vmalloc.c 88.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

332
#define VM_LAZY_FREE	0x02
N
Nick Piggin 已提交
333 334 335
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
336 337
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
338
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
339
static struct rb_root vmap_area_root = RB_ROOT;
340
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

368 369 370 371 372 373 374
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

375 376 377 378 379 380 381 382 383 384 385 386 387 388
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size,
	compute_subtree_max_size)

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
408

409 410 411 412 413 414 415
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
416
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
417
{
N
Nick Piggin 已提交
418 419 420 421 422 423 424 425
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
426
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
427 428 429 430 431 432 433 434
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
456

457 458 459 460 461 462 463
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
464

465 466 467 468 469 470 471 472 473 474 475
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
476 477
		else
			BUG();
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
514 515
	}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
536

537 538
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
539 540
}

541 542 543
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
544 545
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
546

547 548 549 550 551 552 553 554
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
555 556
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
648 649 650 651

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

750 751
			if (merged)
				unlink_va(va, root);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
825
			 * OK. We roll back and find the first right sub-tree,
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
923
	struct vmap_area *lva = NULL;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

997
		if (lva)	/* type == NE_FIT_TYPE */
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1011
	unsigned long vstart, unsigned long vend)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1041 1042 1043 1044
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1045 1046
	return nva_start_addr;
}
1047

N
Nick Piggin 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1057
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1058
	unsigned long addr;
N
Nick Piggin 已提交
1059 1060
	int purged = 0;

N
Nick Piggin 已提交
1061
	BUG_ON(!size);
1062
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1063
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1064

1065 1066 1067
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1068
	might_sleep();
1069

1070
	va = kmem_cache_alloc_node(vmap_area_cachep,
N
Nick Piggin 已提交
1071 1072 1073 1074
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1075 1076 1077 1078 1079 1080
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
1081
retry:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * Preload this CPU with one extra vmap_area object to ensure
	 * that we have it available when fit type of free area is
	 * NE_FIT_TYPE.
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
	 * low memory condition and high memory pressure.
	 *
	 * Even if it fails we do not really care about that. Just proceed
	 * as it is. "overflow" path will refill the cache we allocate from.
	 */
	preempt_disable();
	if (!__this_cpu_read(ne_fit_preload_node)) {
		preempt_enable();
		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
		preempt_disable();

		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
			if (pva)
				kmem_cache_free(vmap_area_cachep, pva);
		}
	}

N
Nick Piggin 已提交
1106
	spin_lock(&vmap_area_lock);
1107
	preempt_enable();
N
Nick Piggin 已提交
1108

1109
	/*
1110 1111
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1112
	 */
1113
	addr = __alloc_vmap_area(size, align, vstart, vend);
1114
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1115
		goto overflow;
N
Nick Piggin 已提交
1116 1117 1118 1119

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
1120 1121
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1122 1123
	spin_unlock(&vmap_area_lock);

1124
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1125 1126 1127
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1128
	return va;
N
Nick Piggin 已提交
1129 1130 1131 1132 1133 1134 1135 1136

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1147
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1148 1149
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1150 1151

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1152
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1167 1168
static void __free_vmap_area(struct vmap_area *va)
{
1169
	/*
1170
	 * Remove from the busy tree/list.
1171
	 */
1172
	unlink_va(va, &vmap_area_root);
1173

1174 1175 1176 1177 1178
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1224
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1225

1226 1227 1228 1229 1230
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1231
static DEFINE_MUTEX(vmap_purge_lock);
1232

1233 1234 1235
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1236 1237 1238 1239 1240 1241
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1242
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247
/*
 * Purges all lazily-freed vmap areas.
 */
1248
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1249
{
1250
	unsigned long resched_threshold;
1251
	struct llist_node *valist;
N
Nick Piggin 已提交
1252
	struct vmap_area *va;
1253
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1254

1255
	lockdep_assert_held(&vmap_purge_lock);
1256

1257
	valist = llist_del_all(&vmap_purge_list);
1258 1259 1260 1261 1262 1263 1264
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1265
	llist_for_each_entry(va, valist, purge_list) {
1266 1267 1268 1269
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1270 1271
	}

1272
	flush_tlb_kernel_range(start, end);
1273
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1274

1275
	spin_lock(&vmap_area_lock);
1276
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1277
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1278

1279
		__free_vmap_area(va);
1280
		atomic_long_sub(nr, &vmap_lazy_nr);
1281

1282
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1283
			cond_resched_lock(&vmap_area_lock);
1284
	}
1285 1286
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1287 1288
}

N
Nick Piggin 已提交
1289 1290 1291 1292 1293 1294
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1295
	if (mutex_trylock(&vmap_purge_lock)) {
1296
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1297
		mutex_unlock(&vmap_purge_lock);
1298
	}
N
Nick Piggin 已提交
1299 1300
}

N
Nick Piggin 已提交
1301 1302 1303 1304 1305
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1306
	mutex_lock(&vmap_purge_lock);
1307 1308
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1309
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1310 1311 1312
}

/*
1313 1314 1315
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1316
 */
1317
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1318
{
1319
	unsigned long nr_lazy;
1320

1321 1322
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1323 1324 1325 1326 1327

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1328
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1329 1330
}

1331 1332 1333 1334 1335 1336
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1337
	unmap_vmap_area(va);
1338 1339 1340
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1341
	free_vmap_area_noflush(va);
1342 1343
}

N
Nick Piggin 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1378 1379 1380 1381
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1394
	unsigned long dirty_min, dirty_max; /*< dirty range */
1395 1396
	struct list_head free_list;
	struct rcu_head rcu_head;
1397
	struct list_head purge;
N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1440
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1441 1442
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1443 1444 1445 1446 1447 1448
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1449
	void *vaddr;
N
Nick Piggin 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1461
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1462
		kfree(vb);
J
Julia Lawall 已提交
1463
		return ERR_CAST(va);
N
Nick Piggin 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1473
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1474 1475
	spin_lock_init(&vb->lock);
	vb->va = va;
1476 1477 1478
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1479
	vb->dirty = 0;
1480 1481
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1493
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1494
	spin_unlock(&vbq->lock);
1495
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1496

1497
	return vaddr;
N
Nick Piggin 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1511
	free_vmap_area_noflush(vb->va);
1512
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1532 1533
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1558 1559 1560 1561
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1562
	void *vaddr = NULL;
N
Nick Piggin 已提交
1563 1564
	unsigned int order;

1565
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1566
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1567 1568 1569 1570 1571 1572 1573 1574
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1575 1576 1577 1578 1579
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1580
		unsigned long pages_off;
N
Nick Piggin 已提交
1581 1582

		spin_lock(&vb->lock);
1583 1584 1585 1586
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1587

1588 1589
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1590 1591 1592 1593 1594 1595
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1596

1597 1598
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1599
	}
1600

1601
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1602 1603
	rcu_read_unlock();

1604 1605 1606
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1607

1608
	return vaddr;
N
Nick Piggin 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1618
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1619
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1620 1621 1622

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1623 1624 1625
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1626
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1627 1628 1629 1630 1631 1632 1633

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1634 1635
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1636 1637 1638 1639
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1640
	spin_lock(&vb->lock);
1641 1642 1643 1644

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1645

N
Nick Piggin 已提交
1646 1647
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1648
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1649 1650 1651 1652 1653 1654
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1655
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1656 1657 1658
{
	int cpu;

1659 1660 1661
	if (unlikely(!vmap_initialized))
		return;

1662 1663
	might_sleep();

N
Nick Piggin 已提交
1664 1665 1666 1667 1668 1669 1670
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1671 1672
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1673
				unsigned long s, e;
1674

1675 1676
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1677

1678 1679
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1680

1681
				flush = 1;
N
Nick Piggin 已提交
1682 1683 1684 1685 1686 1687
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1688
	mutex_lock(&vmap_purge_lock);
1689 1690 1691
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1692
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1693
}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1724
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1725
	unsigned long addr = (unsigned long)mem;
1726
	struct vmap_area *va;
N
Nick Piggin 已提交
1727

1728
	might_sleep();
N
Nick Piggin 已提交
1729 1730 1731
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1732
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1733

1734
	if (likely(count <= VMAP_MAX_ALLOC)) {
1735
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1736
		vb_free(mem, size);
1737 1738 1739 1740 1741
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1742 1743
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1744
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1754
 *
1755 1756 1757 1758 1759 1760
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1761
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1762 1763 1764
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1765
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1792
static struct vm_struct *vmlist __initdata;
1793

N
Nicolas Pitre 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1820 1821 1822
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1823
 * @align: requested alignment
1824 1825 1826 1827 1828 1829 1830 1831
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1832
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1833 1834
{
	static size_t vm_init_off __initdata;
1835 1836 1837 1838
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1839

1840
	vm->addr = (void *)addr;
1841

N
Nicolas Pitre 已提交
1842
	vm_area_add_early(vm);
1843 1844
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1886 1887
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1888 1889
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1890 1891
	int i;

1892 1893 1894 1895 1896
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1897 1898
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1899
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1900 1901 1902 1903

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1904 1905 1906
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1907
	}
1908

I
Ivan Kokshaysky 已提交
1909 1910
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1911 1912 1913 1914
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

1915
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1916 1917
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1918
		va->vm = tmp;
1919
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1920
	}
1921

1922 1923 1924 1925
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1926
	vmap_initialized = true;
N
Nick Piggin 已提交
1927 1928
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1972
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1973 1974 1975 1976 1977 1978 1979 1980 1981

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1982 1983 1984
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1985 1986

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1987 1988 1989
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1990
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1991

1992
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1993 1994
{
	unsigned long addr = (unsigned long)area->addr;
1995
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1996 1997
	int err;

1998
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1999

2000
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2001 2002 2003
}
EXPORT_SYMBOL_GPL(map_vm_area);

2004
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2005
			      unsigned long flags, const void *caller)
2006
{
2007
	spin_lock(&vmap_area_lock);
2008 2009 2010 2011
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2012
	va->vm = vm;
2013
	va->flags |= VM_VM_AREA;
2014
	spin_unlock(&vmap_area_lock);
2015
}
2016

2017
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2018
{
2019
	/*
2020
	 * Before removing VM_UNINITIALIZED,
2021 2022 2023 2024
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2025
	vm->flags &= ~VM_UNINITIALIZED;
2026 2027
}

N
Nick Piggin 已提交
2028
static struct vm_struct *__get_vm_area_node(unsigned long size,
2029
		unsigned long align, unsigned long flags, unsigned long start,
2030
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2031
{
2032
	struct vmap_area *va;
N
Nick Piggin 已提交
2033
	struct vm_struct *area;
L
Linus Torvalds 已提交
2034

2035
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2036
	size = PAGE_ALIGN(size);
2037 2038
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2039

2040 2041 2042 2043
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2044
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2045 2046 2047
	if (unlikely(!area))
		return NULL;

2048 2049
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2050

N
Nick Piggin 已提交
2051 2052 2053 2054
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2055 2056
	}

2057
	setup_vmalloc_vm(area, va, flags, caller);
2058

L
Linus Torvalds 已提交
2059 2060 2061
	return area;
}

C
Christoph Lameter 已提交
2062 2063 2064
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2065 2066
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2067
}
2068
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2069

2070 2071
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2072
				       const void *caller)
2073
{
D
David Rientjes 已提交
2074 2075
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2076 2077
}

L
Linus Torvalds 已提交
2078
/**
2079 2080 2081
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2082
 *
2083 2084 2085
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2086 2087
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2088 2089 2090
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2091
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2092 2093
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2094 2095 2096
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2097
				const void *caller)
2098
{
2099
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2100
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2101 2102
}

2103
/**
2104 2105
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2106
 *
2107 2108 2109
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2110 2111
 *
 * Return: pointer to the found area or %NULL on faulure
2112 2113
 */
struct vm_struct *find_vm_area(const void *addr)
2114
{
N
Nick Piggin 已提交
2115
	struct vmap_area *va;
2116

N
Nick Piggin 已提交
2117 2118
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
2119
		return va->vm;
L
Linus Torvalds 已提交
2120 2121 2122 2123

	return NULL;
}

2124
/**
2125 2126
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2127
 *
2128 2129 2130
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2131 2132
 *
 * Return: pointer to the found area or %NULL on faulure
2133
 */
2134
struct vm_struct *remove_vm_area(const void *addr)
2135
{
N
Nick Piggin 已提交
2136 2137
	struct vmap_area *va;

2138 2139
	might_sleep();

N
Nick Piggin 已提交
2140 2141
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
2142
		struct vm_struct *vm = va->vm;
2143

2144 2145 2146
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
2147
		va->flags |= VM_LAZY_FREE;
2148 2149
		spin_unlock(&vmap_area_lock);

2150
		kasan_free_shadow(vm);
2151 2152
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2153 2154 2155
		return vm;
	}
	return NULL;
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2173
	int flush_dmap = 0;
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2197 2198
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2199
			start = min(addr, start);
2200
			end = max(addr + PAGE_SIZE, end);
2201
			flush_dmap = 1;
2202 2203 2204 2205 2206 2207 2208 2209 2210
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2211
	_vm_unmap_aliases(start, end, flush_dmap);
2212 2213 2214
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2215
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221
{
	struct vm_struct *area;

	if (!addr)
		return;

2222
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2223
			addr))
L
Linus Torvalds 已提交
2224 2225
		return;

2226
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2227
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2228
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2229 2230 2231 2232
				addr);
		return;
	}

2233 2234
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2235

2236 2237
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2238 2239 2240 2241
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2242 2243 2244
			struct page *page = area->pages[i];

			BUG_ON(!page);
2245
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2246
		}
2247
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2248

D
David Rientjes 已提交
2249
		kvfree(area->pages);
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2271 2272
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2273
 *
2274 2275
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2288 2289 2290 2291 2292 2293 2294 2295
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2296
/**
2297 2298
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2299
 *
2300 2301 2302
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2303
 *
2304 2305 2306
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2307
 *
2308
 * May sleep if called *not* from interrupt context.
2309
 *
2310
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2311
 */
2312
void vfree(const void *addr)
L
Linus Torvalds 已提交
2313
{
2314
	BUG_ON(in_nmi());
2315 2316 2317

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2318 2319
	might_sleep_if(!in_interrupt());

2320 2321
	if (!addr)
		return;
2322 2323

	__vfree(addr);
L
Linus Torvalds 已提交
2324 2325 2326 2327
}
EXPORT_SYMBOL(vfree);

/**
2328 2329
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2330
 *
2331 2332
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2333
 *
2334
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2335
 */
2336
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2337 2338
{
	BUG_ON(in_interrupt());
2339
	might_sleep();
2340 2341
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2342 2343 2344 2345
}
EXPORT_SYMBOL(vunmap);

/**
2346 2347 2348 2349 2350 2351 2352 2353
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2354 2355
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2356 2357
 */
void *vmap(struct page **pages, unsigned int count,
2358
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2359 2360
{
	struct vm_struct *area;
2361
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2362

2363 2364
	might_sleep();

2365
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2366 2367
		return NULL;

2368 2369
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2370 2371
	if (!area)
		return NULL;
2372

2373
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2382 2383 2384
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2385
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2386
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2387 2388 2389
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2390
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2391 2392 2393 2394
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2395

2396
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2397 2398 2399 2400
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
2401
	if (array_size > PAGE_SIZE) {
2402
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2403
				PAGE_KERNEL, node, area->caller);
2404
	} else {
2405
		pages = kmalloc_node(array_size, nested_gfp, node);
2406
	}
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413 2414
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
2415 2416
		struct page *page;

J
Jianguo Wu 已提交
2417
		if (node == NUMA_NO_NODE)
2418
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2419
		else
2420
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2421 2422

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2423 2424
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2425
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2426 2427
			goto fail;
		}
2428
		area->pages[i] = page;
2429
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2430
			cond_resched();
L
Linus Torvalds 已提交
2431
	}
2432
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2433

2434
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2435 2436 2437 2438
		goto fail;
	return area->addr;

fail:
2439
	warn_alloc(gfp_mask, NULL,
2440
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2441
			  (area->nr_pages*PAGE_SIZE), area->size);
2442
	__vfree(area->addr);
L
Linus Torvalds 已提交
2443 2444 2445 2446
	return NULL;
}

/**
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2461 2462
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2463
 */
2464 2465
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2466 2467
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2468 2469
{
	struct vm_struct *area;
2470 2471
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2472 2473

	size = PAGE_ALIGN(size);
2474
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2475
		goto fail;
L
Linus Torvalds 已提交
2476

2477 2478
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2479
	if (!area)
2480
		goto fail;
L
Linus Torvalds 已提交
2481

2482
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2483
	if (!addr)
2484
		return NULL;
2485

2486
	/*
2487 2488
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2489
	 * Now, it is fully initialized, so remove this flag here.
2490
	 */
2491
	clear_vm_uninitialized_flag(area);
2492

2493
	kmemleak_vmalloc(area, size, gfp_mask);
2494 2495

	return addr;
2496 2497

fail:
2498
	warn_alloc(gfp_mask, NULL,
2499
			  "vmalloc: allocation failure: %lu bytes", real_size);
2500
	return NULL;
L
Linus Torvalds 已提交
2501 2502
}

2503 2504 2505 2506 2507 2508 2509 2510 2511
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2512
/**
2513 2514 2515 2516 2517 2518 2519
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2520
 *
2521 2522 2523
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2524
 *
2525 2526
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2527
 *
2528 2529
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2530 2531
 *
 * Return: pointer to the allocated memory or %NULL on error
2532
 */
2533
static void *__vmalloc_node(unsigned long size, unsigned long align,
2534
			    gfp_t gfp_mask, pgprot_t prot,
2535
			    int node, const void *caller)
2536 2537
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2538
				gfp_mask, prot, 0, node, caller);
2539 2540
}

C
Christoph Lameter 已提交
2541 2542
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2543
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2544
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2545
}
L
Linus Torvalds 已提交
2546 2547
EXPORT_SYMBOL(__vmalloc);

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2562
/**
2563 2564 2565 2566 2567
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2568
 *
2569 2570
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2571 2572
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2573 2574 2575
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2576
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2577
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2578 2579 2580
}
EXPORT_SYMBOL(vmalloc);

2581
/**
2582 2583 2584 2585 2586 2587 2588 2589 2590
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2591 2592
 *
 * Return: pointer to the allocated memory or %NULL on error
2593 2594 2595
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2596
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2597
				GFP_KERNEL | __GFP_ZERO);
2598 2599 2600
}
EXPORT_SYMBOL(vzalloc);

2601
/**
2602 2603
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2604
 *
2605 2606
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2607 2608
 *
 * Return: pointer to the allocated memory or %NULL on error
2609 2610 2611
 */
void *vmalloc_user(unsigned long size)
{
2612 2613 2614 2615
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2616 2617 2618
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2619
/**
2620 2621 2622
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2623
 *
2624 2625
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2626
 *
2627 2628
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2629 2630
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2631 2632 2633
 */
void *vmalloc_node(unsigned long size, int node)
{
2634
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2635
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2636 2637 2638
}
EXPORT_SYMBOL(vmalloc_node);

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2650 2651
 *
 * Return: pointer to the allocated memory or %NULL on error
2652 2653 2654 2655
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2656
			 GFP_KERNEL | __GFP_ZERO);
2657 2658 2659
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2660
/**
2661 2662
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2663
 *
2664 2665 2666
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2667
 *
2668 2669
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2670 2671
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2672 2673 2674
 */
void *vmalloc_exec(unsigned long size)
{
2675 2676 2677
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2678 2679
}

2680
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2681
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2682
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2683
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2684
#else
2685 2686 2687 2688 2689
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2690 2691
#endif

L
Linus Torvalds 已提交
2692
/**
2693 2694
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2695
 *
2696 2697
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2698 2699
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2700 2701 2702
 */
void *vmalloc_32(unsigned long size)
{
2703
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2704
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2705 2706 2707
}
EXPORT_SYMBOL(vmalloc_32);

2708
/**
2709
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2710
 * @size:	     allocation size
2711 2712 2713
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2714 2715
 *
 * Return: pointer to the allocated memory or %NULL on error
2716 2717 2718
 */
void *vmalloc_32_user(unsigned long size)
{
2719 2720 2721 2722
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2723 2724 2725
}
EXPORT_SYMBOL(vmalloc_32_user);

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2739
		offset = offset_in_page(addr);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2756
			void *map = kmap_atomic(p);
2757
			memcpy(buf, map + offset, length);
2758
			kunmap_atomic(map);
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2778
		offset = offset_in_page(addr);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2795
			void *map = kmap_atomic(p);
2796
			memcpy(map + offset, buf, length);
2797
			kunmap_atomic(map);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2825
 * any information, as /dev/kmem.
2826 2827 2828 2829
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2830
 */
L
Linus Torvalds 已提交
2831 2832
long vread(char *buf, char *addr, unsigned long count)
{
2833 2834
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2835
	char *vaddr, *buf_start = buf;
2836
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2853
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2863
		n = vaddr + get_vm_area_size(vm) - addr;
2864 2865
		if (n > count)
			n = count;
2866
		if (!(vm->flags & VM_IOREMAP))
2867 2868 2869 2870 2871 2872
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2873 2874
	}
finished:
2875
	spin_unlock(&vmap_area_lock);
2876 2877 2878 2879 2880 2881 2882 2883

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2884 2885
}

2886
/**
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2904
 * any information, as /dev/kmem.
2905 2906 2907 2908
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2909
 */
L
Linus Torvalds 已提交
2910 2911
long vwrite(char *buf, char *addr, unsigned long count)
{
2912 2913
	struct vmap_area *va;
	struct vm_struct *vm;
2914 2915 2916
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2917 2918 2919 2920

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2921
	buflen = count;
L
Linus Torvalds 已提交
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2933
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939 2940 2941
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2942
		n = vaddr + get_vm_area_size(vm) - addr;
2943 2944
		if (n > count)
			n = count;
2945
		if (!(vm->flags & VM_IOREMAP)) {
2946 2947 2948 2949 2950 2951
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2952 2953
	}
finished:
2954
	spin_unlock(&vmap_area_lock);
2955 2956 2957
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2958
}
2959 2960

/**
2961 2962 2963 2964 2965
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
2966
 *
2967
 * Returns:	0 for success, -Exxx on failure
2968
 *
2969 2970 2971 2972
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2973
 *
2974
 * Similar to remap_pfn_range() (see mm/memory.c)
2975
 */
2976 2977
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2978 2979 2980
{
	struct vm_struct *area;

2981 2982 2983
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2984 2985
		return -EINVAL;

2986
	area = find_vm_area(kaddr);
2987
	if (!area)
N
Nick Piggin 已提交
2988
		return -EINVAL;
2989 2990

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2991
		return -EINVAL;
2992

2993
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
2994
		return -EINVAL;
2995 2996

	do {
2997
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2998 2999
		int ret;

3000 3001 3002 3003 3004
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3005 3006 3007
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3008

3009
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3010

N
Nick Piggin 已提交
3011
	return 0;
3012
}
3013 3014 3015
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3016 3017 3018 3019
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3020
 *
3021
 * Returns:	0 for success, -Exxx on failure
3022
 *
3023 3024 3025
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3026
 *
3027
 * Similar to remap_pfn_range() (see mm/memory.c)
3028 3029 3030 3031 3032 3033 3034 3035
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3036 3037
EXPORT_SYMBOL(remap_vmalloc_range);

3038 3039 3040 3041
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
3042
void __weak vmalloc_sync_all(void)
3043 3044
{
}
3045 3046


3047
static int f(pte_t *pte, unsigned long addr, void *data)
3048
{
3049 3050 3051 3052 3053 3054
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3055 3056 3057 3058
	return 0;
}

/**
3059 3060 3061
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3062
 *
3063
 * Returns:	NULL on failure, vm_struct on success
3064
 *
3065 3066 3067
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3068
 *
3069 3070
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3071
 */
3072
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3073 3074 3075
{
	struct vm_struct *area;

3076 3077
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3078 3079 3080 3081 3082 3083 3084 3085
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3086
				size, f, ptes ? &ptes : NULL)) {
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3103

3104
#ifdef CONFIG_SMP
3105 3106
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3107
	return rb_entry_safe(n, struct vmap_area, rb_node);
3108 3109 3110
}

/**
3111 3112
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3113
 *
3114 3115 3116 3117
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3118
 */
3119 3120
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3121
{
3122 3123 3124 3125 3126
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3127 3128

	while (n) {
3129 3130 3131 3132 3133 3134
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3135
			n = n->rb_right;
3136 3137 3138
		} else {
			n = n->rb_left;
		}
3139 3140
	}

3141
	return va;
3142 3143 3144
}

/**
3145 3146 3147 3148 3149
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3150
 *
3151
 * Returns: determined end address within vmap_area
3152
 */
3153 3154
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3155
{
3156
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3157 3158
	unsigned long addr;

3159 3160 3161 3162 3163 3164 3165
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3166 3167
	}

3168
	return 0;
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3183 3184 3185 3186
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3187
 *
3188 3189 3190 3191 3192 3193
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3194 3195 3196
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3197
				     size_t align)
3198 3199 3200
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3201
	struct vmap_area **vas, *va;
3202 3203
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3204
	unsigned long base, start, size, end, last_end;
3205
	bool purged = false;
3206
	enum fit_type type;
3207 3208

	/* verify parameters and allocate data structures */
3209
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3222
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3223 3224 3225
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3226
			BUG_ON(start2 < end && start < end2);
3227 3228 3229 3230 3231 3232 3233 3234 3235
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3236 3237
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3238
	if (!vas || !vms)
3239
		goto err_free2;
3240 3241

	for (area = 0; area < nr_vms; area++) {
3242
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3243
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3255 3256
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3257 3258 3259 3260 3261 3262

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3263 3264
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3265 3266

		/*
3267
		 * Fitting base has not been found.
3268
		 */
3269 3270
		if (va == NULL)
			goto overflow;
3271 3272

		/*
3273
		 * If this VA does not fit, move base downwards and recheck.
3274
		 */
3275 3276 3277
		if (base + start < va->va_start || base + end > va->va_end) {
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3289

3290 3291
		start = offsets[area];
		end = start + sizes[area];
3292
		va = pvm_find_va_enclose_addr(base + end);
3293
	}
3294

3295 3296
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3297
		int ret;
3298

3299 3300
		start = base + offsets[area];
		size = sizes[area];
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3323 3324 3325 3326 3327

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3328 3329
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3330 3331 3332 3333

	kfree(vas);
	return vms;

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3361 3362
err_free:
	for (area = 0; area < nr_vms; area++) {
3363 3364 3365
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3366
		kfree(vms[area]);
3367
	}
3368
err_free2:
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3389
#endif	/* CONFIG_SMP */
3390 3391 3392

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3393
	__acquires(&vmap_area_lock)
3394
{
3395
	spin_lock(&vmap_area_lock);
3396
	return seq_list_start(&vmap_area_list, *pos);
3397 3398 3399 3400
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3401
	return seq_list_next(p, &vmap_area_list, pos);
3402 3403 3404
}

static void s_stop(struct seq_file *m, void *p)
3405
	__releases(&vmap_area_lock)
3406
{
3407
	spin_unlock(&vmap_area_lock);
3408 3409
}

E
Eric Dumazet 已提交
3410 3411
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3412
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3413 3414 3415 3416 3417
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3418 3419
		if (v->flags & VM_UNINITIALIZED)
			return;
3420 3421
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3422

E
Eric Dumazet 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3434 3435
static int s_show(struct seq_file *m, void *p)
{
3436
	struct vmap_area *va;
3437 3438
	struct vm_struct *v;

3439 3440
	va = list_entry(p, struct vmap_area, list);

3441 3442 3443 3444
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
3445 3446 3447 3448 3449 3450
	if (!(va->flags & VM_VM_AREA)) {
		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start,
			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");

3451
		return 0;
3452
	}
3453 3454

	v = va->vm;
3455

K
Kees Cook 已提交
3456
	seq_printf(m, "0x%pK-0x%pK %7ld",
3457 3458
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3459 3460
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3461

3462 3463 3464 3465
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3466
		seq_printf(m, " phys=%pa", &v->phys_addr);
3467 3468

	if (v->flags & VM_IOREMAP)
3469
		seq_puts(m, " ioremap");
3470 3471

	if (v->flags & VM_ALLOC)
3472
		seq_puts(m, " vmalloc");
3473 3474

	if (v->flags & VM_MAP)
3475
		seq_puts(m, " vmap");
3476 3477

	if (v->flags & VM_USERMAP)
3478
		seq_puts(m, " user");
3479

D
David Rientjes 已提交
3480
	if (is_vmalloc_addr(v->pages))
3481
		seq_puts(m, " vpages");
3482

E
Eric Dumazet 已提交
3483
	show_numa_info(m, v);
3484 3485 3486 3487
	seq_putc(m, '\n');
	return 0;
}

3488
static const struct seq_operations vmalloc_op = {
3489 3490 3491 3492 3493
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3494 3495 3496

static int __init proc_vmalloc_init(void)
{
3497
	if (IS_ENABLED(CONFIG_NUMA))
3498
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3499 3500
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3501
	else
3502
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3503 3504 3505
	return 0;
}
module_init(proc_vmalloc_init);
3506

3507
#endif