vmalloc.c 91.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
82
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
83 84
}

85 86
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
87 88 89
{
	pmd_t *pmd;
	unsigned long next;
90
	int cleared;
L
Linus Torvalds 已提交
91 92 93 94

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
95 96 97 98 99 100

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
101
			continue;
L
Linus Torvalds 已提交
102 103
		if (pmd_none_or_clear_bad(pmd))
			continue;
104
		vunmap_pte_range(pmd, addr, next, mask);
L
Linus Torvalds 已提交
105 106 107
	} while (pmd++, addr = next, addr != end);
}

108 109
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
110 111 112
{
	pud_t *pud;
	unsigned long next;
113
	int cleared;
L
Linus Torvalds 已提交
114

115
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
116 117
	do {
		next = pud_addr_end(addr, end);
118 119 120 121 122 123

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
124
			continue;
L
Linus Torvalds 已提交
125 126
		if (pud_none_or_clear_bad(pud))
			continue;
127
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
128 129 130
	} while (pud++, addr = next, addr != end);
}

131 132
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
133 134 135
{
	p4d_t *p4d;
	unsigned long next;
136
	int cleared;
137 138 139 140

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
141 142 143 144 145 146

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
147 148 149
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
150
		vunmap_pud_range(p4d, addr, next, mask);
151 152 153
	} while (p4d++, addr = next, addr != end);
}

154 155
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
156
 * @start: start of the VM area to unmap
157 158 159 160 161 162 163 164 165 166
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
167
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
168
{
169
	unsigned long end = start + size;
L
Linus Torvalds 已提交
170
	unsigned long next;
171
	pgd_t *pgd;
172 173
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
174 175

	BUG_ON(addr >= end);
176
	start = addr;
L
Linus Torvalds 已提交
177 178 179
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
180 181
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
182 183
		if (pgd_none_or_clear_bad(pgd))
			continue;
184
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
185
	} while (pgd++, addr = next, addr != end);
186 187 188

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
189 190 191
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
192 193
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
194 195 196
{
	pte_t *pte;

N
Nick Piggin 已提交
197 198 199 200 201
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

202
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
203 204 205
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
206 207 208 209 210
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
211 212
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
213
		(*nr)++;
L
Linus Torvalds 已提交
214
	} while (pte++, addr += PAGE_SIZE, addr != end);
215
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
216 217 218
	return 0;
}

N
Nick Piggin 已提交
219
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
220 221
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
222 223 224 225
{
	pmd_t *pmd;
	unsigned long next;

226
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
227 228 229 230
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
231
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
232 233 234 235 236
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

237
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
238 239
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
240 241 242 243
{
	pud_t *pud;
	unsigned long next;

244
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
245 246 247 248
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
249
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
250 251 252 253 254
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

255
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
256 257
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
258 259 260 261
{
	p4d_t *p4d;
	unsigned long next;

262
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
263 264 265 266
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
267
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
268 269 270 271 272
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

273 274 275 276 277 278
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
279
 *
280 281 282 283 284 285 286 287 288
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
289
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
290
 */
291 292
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
293
{
294
	unsigned long start = addr;
295
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
296
	unsigned long next;
297
	pgd_t *pgd;
N
Nick Piggin 已提交
298 299
	int err = 0;
	int nr = 0;
300
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
301 302 303 304 305

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
306 307 308
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
309
		if (err)
310
			return err;
L
Linus Torvalds 已提交
311
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
312

313 314 315
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

316
	return 0;
L
Linus Torvalds 已提交
317 318
}

C
Christoph Hellwig 已提交
319 320
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
321 322 323
{
	int ret;

324 325
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
326 327 328
	return ret;
}

329
int is_vmalloc_or_module_addr(const void *x)
330 331
{
	/*
332
	 * ARM, x86-64 and sparc64 put modules in a special place,
333 334 335 336 337 338 339 340 341 342 343
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

344
/*
345
 * Walk a vmap address to the struct page it maps.
346
 */
347
struct page *vmalloc_to_page(const void *vmalloc_addr)
348 349
{
	unsigned long addr = (unsigned long) vmalloc_addr;
350
	struct page *page = NULL;
351
	pgd_t *pgd = pgd_offset_k(addr);
352 353 354 355
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
356

357 358 359 360
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
361
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
362

363 364 365 366 367 368
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
369 370 371 372 373 374 375 376 377 378 379

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
380 381
		return NULL;
	pmd = pmd_offset(pud, addr);
382 383
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
384 385 386 387 388 389 390
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
391
	return page;
392
}
393
EXPORT_SYMBOL(vmalloc_to_page);
394 395

/*
396
 * Map a vmalloc()-space virtual address to the physical page frame number.
397
 */
398
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
399
{
400
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
401
}
402
EXPORT_SYMBOL(vmalloc_to_pfn);
403

N
Nick Piggin 已提交
404 405 406

/*** Global kva allocator ***/

407
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
408
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
409

N
Nick Piggin 已提交
410 411

static DEFINE_SPINLOCK(vmap_area_lock);
412
static DEFINE_SPINLOCK(free_vmap_area_lock);
413 414
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
415
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
416
static struct rb_root vmap_area_root = RB_ROOT;
417
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

445 446 447 448 449 450 451
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

452 453 454 455 456 457 458 459 460 461 462 463 464 465
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
466

467 468 469 470 471 472 473 474 475 476 477
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

478 479
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
480 481 482 483

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
484

485 486 487 488 489 490 491
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
492
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
493
{
N
Nick Piggin 已提交
494 495 496 497 498 499 500 501
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
502
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
503 504 505 506 507 508 509 510
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
532

533 534 535 536 537 538 539
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
540

541 542 543 544 545 546 547 548 549 550 551
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
552 553
		else
			BUG();
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
590 591
	}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
612

613 614
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
615 616
}

617 618 619
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
620 621
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
622

623 624 625 626 627 628 629 630
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
631 632
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
724 725 726 727

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
764
static __always_inline struct vmap_area *
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

826 827
			if (merged)
				unlink_va(va, root);
828 829 830

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
831 832 833 834

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
835 836 837 838 839 840 841 842
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
843 844

	return va;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
906
			 * OK. We roll back and find the first right sub-tree,
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
1004
	struct vmap_area *lva = NULL;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1068 1069 1070 1071 1072
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1091
		if (lva)	/* type == NE_FIT_TYPE */
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1105
	unsigned long vstart, unsigned long vend)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1135 1136 1137 1138
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1139 1140
	return nva_start_addr;
}
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1171
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1172
	unsigned long addr;
N
Nick Piggin 已提交
1173
	int purged = 0;
1174
	int ret;
N
Nick Piggin 已提交
1175

N
Nick Piggin 已提交
1176
	BUG_ON(!size);
1177
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1178
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1179

1180 1181 1182
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1183
	might_sleep();
1184
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1185

1186
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1187 1188 1189
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1190 1191 1192 1193
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1194
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1195

N
Nick Piggin 已提交
1196
retry:
1197
	/*
1198 1199 1200 1201 1202 1203
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1204 1205 1206
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1207 1208
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1209
	 *
1210
	 * Set "pva" to NULL here, because of "retry" path.
1211
	 */
1212
	pva = NULL;
1213

1214 1215 1216 1217 1218 1219
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1220
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1221

1222
	spin_lock(&free_vmap_area_lock);
1223 1224 1225

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1226

1227
	/*
1228 1229
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1230
	 */
1231
	addr = __alloc_vmap_area(size, align, vstart, vend);
1232 1233
	spin_unlock(&free_vmap_area_lock);

1234
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1235
		goto overflow;
N
Nick Piggin 已提交
1236 1237 1238

	va->va_start = addr;
	va->va_end = addr + size;
1239
	va->vm = NULL;
1240

1241

1242 1243
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1244 1245
	spin_unlock(&vmap_area_lock);

1246
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1247 1248 1249
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1250 1251 1252 1253 1254 1255
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1256
	return va;
N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1274
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1275 1276
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1277 1278

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1279
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1319
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1320

1321 1322 1323 1324 1325
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1326
static DEFINE_MUTEX(vmap_purge_lock);
1327

1328 1329 1330
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1331 1332 1333 1334 1335 1336
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1337
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1338 1339
}

N
Nick Piggin 已提交
1340 1341 1342
/*
 * Purges all lazily-freed vmap areas.
 */
1343
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1344
{
1345
	unsigned long resched_threshold;
1346
	struct llist_node *valist;
N
Nick Piggin 已提交
1347
	struct vmap_area *va;
1348
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1349

1350
	lockdep_assert_held(&vmap_purge_lock);
1351

1352
	valist = llist_del_all(&vmap_purge_list);
1353 1354 1355 1356 1357 1358 1359
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1360
	llist_for_each_entry(va, valist, purge_list) {
1361 1362 1363 1364
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1365 1366
	}

1367
	flush_tlb_kernel_range(start, end);
1368
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1369

1370
	spin_lock(&free_vmap_area_lock);
1371
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1372
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1373 1374
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1375

1376 1377 1378 1379 1380
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1381 1382 1383 1384 1385 1386
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1387

1388
		atomic_long_sub(nr, &vmap_lazy_nr);
1389

1390
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1391
			cond_resched_lock(&free_vmap_area_lock);
1392
	}
1393
	spin_unlock(&free_vmap_area_lock);
1394
	return true;
N
Nick Piggin 已提交
1395 1396
}

N
Nick Piggin 已提交
1397 1398 1399 1400 1401 1402
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1403
	if (mutex_trylock(&vmap_purge_lock)) {
1404
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1405
		mutex_unlock(&vmap_purge_lock);
1406
	}
N
Nick Piggin 已提交
1407 1408
}

N
Nick Piggin 已提交
1409 1410 1411 1412 1413
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1414
	mutex_lock(&vmap_purge_lock);
1415 1416
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1417
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1418 1419 1420
}

/*
1421 1422 1423
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1424
 */
1425
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1426
{
1427
	unsigned long nr_lazy;
1428

1429 1430 1431 1432
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1433 1434
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1435 1436 1437 1438 1439

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1440
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1441 1442
}

1443 1444 1445 1446 1447 1448
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1449
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1450
	if (debug_pagealloc_enabled_static())
1451 1452
		flush_tlb_kernel_range(va->va_start, va->va_end);

1453
	free_vmap_area_noflush(va);
1454 1455
}

N
Nick Piggin 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1490 1491 1492 1493
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1506
	unsigned long dirty_min, dirty_max; /*< dirty range */
1507 1508
	struct list_head free_list;
	struct rcu_head rcu_head;
1509
	struct list_head purge;
N
Nick Piggin 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1552
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1553 1554
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1555 1556 1557 1558 1559 1560
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1561
	void *vaddr;
N
Nick Piggin 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1573
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1574
		kfree(vb);
J
Julia Lawall 已提交
1575
		return ERR_CAST(va);
N
Nick Piggin 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1585
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1586 1587
	spin_lock_init(&vb->lock);
	vb->va = va;
1588 1589 1590
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1591
	vb->dirty = 0;
1592 1593
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1605
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1606
	spin_unlock(&vbq->lock);
1607
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1608

1609
	return vaddr;
N
Nick Piggin 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1623
	free_vmap_area_noflush(vb->va);
1624
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1625 1626
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1644 1645
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1670 1671 1672 1673
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1674
	void *vaddr = NULL;
N
Nick Piggin 已提交
1675 1676
	unsigned int order;

1677
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1678
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1679 1680 1681 1682 1683 1684 1685 1686
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1687 1688 1689 1690 1691
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1692
		unsigned long pages_off;
N
Nick Piggin 已提交
1693 1694

		spin_lock(&vb->lock);
1695 1696 1697 1698
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1699

1700 1701
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1702 1703 1704 1705 1706 1707
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1708

1709 1710
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1711
	}
1712

1713
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1714 1715
	rcu_read_unlock();

1716 1717 1718
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1719

1720
	return vaddr;
N
Nick Piggin 已提交
1721 1722
}

1723
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1724 1725 1726 1727 1728 1729
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1730
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1731
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1732

1733
	flush_cache_vunmap(addr, addr + size);
1734

N
Nick Piggin 已提交
1735 1736
	order = get_order(size);

1737
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
N
Nick Piggin 已提交
1738

1739
	vb_idx = addr_to_vb_idx(addr);
N
Nick Piggin 已提交
1740 1741 1742 1743 1744
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1745
	unmap_kernel_range_noflush(addr, size);
1746

1747
	if (debug_pagealloc_enabled_static())
1748
		flush_tlb_kernel_range(addr, addr + size);
1749

N
Nick Piggin 已提交
1750
	spin_lock(&vb->lock);
1751 1752 1753 1754

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1755

N
Nick Piggin 已提交
1756 1757
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1758
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1759 1760 1761 1762 1763 1764
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1765
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1766 1767 1768
{
	int cpu;

1769 1770 1771
	if (unlikely(!vmap_initialized))
		return;

1772 1773
	might_sleep();

N
Nick Piggin 已提交
1774 1775 1776 1777 1778 1779 1780
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1781 1782
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1783
				unsigned long s, e;
1784

1785 1786
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1787

1788 1789
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1790

1791
				flush = 1;
N
Nick Piggin 已提交
1792 1793 1794 1795 1796 1797
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1798
	mutex_lock(&vmap_purge_lock);
1799 1800 1801
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1802
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1803
}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1834
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1835
	unsigned long addr = (unsigned long)mem;
1836
	struct vmap_area *va;
N
Nick Piggin 已提交
1837

1838
	might_sleep();
N
Nick Piggin 已提交
1839 1840 1841
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1842
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1843

1844 1845
	kasan_poison_vmalloc(mem, size);

1846
	if (likely(count <= VMAP_MAX_ALLOC)) {
1847
		debug_check_no_locks_freed(mem, size);
1848
		vb_free(addr, size);
1849 1850 1851 1852 1853
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1854 1855
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1856
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1866
 *
1867 1868 1869 1870 1871 1872
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1873
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1874
 */
1875
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1876
{
1877
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1896 1897 1898

	kasan_unpoison_vmalloc(mem, size);

1899
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1900 1901 1902 1903 1904 1905 1906
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1907
static struct vm_struct *vmlist __initdata;
1908

N
Nicolas Pitre 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1935 1936 1937
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1938
 * @align: requested alignment
1939 1940 1941 1942 1943 1944 1945 1946
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1947
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1948 1949
{
	static size_t vm_init_off __initdata;
1950 1951 1952 1953
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1954

1955
	vm->addr = (void *)addr;
1956

N
Nicolas Pitre 已提交
1957
	vm_area_add_early(vm);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
2001 2002
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
2003 2004
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
2005 2006
	int i;

2007 2008 2009 2010 2011
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
2012 2013
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
2014
		struct vfree_deferred *p;
N
Nick Piggin 已提交
2015 2016 2017 2018

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
2019 2020 2021
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
2022
	}
2023

I
Ivan Kokshaysky 已提交
2024 2025
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
2026 2027 2028 2029
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
2030 2031
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2032
		va->vm = tmp;
2033
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2034
	}
2035

2036 2037 2038 2039
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2040
	vmap_initialized = true;
N
Nick Piggin 已提交
2041 2042
}

2043 2044 2045 2046 2047 2048 2049 2050
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2051 2052 2053
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2054 2055

	flush_cache_vunmap(addr, end);
2056
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2057 2058 2059
	flush_tlb_kernel_range(addr, end);
}

2060 2061
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2062 2063 2064 2065 2066
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2067
	va->vm = vm;
2068 2069 2070 2071 2072 2073 2074
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2075
	spin_unlock(&vmap_area_lock);
2076
}
2077

2078
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2079
{
2080
	/*
2081
	 * Before removing VM_UNINITIALIZED,
2082 2083 2084 2085
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2086
	vm->flags &= ~VM_UNINITIALIZED;
2087 2088
}

N
Nick Piggin 已提交
2089
static struct vm_struct *__get_vm_area_node(unsigned long size,
2090
		unsigned long align, unsigned long flags, unsigned long start,
2091
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2092
{
2093
	struct vmap_area *va;
N
Nick Piggin 已提交
2094
	struct vm_struct *area;
2095
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2096

2097
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2098
	size = PAGE_ALIGN(size);
2099 2100
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2101

2102 2103 2104 2105
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2106
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2107 2108 2109
	if (unlikely(!area))
		return NULL;

2110 2111
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2112

N
Nick Piggin 已提交
2113 2114 2115 2116
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2117 2118
	}

2119
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2120

2121
	setup_vmalloc_vm(area, va, flags, caller);
2122

L
Linus Torvalds 已提交
2123 2124 2125
	return area;
}

2126 2127
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2128
				       const void *caller)
2129
{
D
David Rientjes 已提交
2130 2131
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2132 2133
}

L
Linus Torvalds 已提交
2134
/**
2135 2136 2137
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2138
 *
2139 2140 2141
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2142 2143
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2144 2145 2146
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2147
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2148 2149
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2150 2151 2152
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2153
				const void *caller)
2154
{
2155
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2156
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2157 2158
}

2159
/**
2160 2161
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2162
 *
2163 2164 2165
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2166 2167
 *
 * Return: pointer to the found area or %NULL on faulure
2168 2169
 */
struct vm_struct *find_vm_area(const void *addr)
2170
{
N
Nick Piggin 已提交
2171
	struct vmap_area *va;
2172

N
Nick Piggin 已提交
2173
	va = find_vmap_area((unsigned long)addr);
2174 2175
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2176

2177
	return va->vm;
L
Linus Torvalds 已提交
2178 2179
}

2180
/**
2181 2182
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2183
 *
2184 2185 2186
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2187 2188
 *
 * Return: pointer to the found area or %NULL on faulure
2189
 */
2190
struct vm_struct *remove_vm_area(const void *addr)
2191
{
N
Nick Piggin 已提交
2192 2193
	struct vmap_area *va;

2194 2195
	might_sleep();

2196 2197
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2198
	if (va && va->vm) {
2199
		struct vm_struct *vm = va->vm;
2200

2201 2202 2203
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2204
		kasan_free_shadow(vm);
2205 2206
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2207 2208
		return vm;
	}
2209 2210

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2211
	return NULL;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2229
	int flush_dmap = 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2253 2254
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2255
			start = min(addr, start);
2256
			end = max(addr + PAGE_SIZE, end);
2257
			flush_dmap = 1;
2258 2259 2260 2261 2262 2263 2264 2265 2266
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2267
	_vm_unmap_aliases(start, end, flush_dmap);
2268 2269 2270
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2271
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277
{
	struct vm_struct *area;

	if (!addr)
		return;

2278
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2279
			addr))
L
Linus Torvalds 已提交
2280 2281
		return;

2282
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2283
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2284
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2285 2286 2287 2288
				addr);
		return;
	}

2289 2290
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2291

2292
	kasan_poison_vmalloc(area->addr, area->size);
2293

2294 2295
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2296 2297 2298 2299
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2300 2301 2302
			struct page *page = area->pages[i];

			BUG_ON(!page);
2303
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2304
		}
2305
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2306

D
David Rientjes 已提交
2307
		kvfree(area->pages);
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2329 2330
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2331
 *
2332 2333
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2346 2347 2348 2349 2350 2351 2352 2353
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2354
/**
2355 2356
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2357
 *
2358 2359 2360
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2361
 *
2362 2363 2364
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2365
 *
2366
 * May sleep if called *not* from interrupt context.
2367
 *
2368
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2369
 */
2370
void vfree(const void *addr)
L
Linus Torvalds 已提交
2371
{
2372
	BUG_ON(in_nmi());
2373 2374 2375

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2376 2377
	might_sleep_if(!in_interrupt());

2378 2379
	if (!addr)
		return;
2380 2381

	__vfree(addr);
L
Linus Torvalds 已提交
2382 2383 2384 2385
}
EXPORT_SYMBOL(vfree);

/**
2386 2387
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2388
 *
2389 2390
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2391
 *
2392
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2393
 */
2394
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2395 2396
{
	BUG_ON(in_interrupt());
2397
	might_sleep();
2398 2399
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2400 2401 2402 2403
}
EXPORT_SYMBOL(vunmap);

/**
2404 2405 2406 2407 2408 2409 2410 2411
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2412 2413
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2414 2415
 */
void *vmap(struct page **pages, unsigned int count,
2416
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2417 2418
{
	struct vm_struct *area;
2419
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2420

2421 2422
	might_sleep();

2423
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2424 2425
		return NULL;

2426 2427
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2428 2429
	if (!area)
		return NULL;
2430

2431
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2432
			pages) < 0) {
L
Linus Torvalds 已提交
2433 2434 2435 2436 2437 2438 2439 2440
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

A
Adrian Bunk 已提交
2441
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2442
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2443 2444 2445
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2446
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2447 2448 2449 2450
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2451

2452
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2453 2454 2455
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2456
	if (array_size > PAGE_SIZE) {
2457
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2458
				node, area->caller);
2459
	} else {
2460
		pages = kmalloc_node(array_size, nested_gfp, node);
2461
	}
2462 2463

	if (!pages) {
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2469 2470 2471
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2472
	for (i = 0; i < area->nr_pages; i++) {
2473 2474
		struct page *page;

J
Jianguo Wu 已提交
2475
		if (node == NUMA_NO_NODE)
2476
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2477
		else
2478
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2479 2480

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2481 2482
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2483
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2484 2485
			goto fail;
		}
2486
		area->pages[i] = page;
2487
		if (gfpflags_allow_blocking(gfp_mask))
2488
			cond_resched();
L
Linus Torvalds 已提交
2489
	}
2490
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2491

C
Christoph Hellwig 已提交
2492 2493
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2494
		goto fail;
C
Christoph Hellwig 已提交
2495

L
Linus Torvalds 已提交
2496 2497 2498
	return area->addr;

fail:
2499
	warn_alloc(gfp_mask, NULL,
2500
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2501
			  (area->nr_pages*PAGE_SIZE), area->size);
2502
	__vfree(area->addr);
L
Linus Torvalds 已提交
2503 2504 2505 2506
	return NULL;
}

/**
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2521 2522
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2523
 */
2524 2525
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2526 2527
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2528 2529
{
	struct vm_struct *area;
2530 2531
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2532 2533

	size = PAGE_ALIGN(size);
2534
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2535
		goto fail;
L
Linus Torvalds 已提交
2536

2537
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2538
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2539
	if (!area)
2540
		goto fail;
L
Linus Torvalds 已提交
2541

2542
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2543
	if (!addr)
2544
		return NULL;
2545

2546
	/*
2547 2548
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2549
	 * Now, it is fully initialized, so remove this flag here.
2550
	 */
2551
	clear_vm_uninitialized_flag(area);
2552

2553
	kmemleak_vmalloc(area, size, gfp_mask);
2554 2555

	return addr;
2556 2557

fail:
2558
	warn_alloc(gfp_mask, NULL,
2559
			  "vmalloc: allocation failure: %lu bytes", real_size);
2560
	return NULL;
L
Linus Torvalds 已提交
2561 2562
}

2563
/**
2564 2565 2566 2567 2568 2569
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2570
 *
2571 2572
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2573
 *
2574 2575
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2576
 *
2577 2578
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2579 2580
 *
 * Return: pointer to the allocated memory or %NULL on error
2581
 */
2582
void *__vmalloc_node(unsigned long size, unsigned long align,
2583
			    gfp_t gfp_mask, int node, const void *caller)
2584 2585
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2586
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2587
}
2588 2589 2590 2591 2592 2593 2594 2595
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2596

2597
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2598
{
2599
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2600
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2601
}
L
Linus Torvalds 已提交
2602 2603 2604
EXPORT_SYMBOL(__vmalloc);

/**
2605 2606 2607 2608 2609
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2610
 *
2611 2612
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2613 2614
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2615 2616 2617
 */
void *vmalloc(unsigned long size)
{
2618 2619
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2620 2621 2622
}
EXPORT_SYMBOL(vmalloc);

2623
/**
2624 2625 2626 2627 2628 2629 2630 2631 2632
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2633 2634
 *
 * Return: pointer to the allocated memory or %NULL on error
2635 2636 2637
 */
void *vzalloc(unsigned long size)
{
2638 2639
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2640 2641 2642
}
EXPORT_SYMBOL(vzalloc);

2643
/**
2644 2645
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2646
 *
2647 2648
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2649 2650
 *
 * Return: pointer to the allocated memory or %NULL on error
2651 2652 2653
 */
void *vmalloc_user(unsigned long size)
{
2654 2655 2656 2657
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2658 2659 2660
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2661
/**
2662 2663 2664
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2665
 *
2666 2667
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2668
 *
2669 2670
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2671 2672
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2673 2674 2675
 */
void *vmalloc_node(unsigned long size, int node)
{
2676 2677
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2678 2679 2680
}
EXPORT_SYMBOL(vmalloc_node);

2681 2682 2683 2684 2685 2686 2687 2688 2689
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2690
 * Return: pointer to the allocated memory or %NULL on error
2691 2692 2693
 */
void *vzalloc_node(unsigned long size, int node)
{
2694 2695
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2696 2697 2698
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2699
/**
2700 2701
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2702
 *
2703 2704 2705
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2706
 *
2707 2708
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2709 2710
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2711 2712 2713
 */
void *vmalloc_exec(unsigned long size)
{
2714 2715 2716
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2717 2718
}

2719
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2720
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2721
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2722
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2723
#else
2724 2725 2726 2727 2728
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2729 2730
#endif

L
Linus Torvalds 已提交
2731
/**
2732 2733
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2734
 *
2735 2736
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2737 2738
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2739 2740 2741
 */
void *vmalloc_32(unsigned long size)
{
2742 2743
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2744 2745 2746
}
EXPORT_SYMBOL(vmalloc_32);

2747
/**
2748
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2749
 * @size:	     allocation size
2750 2751 2752
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2753 2754
 *
 * Return: pointer to the allocated memory or %NULL on error
2755 2756 2757
 */
void *vmalloc_32_user(unsigned long size)
{
2758 2759 2760 2761
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2762 2763 2764
}
EXPORT_SYMBOL(vmalloc_32_user);

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2778
		offset = offset_in_page(addr);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2795
			void *map = kmap_atomic(p);
2796
			memcpy(buf, map + offset, length);
2797
			kunmap_atomic(map);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2817
		offset = offset_in_page(addr);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2834
			void *map = kmap_atomic(p);
2835
			memcpy(map + offset, buf, length);
2836
			kunmap_atomic(map);
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2864
 * any information, as /dev/kmem.
2865 2866 2867 2868
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2869
 */
L
Linus Torvalds 已提交
2870 2871
long vread(char *buf, char *addr, unsigned long count)
{
2872 2873
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2874
	char *vaddr, *buf_start = buf;
2875
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2882 2883 2884 2885 2886
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2887
		if (!va->vm)
2888 2889 2890 2891
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2892
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2902
		n = vaddr + get_vm_area_size(vm) - addr;
2903 2904
		if (n > count)
			n = count;
2905
		if (!(vm->flags & VM_IOREMAP))
2906 2907 2908 2909 2910 2911
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2912 2913
	}
finished:
2914
	spin_unlock(&vmap_area_lock);
2915 2916 2917 2918 2919 2920 2921 2922

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2923 2924
}

2925
/**
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2943
 * any information, as /dev/kmem.
2944 2945 2946 2947
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2948
 */
L
Linus Torvalds 已提交
2949 2950
long vwrite(char *buf, char *addr, unsigned long count)
{
2951 2952
	struct vmap_area *va;
	struct vm_struct *vm;
2953 2954 2955
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2956 2957 2958 2959

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2960
	buflen = count;
L
Linus Torvalds 已提交
2961

2962 2963 2964 2965 2966
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2967
		if (!va->vm)
2968 2969 2970 2971
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2972
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977 2978 2979 2980
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2981
		n = vaddr + get_vm_area_size(vm) - addr;
2982 2983
		if (n > count)
			n = count;
2984
		if (!(vm->flags & VM_IOREMAP)) {
2985 2986 2987 2988 2989 2990
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2991 2992
	}
finished:
2993
	spin_unlock(&vmap_area_lock);
2994 2995 2996
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2997
}
2998 2999

/**
3000 3001 3002 3003
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3004
 * @pgoff:		offset from @kaddr to start at
3005
 * @size:		size of map area
3006
 *
3007
 * Returns:	0 for success, -Exxx on failure
3008
 *
3009 3010 3011 3012
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3013
 *
3014
 * Similar to remap_pfn_range() (see mm/memory.c)
3015
 */
3016
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3017 3018
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3019 3020
{
	struct vm_struct *area;
3021 3022 3023 3024 3025
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3026

3027 3028 3029
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3030 3031
		return -EINVAL;

3032
	area = find_vm_area(kaddr);
3033
	if (!area)
N
Nick Piggin 已提交
3034
		return -EINVAL;
3035

3036
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3037
		return -EINVAL;
3038

3039 3040
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3041
		return -EINVAL;
3042
	kaddr += off;
3043 3044

	do {
3045
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3046 3047
		int ret;

3048 3049 3050 3051 3052
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3053 3054 3055
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3056

3057
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3058

N
Nick Piggin 已提交
3059
	return 0;
3060
}
3061 3062 3063
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3064 3065 3066 3067
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3068
 *
3069
 * Returns:	0 for success, -Exxx on failure
3070
 *
3071 3072 3073
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3074
 *
3075
 * Similar to remap_pfn_range() (see mm/memory.c)
3076 3077 3078 3079 3080
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3081
					   addr, pgoff,
3082 3083
					   vma->vm_end - vma->vm_start);
}
3084 3085
EXPORT_SYMBOL(remap_vmalloc_range);

3086
static int f(pte_t *pte, unsigned long addr, void *data)
3087
{
3088 3089 3090 3091 3092 3093
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3094 3095 3096 3097
	return 0;
}

/**
3098 3099 3100
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3101
 *
3102
 * Returns:	NULL on failure, vm_struct on success
3103
 *
3104 3105 3106
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3107
 *
3108 3109
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3110
 */
3111
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3112 3113 3114
{
	struct vm_struct *area;

3115 3116
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3117 3118 3119 3120 3121 3122 3123 3124
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3125
				size, f, ptes ? &ptes : NULL)) {
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3142

3143
#ifdef CONFIG_SMP
3144 3145
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3146
	return rb_entry_safe(n, struct vmap_area, rb_node);
3147 3148 3149
}

/**
3150 3151
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3152
 *
3153 3154 3155 3156
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3157
 */
3158 3159
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3160
{
3161 3162 3163 3164 3165
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3166 3167

	while (n) {
3168 3169 3170 3171 3172 3173
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3174
			n = n->rb_right;
3175 3176 3177
		} else {
			n = n->rb_left;
		}
3178 3179
	}

3180
	return va;
3181 3182 3183
}

/**
3184 3185 3186 3187 3188
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3189
 *
3190
 * Returns: determined end address within vmap_area
3191
 */
3192 3193
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3194
{
3195
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3196 3197
	unsigned long addr;

3198 3199 3200 3201 3202 3203 3204
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3205 3206
	}

3207
	return 0;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3222 3223 3224 3225
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3226
 *
3227 3228 3229 3230 3231 3232
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3233 3234 3235
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3236
				     size_t align)
3237 3238 3239
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3240
	struct vmap_area **vas, *va;
3241 3242
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3243
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3244
	bool purged = false;
3245
	enum fit_type type;
3246 3247

	/* verify parameters and allocate data structures */
3248
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3261
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3262 3263 3264
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3265
			BUG_ON(start2 < end && start < end2);
3266 3267 3268 3269 3270 3271 3272 3273 3274
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3275 3276
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3277
	if (!vas || !vms)
3278
		goto err_free2;
3279 3280

	for (area = 0; area < nr_vms; area++) {
3281
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3282
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3283 3284 3285 3286
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3287
	spin_lock(&free_vmap_area_lock);
3288 3289 3290 3291 3292 3293

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3294 3295
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3296 3297 3298 3299 3300 3301

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3302 3303
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3304 3305

		/*
3306
		 * Fitting base has not been found.
3307
		 */
3308 3309
		if (va == NULL)
			goto overflow;
3310

3311
		/*
Q
Qiujun Huang 已提交
3312
		 * If required width exceeds current VA block, move
3313 3314 3315 3316 3317 3318 3319 3320
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3321
		/*
3322
		 * If this VA does not fit, move base downwards and recheck.
3323
		 */
3324
		if (base + start < va->va_start) {
3325 3326
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3338

3339 3340
		start = offsets[area];
		end = start + sizes[area];
3341
		va = pvm_find_va_enclose_addr(base + end);
3342
	}
3343

3344 3345
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3346
		int ret;
3347

3348 3349
		start = base + offsets[area];
		size = sizes[area];
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3370

3371
	spin_unlock(&free_vmap_area_lock);
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3382
	/* insert all vm's */
3383 3384 3385 3386 3387
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3388
				 pcpu_get_vm_areas);
3389 3390
	}
	spin_unlock(&vmap_area_lock);
3391 3392 3393 3394

	kfree(vas);
	return vms;

3395
recovery:
3396 3397 3398 3399 3400 3401
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3402
	while (area--) {
3403 3404 3405 3406 3407 3408
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3409 3410 3411 3412
		vas[area] = NULL;
	}

overflow:
3413
	spin_unlock(&free_vmap_area_lock);
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3432 3433
err_free:
	for (area = 0; area < nr_vms; area++) {
3434 3435 3436
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3437
		kfree(vms[area]);
3438
	}
3439
err_free2:
3440 3441 3442
	kfree(vas);
	kfree(vms);
	return NULL;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3482
#endif	/* CONFIG_SMP */
3483 3484 3485

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3486
	__acquires(&vmap_purge_lock)
3487
	__acquires(&vmap_area_lock)
3488
{
3489
	mutex_lock(&vmap_purge_lock);
3490
	spin_lock(&vmap_area_lock);
3491

3492
	return seq_list_start(&vmap_area_list, *pos);
3493 3494 3495 3496
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3497
	return seq_list_next(p, &vmap_area_list, pos);
3498 3499 3500
}

static void s_stop(struct seq_file *m, void *p)
3501
	__releases(&vmap_purge_lock)
3502
	__releases(&vmap_area_lock)
3503
{
3504
	mutex_unlock(&vmap_purge_lock);
3505
	spin_unlock(&vmap_area_lock);
3506 3507
}

E
Eric Dumazet 已提交
3508 3509
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3510
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3511 3512 3513 3514 3515
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3516 3517
		if (v->flags & VM_UNINITIALIZED)
			return;
3518 3519
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3520

E
Eric Dumazet 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3548 3549
static int s_show(struct seq_file *m, void *p)
{
3550
	struct vmap_area *va;
3551 3552
	struct vm_struct *v;

3553 3554
	va = list_entry(p, struct vmap_area, list);

3555
	/*
3556 3557
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3558
	 */
3559
	if (!va->vm) {
3560
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3561
			(void *)va->va_start, (void *)va->va_end,
3562
			va->va_end - va->va_start);
3563

3564
		return 0;
3565
	}
3566 3567

	v = va->vm;
3568

K
Kees Cook 已提交
3569
	seq_printf(m, "0x%pK-0x%pK %7ld",
3570 3571
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3572 3573
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3574

3575 3576 3577 3578
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3579
		seq_printf(m, " phys=%pa", &v->phys_addr);
3580 3581

	if (v->flags & VM_IOREMAP)
3582
		seq_puts(m, " ioremap");
3583 3584

	if (v->flags & VM_ALLOC)
3585
		seq_puts(m, " vmalloc");
3586 3587

	if (v->flags & VM_MAP)
3588
		seq_puts(m, " vmap");
3589 3590

	if (v->flags & VM_USERMAP)
3591
		seq_puts(m, " user");
3592

3593 3594 3595
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3596
	if (is_vmalloc_addr(v->pages))
3597
		seq_puts(m, " vpages");
3598

E
Eric Dumazet 已提交
3599
	show_numa_info(m, v);
3600
	seq_putc(m, '\n');
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3611 3612 3613
	return 0;
}

3614
static const struct seq_operations vmalloc_op = {
3615 3616 3617 3618 3619
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3620 3621 3622

static int __init proc_vmalloc_init(void)
{
3623
	if (IS_ENABLED(CONFIG_NUMA))
3624
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3625 3626
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3627
	else
3628
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3629 3630 3631
	return 0;
}
module_init(proc_vmalloc_init);
3632

3633
#endif