the enumeration phase
2345
	 * of the USB handshaking, so we should now know what rate
2346 2347
	 * we connected at.
	 */
2348 2349 2350

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2351 2352
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2353
	 * it seems IN transfers must be a even number of packets we do
2354 2355
	 * not advertise a 64byte MPS on EP0.
	 */
2356 2357

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2358
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2359 2360
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2361 2362
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2363
		ep_mps = 1023;
2364 2365
		break;

2366
	case DSTS_ENUMSPD_HS:
2367 2368
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2369
		ep_mps = 1024;
2370 2371
		break;

2372
	case DSTS_ENUMSPD_LS:
2373
		hsotg->gadget.speed = USB_SPEED_LOW;
2374 2375
		/*
		 * note, we don't actually support LS in this driver at the
2376 2377 2378 2379 2380
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2381 2382
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2383

2384 2385 2386 2387
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2388 2389 2390

	if (ep0_mps) {
		int i;
2391
		/* Initialize ep0 for both in and out directions */
2392 2393
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2394 2395
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2396
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2397
			if (hsotg->eps_out[i])
2398
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2399
		}
2400 2401 2402 2403
	}

	/* ensure after enumeration our EP0 is active */

2404
	dwc2_hsotg_enqueue_setup(hsotg);
2405 2406

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2407 2408
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2420
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2421
			      struct dwc2_hsotg_ep *ep,
2422
			      int result)
2423
{
2424
	struct dwc2_hsotg_req *req, *treq;
2425
	unsigned size;
2426

2427
	ep->req = NULL;
2428

2429
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2430
		dwc2_hsotg_complete_request(hsotg, ep, req,
2431
					   result);
2432

2433 2434
	if (!hsotg->dedicated_fifos)
		return;
2435
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2436
	if (size < ep->fifo_size)
2437
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2438 2439 2440
}

/**
2441
 * dwc2_hsotg_disconnect - disconnect service
2442 2443
 * @hsotg: The device state.
 *
2444 2445 2446
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2447
 */
2448
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2449 2450 2451
{
	unsigned ep;

2452 2453 2454 2455
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2456
	hsotg->test_mode = 0;
2457 2458 2459 2460 2461 2462 2463 2464 2465

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2466 2467

	call_gadget(hsotg, disconnect);
2468
	hsotg->lx_state = DWC2_L3;
2469 2470 2471
}

/**
2472
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2473 2474 2475
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2476
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2477
{
2478
	struct dwc2_hsotg_ep *ep;
2479 2480 2481
	int epno, ret;

	/* look through for any more data to transmit */
2482
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2483 2484 2485 2486
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2487 2488 2489 2490 2491 2492 2493 2494

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2495
		ret = dwc2_hsotg_trytx(hsotg, ep);
2496 2497 2498 2499 2500 2501
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2502 2503 2504
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2505

2506
/**
2507
 * dwc2_hsotg_core_init - issue softreset to the core
2508 2509 2510 2511
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2512
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2513
						bool is_usb_reset)
2514
{
2515
	u32 intmsk;
2516
	u32 val;
2517
	u32 usbcfg;
2518

2519 2520 2521
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2522
	if (!is_usb_reset)
2523
		if (dwc2_core_reset(hsotg))
2524
			return;
2525 2526 2527 2528 2529 2530

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2531 2532 2533 2534 2535
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2536
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2537
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2538 2539 2540
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2541

2542
	dwc2_hsotg_init_fifo(hsotg);
2543

2544 2545
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2546

2547
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2548 2549

	/* Clear any pending OTG interrupts */
2550
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2551 2552

	/* Clear any pending interrupts */
2553
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2554
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2555
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2556 2557
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2558 2559
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2560 2561 2562 2563 2564

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2565 2566

	if (using_dma(hsotg))
2567 2568 2569
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2570
	else
2571 2572 2573 2574
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2575 2576

	/*
2577 2578 2579
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2580 2581
	 */

2582
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2583
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2584
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2585
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2586
		hsotg->regs + DIEPMSK);
2587 2588 2589 2590 2591

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2592
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2593
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2594
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2595
		hsotg->regs + DOEPMSK);
2596

2597
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2598 2599

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2600 2601
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2602 2603

	/* enable in and out endpoint interrupts */
2604
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2605 2606 2607 2608 2609 2610 2611

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2612
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2613 2614

	/* Enable interrupts for EP0 in and out */
2615 2616
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2617

2618 2619 2620 2621 2622
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2623

2624
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2625 2626

	/*
2627
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2628 2629 2630 2631
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2632
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2633
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2634

2635
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2636 2637
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2638
	       hsotg->regs + DOEPCTL0);
2639 2640

	/* enable, but don't activate EP0in */
2641
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2642
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2643

2644
	dwc2_hsotg_enqueue_setup(hsotg);
2645 2646

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2647 2648
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2649 2650

	/* clear global NAKs */
2651 2652 2653 2654
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2655 2656 2657 2658

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2659
	hsotg->lx_state = DWC2_L0;
2660 2661
}

2662
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2663 2664 2665 2666
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2667

2668
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2669
{
2670
	/* remove the soft-disconnect and let's go */
2671
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2672 2673
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

2753
/**
2754
 * dwc2_hsotg_irq - handle device interrupt
2755 2756 2757
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2758
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2759
{
2760
	struct dwc2_hsotg *hsotg = pw;
2761 2762 2763 2764
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2765 2766 2767
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2768
	spin_lock(&hsotg->lock);
2769
irq_retry:
2770 2771
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2772 2773 2774 2775 2776 2777

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2808
	if (gintsts & GINTSTS_ENUMDONE) {
2809
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2810

2811
		dwc2_hsotg_irq_enumdone(hsotg);
2812 2813
	}

2814
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2815 2816
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2817
		u32 daint_out, daint_in;
2818 2819
		int ep;

2820
		daint &= daintmsk;
2821 2822
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2823

2824 2825
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2826 2827
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2828
			if (daint_out & 1)
2829
				dwc2_hsotg_epint(hsotg, ep, 0);
2830 2831
		}

2832 2833
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2834
			if (daint_in & 1)
2835
				dwc2_hsotg_epint(hsotg, ep, 1);
2836 2837 2838 2839 2840
		}
	}

	/* check both FIFOs */

2841
	if (gintsts & GINTSTS_NPTXFEMP) {
2842 2843
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2844 2845
		/*
		 * Disable the interrupt to stop it happening again
2846
		 * unless one of these endpoint routines decides that
2847 2848
		 * it needs re-enabling
		 */
2849

2850 2851
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2852 2853
	}

2854
	if (gintsts & GINTSTS_PTXFEMP) {
2855 2856
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2857
		/* See note in GINTSTS_NPTxFEmp */
2858

2859 2860
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2861 2862
	}

2863
	if (gintsts & GINTSTS_RXFLVL) {
2864 2865
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2866
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2867 2868
		 * set.
		 */
2869

2870
		dwc2_hsotg_handle_rx(hsotg);
2871 2872
	}

2873
	if (gintsts & GINTSTS_ERLYSUSP) {
2874
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2875
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2876 2877
	}

2878 2879
	/*
	 * these next two seem to crop-up occasionally causing the core
2880
	 * to shutdown the USB transfer, so try clearing them and logging
2881 2882
	 * the occurrence.
	 */
2883

2884
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
2906

2907
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2908 2909
	}

2910
	if (gintsts & GINTSTS_GINNAKEFF) {
2911 2912
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2913
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2914

2915
		dwc2_hsotg_dump(hsotg);
2916 2917
	}

2918 2919
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2920

2921 2922
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2923

2924 2925 2926 2927
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2928 2929 2930 2931

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2932 2933
	spin_unlock(&hsotg->lock);

2934 2935 2936 2937
	return IRQ_HANDLED;
}

/**
2938
 * dwc2_hsotg_ep_enable - enable the given endpoint
2939 2940 2941 2942
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2943
 */
2944
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2945 2946
			       const struct usb_endpoint_descriptor *desc)
{
2947
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2948
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2949
	unsigned long flags;
2950
	unsigned int index = hs_ep->index;
2951 2952 2953
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2954
	u32 mask;
2955 2956
	unsigned int dir_in;
	unsigned int i, val, size;
2957
	int ret = 0;
2958 2959 2960 2961 2962 2963 2964

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2965 2966 2967 2968
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2969 2970 2971 2972 2973 2974 2975

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2976
	mps = usb_endpoint_maxp(desc);
2977

2978
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2979

2980
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2981
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2982 2983 2984 2985

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2986
	spin_lock_irqsave(&hsotg->lock, flags);
2987

2988 2989
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2990

2991 2992 2993 2994
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2995
	epctrl |= DXEPCTL_USBACTEP;
2996 2997

	/* update the endpoint state */
2998
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2999 3000

	/* default, set to non-periodic */
3001
	hs_ep->isochronous = 0;
3002
	hs_ep->periodic = 0;
3003
	hs_ep->halted = 0;
3004
	hs_ep->interval = desc->bInterval;
3005

3006 3007
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3008 3009
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3010
		hs_ep->isochronous = 1;
3011
		hs_ep->interval = 1 << (desc->bInterval - 1);
3012 3013
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3014
			hs_ep->periodic = 1;
3015 3016 3017 3018 3019 3020 3021 3022
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3023
		break;
3024 3025

	case USB_ENDPOINT_XFER_BULK:
3026
		epctrl |= DXEPCTL_EPTYPE_BULK;
3027 3028 3029
		break;

	case USB_ENDPOINT_XFER_INT:
3030
		if (dir_in)
3031 3032
			hs_ep->periodic = 1;

3033 3034 3035
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3036
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3037 3038 3039
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3040
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3041 3042 3043
		break;
	}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

3055 3056
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3057 3058
	 * a unique tx-fifo even if it is non-periodic.
	 */
3059
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
3060 3061
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3062
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3063
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3064 3065
			if (hsotg->fifo_map & (1<<i))
				continue;
3066
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3067 3068 3069
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3070 3071 3072 3073 3074
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3075
		}
3076
		if (!fifo_index) {
3077 3078
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3079 3080 3081
			ret = -ENOMEM;
			goto error;
		}
3082 3083 3084 3085
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3086
	}
3087

3088
	/* for non control endpoints, set PID to D0 */
3089
	if (index && !hs_ep->isochronous)
3090
		epctrl |= DXEPCTL_SETD0PID;
3091 3092 3093 3094

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3095
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3096
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3097
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3098 3099

	/* enable the endpoint interrupt */
3100
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3101

3102
error:
3103
	spin_unlock_irqrestore(&hsotg->lock, flags);
3104
	return ret;
3105 3106
}

3107
/**
3108
 * dwc2_hsotg_ep_disable - disable given endpoint
3109 3110
 * @ep: The endpoint to disable.
 */
3111
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3112
{
3113
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3114
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3115 3116 3117 3118 3119 3120
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3121
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3122

3123
	if (ep == &hsotg->eps_out[0]->ep) {
3124 3125 3126 3127
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3128
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3129

3130
	spin_lock_irqsave(&hsotg->lock, flags);
3131

3132 3133 3134
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
3135

3136
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3137 3138 3139
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3140 3141

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3142
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3143 3144

	/* disable endpoint interrupts */
3145
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3146

3147 3148 3149
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3150
	spin_unlock_irqrestore(&hsotg->lock, flags);
3151 3152 3153 3154 3155 3156 3157
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3158
 */
3159
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3160
{
3161
	struct dwc2_hsotg_req *req, *treq;
3162 3163 3164 3165 3166 3167 3168 3169 3170

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3206 3207
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3208 3209 3210

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3211
						GINTSTS_GOUTNAKEFF, 100))
3212
			dev_warn(hsotg->dev,
3213
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3238
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3239 3240 3241
	}
}

3242
/**
3243
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3244 3245 3246
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3247
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3248
{
3249 3250
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3251
	struct dwc2_hsotg *hs = hs_ep->parent;
3252 3253
	unsigned long flags;

3254
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3255

3256
	spin_lock_irqsave(&hs->lock, flags);
3257 3258

	if (!on_list(hs_ep, hs_req)) {
3259
		spin_unlock_irqrestore(&hs->lock, flags);
3260 3261 3262
		return -EINVAL;
	}

3263 3264 3265 3266
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3267
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3268
	spin_unlock_irqrestore(&hs->lock, flags);
3269 3270 3271 3272

	return 0;
}

3273
/**
3274
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3275 3276
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3277 3278 3279 3280 3281
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3282
 */
3283
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3284
{
3285
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3286
	struct dwc2_hsotg *hs = hs_ep->parent;
3287 3288 3289
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3290
	u32 xfertype;
3291 3292 3293

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3294 3295
	if (index == 0) {
		if (value)
3296
			dwc2_hsotg_stall_ep0(hs);
3297 3298 3299 3300 3301 3302
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3303 3304 3305 3306 3307
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3308 3309 3310 3311 3312 3313
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3314 3315
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3316
		epctl = dwc2_readl(hs->regs + epreg);
3317 3318

		if (value) {
3319
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3320 3321 3322 3323 3324 3325 3326 3327 3328
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3329
		dwc2_writel(epctl, hs->regs + epreg);
3330
	} else {
3331

3332
		epreg = DOEPCTL(index);
3333
		epctl = dwc2_readl(hs->regs + epreg);
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3344
		dwc2_writel(epctl, hs->regs + epreg);
3345
	}
3346

3347 3348
	hs_ep->halted = value;

3349 3350 3351
	return 0;
}

3352
/**
3353
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3354 3355 3356
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3357
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3358
{
3359
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3360
	struct dwc2_hsotg *hs = hs_ep->parent;
3361 3362 3363 3364
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3365
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3366 3367 3368 3369 3370
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3371 3372 3373 3374 3375 3376 3377 3378
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3379
	/* note, don't believe we have any call for the fifo routines */
3380 3381
};

3382
/**
3383
 * dwc2_hsotg_init - initalize the usb core
3384 3385
 * @hsotg: The driver state
 */
3386
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3387
{
3388
	u32 trdtim;
3389
	u32 usbcfg;
3390 3391
	/* unmask subset of endpoint interrupts */

3392 3393 3394
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3395

3396 3397 3398
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3399

3400
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3401 3402

	/* Be in disconnected state until gadget is registered */
3403
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3404 3405 3406 3407

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3408 3409
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3410

3411
	dwc2_hsotg_init_fifo(hsotg);
3412

3413 3414 3415 3416 3417
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3418
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3419
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3420 3421 3422
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3423

3424 3425
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3426 3427
}

3428
/**
3429
 * dwc2_hsotg_udc_start - prepare the udc for work
3430 3431 3432 3433 3434 3435
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3436
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3437
			   struct usb_gadget_driver *driver)
3438
{
3439
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3440
	unsigned long flags;
3441 3442 3443
	int ret;

	if (!hsotg) {
3444
		pr_err("%s: called with no device\n", __func__);
3445 3446 3447 3448 3449 3450 3451 3452
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3453
	if (driver->max_speed < USB_SPEED_FULL)
3454 3455
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3456
	if (!driver->setup) {
3457 3458 3459 3460 3461 3462 3463 3464
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3465
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3466 3467
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3468 3469 3470 3471
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3472 3473
	}

3474 3475
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3476

3477
	spin_lock_irqsave(&hsotg->lock, flags);
3478 3479
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3480
	hsotg->enabled = 0;
3481 3482
	spin_unlock_irqrestore(&hsotg->lock, flags);

3483
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3484

3485 3486 3487 3488 3489 3490 3491
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3492
/**
3493
 * dwc2_hsotg_udc_stop - stop the udc
3494 3495 3496 3497 3498
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3499
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3500
{
3501
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3502
	unsigned long flags = 0;
3503 3504 3505 3506 3507 3508
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3509 3510
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3511
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3512
		if (hsotg->eps_out[ep])
3513
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3514
	}
3515

3516 3517
	spin_lock_irqsave(&hsotg->lock, flags);

3518
	hsotg->driver = NULL;
3519
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3520
	hsotg->enabled = 0;
3521

3522 3523
	spin_unlock_irqrestore(&hsotg->lock, flags);

3524 3525
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3526

3527 3528
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3529 3530 3531 3532

	return 0;
}

3533
/**
3534
 * dwc2_hsotg_gadget_getframe - read the frame number
3535 3536 3537 3538
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3539
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3540
{
3541
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3542 3543
}

3544
/**
3545
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3546 3547 3548 3549 3550
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3551
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3552
{
3553
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3554 3555
	unsigned long flags = 0;

3556 3557 3558 3559 3560 3561 3562 3563
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3564 3565 3566

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3567
		hsotg->enabled = 1;
3568 3569
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3570
	} else {
3571 3572
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3573
		hsotg->enabled = 0;
3574 3575 3576 3577 3578 3579 3580 3581
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3582
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3583 3584 3585 3586 3587 3588 3589
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3590 3591 3592 3593 3594 3595 3596
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3597
	if (is_active) {
3598
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3599

3600
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3601
		if (hsotg->enabled)
3602
			dwc2_hsotg_core_connect(hsotg);
3603
	} else {
3604 3605
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3606 3607 3608 3609 3610 3611
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3612
/**
3613
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3614 3615 3616 3617 3618
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3619
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3620 3621 3622 3623 3624 3625 3626 3627
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3628 3629 3630 3631 3632 3633 3634
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3635 3636 3637
};

/**
3638
 * dwc2_hsotg_initep - initialise a single endpoint
3639 3640 3641 3642 3643 3644 3645 3646
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3647 3648
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3649 3650
				       int epnum,
				       bool dir_in)
3651 3652 3653 3654 3655
{
	char *dir;

	if (epnum == 0)
		dir = "";
3656
	else if (dir_in)
3657
		dir = "in";
3658 3659
	else
		dir = "out";
3660

3661
	hs_ep->dir_in = dir_in;
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3675
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3676
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3691 3692
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3693 3694 3695 3696
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3697
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3698
		if (dir_in)
3699
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3700
		else
3701
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3702 3703 3704
	}
}

3705
/**
3706
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3707 3708 3709 3710
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3711
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3712
{
3713 3714 3715 3716
	u32 cfg;
	u32 ep_type;
	u32 i;

3717
	/* check hardware configuration */
3718

3719 3720
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3721 3722
	/* Add ep0 */
	hsotg->num_of_eps++;
3723

3724
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3725 3726 3727
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3728
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3729 3730
	hsotg->eps_out[0] = hsotg->eps_in[0];

3731
	cfg = hsotg->hw_params.dev_ep_dirs;
3732
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3733 3734 3735 3736
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3737
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3738 3739 3740 3741 3742 3743
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3744
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3745 3746 3747 3748 3749
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3750 3751
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3752

3753 3754 3755 3756
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3757
	return 0;
3758 3759
}

3760
/**
3761
 * dwc2_hsotg_dump - dump state of the udc
3762 3763
 * @param: The device state
 */
3764
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3765
{
M
Mark Brown 已提交
3766
#ifdef DEBUG
3767 3768 3769 3770 3771 3772
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3773 3774
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3775

3776
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3777
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3778 3779

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3780
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3781 3782 3783

	/* show periodic fifo settings */

3784
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3785
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3786
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3787 3788
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3789 3790
	}

3791
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3792 3793
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3794 3795 3796
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3797

3798
		val = dwc2_readl(regs + DOEPCTL(idx));
3799 3800
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3801 3802 3803
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3804 3805 3806 3807

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3808
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3809
#endif
3810 3811
}

3812
#ifdef CONFIG_OF
3813
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3814 3815
{
	struct device_node *np = hsotg->dev->of_node;
3816 3817
	u32 len = 0;
	u32 i = 0;
3818 3819 3820

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3852 3853
}
#else
3854
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3855 3856
#endif

3857
/**
3858 3859 3860
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3861
 */
3862
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3863
{
3864
	struct device *dev = hsotg->dev;
3865 3866
	int epnum;
	int ret;
3867
	int i;
3868
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3869

3870 3871 3872 3873 3874
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3875
	dwc2_hsotg_of_probe(hsotg);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3887 3888 3889 3890 3891 3892 3893
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3894

3895
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3896
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3897
	hsotg->gadget.name = dev_name(dev);
3898 3899
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3900 3901
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3902

3903
	ret = dwc2_hsotg_hw_cfg(hsotg);
3904 3905
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3906
		return ret;
3907 3908
	}

3909 3910
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3911
	if (!hsotg->ctrl_buff)
3912
		return -ENOMEM;
3913 3914 3915

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3916
	if (!hsotg->ep0_buff)
3917
		return -ENOMEM;
3918

3919
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3920
				dev_name(hsotg->dev), hsotg);
3921
	if (ret < 0) {
3922
		dev_err(dev, "cannot claim IRQ for gadget\n");
3923
		return ret;
3924 3925
	}

3926 3927 3928 3929
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3930
		return -EINVAL;
3931 3932 3933 3934 3935
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3936
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3937 3938 3939

	/* allocate EP0 request */

3940
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3941 3942 3943
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3944
		return -ENOMEM;
3945
	}
3946 3947

	/* initialise the endpoints now the core has been initialised */
3948 3949
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3950
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3951 3952
								epnum, 1);
		if (hsotg->eps_out[epnum])
3953
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3954 3955
								epnum, 0);
	}
3956

3957
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3958
	if (ret)
3959
		return ret;
3960

3961
	dwc2_hsotg_dump(hsotg);
3962 3963 3964 3965

	return 0;
}

3966
/**
3967
 * dwc2_hsotg_remove - remove function for hsotg driver
3968 3969
 * @pdev: The platform information for the driver
 */
3970
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3971
{
3972
	usb_del_gadget_udc(&hsotg->gadget);
3973

3974 3975 3976
	return 0;
}

3977
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3978 3979 3980
{
	unsigned long flags;

3981
	if (hsotg->lx_state != DWC2_L0)
3982
		return 0;
3983

3984 3985 3986
	if (hsotg->driver) {
		int ep;

3987 3988 3989
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3990 3991
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3992 3993
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3994 3995
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3996

3997 3998
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3999
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4000
			if (hsotg->eps_out[ep])
4001
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4002
		}
4003 4004
	}

4005
	return 0;
4006 4007
}

4008
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4009 4010 4011
{
	unsigned long flags;

4012
	if (hsotg->lx_state == DWC2_L2)
4013
		return 0;
4014

4015 4016 4017
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4018

4019
		spin_lock_irqsave(&hsotg->lock, flags);
4020
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4021
		if (hsotg->enabled)
4022
			dwc2_hsotg_core_connect(hsotg);
4023 4024
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4025

4026
	return 0;
4027
}
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}