huge_memory.c 84.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
194 195

	if (ret > 0) {
196
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
197 198 199 200
		if (err)
			ret = err;
	}
	return ret;
201 202 203 204
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

205
ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 207 208
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
209 210
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
211
}
212

213
ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 215 216 217
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
218 219 220 221 222 223 224 225 226 227
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
228
		set_bit(flag, &transparent_hugepage_flags);
229
	else
230 231 232 233 234 235 236 237
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
238
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 242 243 244 245 246
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247
}
248

249 250 251 252
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
253 254 255 256 257 258 259 260 261 262 263 264
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 266 267 268 269 270
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
287 288 289 290
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

291 292 293
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
294
	return single_hugepage_flag_show(kobj, attr, buf,
295 296 297 298 299
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
300
	return single_hugepage_flag_store(kobj, attr, buf, count,
301 302 303 304
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 306 307 308 309 310 311 312 313

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

314 315 316 317
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
318
	return single_hugepage_flag_show(kobj, attr, buf,
319 320 321 322 323 324
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
325
	return single_hugepage_flag_store(kobj, attr, buf, count,
326 327 328 329 330 331 332 333 334
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
335
	&use_zero_page_attr.attr,
336
	&hpage_pmd_size_attr.attr,
337
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 339
	&shmem_enabled_attr.attr,
#endif
340 341 342 343 344 345
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

346
static const struct attribute_group hugepage_attr_group = {
347
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
348 349
};

S
Shaohua Li 已提交
350
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 352 353
{
	int err;

S
Shaohua Li 已提交
354 355
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
356
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
357
		return -ENOMEM;
A
Andrea Arcangeli 已提交
358 359
	}

S
Shaohua Li 已提交
360
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
361
	if (err) {
362
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
363
		goto delete_obj;
A
Andrea Arcangeli 已提交
364 365
	}

S
Shaohua Li 已提交
366
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
367
	if (err) {
368
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
369
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
370
	}
S
Shaohua Li 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

408 409 410 411 412 413 414 415 416 417
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
418 419
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
420
		goto err_sysfs;
A
Andrea Arcangeli 已提交
421

422
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
423
	if (err)
424
		goto err_slab;
A
Andrea Arcangeli 已提交
425

426 427 428
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
429 430 431
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
432

433 434 435 436 437
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
438
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439
		transparent_hugepage_flags = 0;
440 441
		return 0;
	}
442

443
	err = start_stop_khugepaged();
444 445
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
446

S
Shaohua Li 已提交
447
	return 0;
448
err_khugepaged:
449 450
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
451 452
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
453
	khugepaged_destroy();
454
err_slab:
S
Shaohua Li 已提交
455
	hugepage_exit_sysfs(hugepage_kobj);
456
err_sysfs:
A
Andrea Arcangeli 已提交
457
	return err;
458
}
459
subsys_initcall(hugepage_init);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
487
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 489 490 491
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

492
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493
{
494
	if (likely(vma->vm_flags & VM_WRITE))
495 496 497 498
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

499 500
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501
{
502 503 504 505 506 507 508
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
509
}
510 511 512 513 514 515 516 517
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
518 519 520 521 522 523 524 525 526 527 528 529

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

530
static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

573 574
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
575
{
J
Jan Kara 已提交
576
	struct vm_area_struct *vma = vmf->vma;
577
	struct mem_cgroup *memcg;
578
	pgtable_t pgtable;
J
Jan Kara 已提交
579
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
580
	vm_fault_t ret = 0;
581

582
	VM_BUG_ON_PAGE(!PageCompound(page), page);
583

584
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
585 586 587 588
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
589

590
	pgtable = pte_alloc_one(vma->vm_mm);
591
	if (unlikely(!pgtable)) {
592 593
		ret = VM_FAULT_OOM;
		goto release;
594
	}
595

596
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
597 598 599 600 601
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
602 603
	__SetPageUptodate(page);

J
Jan Kara 已提交
604 605
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
606
		goto unlock_release;
607 608
	} else {
		pmd_t entry;
609

610 611 612 613
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

614 615
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
616
			vm_fault_t ret2;
617

J
Jan Kara 已提交
618
			spin_unlock(vmf->ptl);
619
			mem_cgroup_cancel_charge(page, memcg, true);
620
			put_page(page);
K
Kirill A. Shutemov 已提交
621
			pte_free(vma->vm_mm, pgtable);
622 623 624
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
625 626
		}

627
		entry = mk_huge_pmd(page, vma->vm_page_prot);
628
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
629
		page_add_new_anon_rmap(page, vma, haddr, true);
630
		mem_cgroup_commit_charge(page, memcg, false, true);
631
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
632 633
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
634
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
635
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
636
		spin_unlock(vmf->ptl);
637
		count_vm_event(THP_FAULT_ALLOC);
638
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
639 640
	}

641
	return 0;
642 643 644 645 646 647 648 649 650
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

651 652
}

653
/*
654 655 656 657 658 659 660
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
661
 */
662
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
663
{
664
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
665

666
	/* Always do synchronous compaction */
667 668
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
669 670

	/* Kick kcompactd and fail quickly */
671
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
672
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
673 674

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
675
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
676 677 678
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
679 680

	/* Only do synchronous compaction if madvised */
681
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
682 683
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
684

685
	return GFP_TRANSHUGE_LIGHT;
686 687
}

688
/* Caller must hold page table lock. */
689
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
690
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
691
		struct page *zero_page)
692 693
{
	pmd_t entry;
A
Andrew Morton 已提交
694 695
	if (!pmd_none(*pmd))
		return false;
696
	entry = mk_pmd(zero_page, vma->vm_page_prot);
697
	entry = pmd_mkhuge(entry);
698 699
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
700
	set_pmd_at(mm, haddr, pmd, entry);
701
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
702
	return true;
703 704
}

705
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
706
{
J
Jan Kara 已提交
707
	struct vm_area_struct *vma = vmf->vma;
708
	gfp_t gfp;
709
	struct page *page;
J
Jan Kara 已提交
710
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
711

712
	if (!transhuge_vma_suitable(vma, haddr))
713
		return VM_FAULT_FALLBACK;
714 715
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
716
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
717
		return VM_FAULT_OOM;
J
Jan Kara 已提交
718
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
719
			!mm_forbids_zeropage(vma->vm_mm) &&
720 721 722 723
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
724
		vm_fault_t ret;
725
		pgtable = pte_alloc_one(vma->vm_mm);
726
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
727
			return VM_FAULT_OOM;
728
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
729
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
730
			pte_free(vma->vm_mm, pgtable);
731
			count_vm_event(THP_FAULT_FALLBACK);
732
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
733
		}
J
Jan Kara 已提交
734
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
735 736
		ret = 0;
		set = false;
J
Jan Kara 已提交
737
		if (pmd_none(*vmf->pmd)) {
738 739 740 741
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
742 743
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
744 745
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
746
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
747 748
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
749 750 751
				set = true;
			}
		} else
J
Jan Kara 已提交
752
			spin_unlock(vmf->ptl);
753
		if (!set)
K
Kirill A. Shutemov 已提交
754
			pte_free(vma->vm_mm, pgtable);
755
		return ret;
756
	}
757 758
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
759 760
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
761
		return VM_FAULT_FALLBACK;
762
	}
763
	prep_transhuge_page(page);
J
Jan Kara 已提交
764
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
765 766
}

767
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
768 769
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
770 771 772 773 774 775
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

791 792 793
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
794
	if (write) {
795 796
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
797
	}
798 799 800

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
801
		mm_inc_nr_ptes(mm);
802
		pgtable = NULL;
803 804
	}

805 806
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
807 808

out_unlock:
M
Matthew Wilcox 已提交
809
	spin_unlock(ptl);
810 811
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
812 813
}

814
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
815
{
816 817
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
818
	pgprot_t pgprot = vma->vm_page_prot;
819
	pgtable_t pgtable = NULL;
820

M
Matthew Wilcox 已提交
821 822 823 824 825
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
826 827
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
828 829 830 831 832 833
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
834

835
	if (arch_needs_pgtable_deposit()) {
836
		pgtable = pte_alloc_one(vma->vm_mm);
837 838 839 840
		if (!pgtable)
			return VM_FAULT_OOM;
	}

841 842
	track_pfn_insert(vma, &pgprot, pfn);

843
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
844
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
845
}
846
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
847

848
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
849
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
850
{
851
	if (likely(vma->vm_flags & VM_WRITE))
852 853 854 855 856 857 858 859 860 861 862 863
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

878 879 880 881
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
882 883
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
884 885 886
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
887 888

out_unlock:
889 890 891
	spin_unlock(ptl);
}

892
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
893
{
894 895
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
896
	pgprot_t pgprot = vma->vm_page_prot;
897

898 899 900 901 902
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
903 904
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
905 906 907 908 909 910 911 912 913
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

914
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
915 916 917 918 919
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

920
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
921
		pmd_t *pmd, int flags)
922 923 924
{
	pmd_t _pmd;

925 926 927
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
928
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
929
				pmd, _pmd, flags & FOLL_WRITE))
930 931 932 933
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
934
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
935 936 937 938 939 940 941
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

942 943 944 945 946 947
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

948
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
949 950 951 952 953 954 955 956
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
957
		touch_pmd(vma, addr, pmd, flags);
958 959 960 961 962 963 964 965 966

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
967 968
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
969 970 971 972 973 974 975
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

976 977 978 979
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
980
	spinlock_t *dst_ptl, *src_ptl;
981 982
	struct page *src_page;
	pmd_t pmd;
983
	pgtable_t pgtable = NULL;
984
	int ret = -ENOMEM;
985

986 987 988 989
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

990
	pgtable = pte_alloc_one(dst_mm);
991 992
	if (unlikely(!pgtable))
		goto out;
993

994 995 996
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 998 999

	ret = -EAGAIN;
	pmd = *src_pmd;
1000 1001 1002 1003 1004 1005 1006 1007 1008

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1009 1010
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1011 1012
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1013
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1014
		mm_inc_nr_ptes(dst_mm);
1015
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1016 1017 1018 1019 1020 1021
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1022
	if (unlikely(!pmd_trans_huge(pmd))) {
1023 1024 1025
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1026
	/*
1027
	 * When page table lock is held, the huge zero pmd should not be
1028 1029 1030 1031
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1032
		struct page *zero_page;
1033 1034 1035 1036 1037
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1038
		zero_page = mm_get_huge_zero_page(dst_mm);
1039
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1040
				zero_page);
1041 1042 1043
		ret = 0;
		goto out_unlock;
	}
1044

1045 1046 1047 1048 1049
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1050
	mm_inc_nr_ptes(dst_mm);
1051
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1052 1053 1054 1055 1056 1057 1058

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1059 1060
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1061 1062 1063 1064
out:
	return ret;
}

1065 1066
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1067
		pud_t *pud, int flags)
1068 1069 1070
{
	pud_t _pud;

1071 1072 1073
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1074
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1075
				pud, _pud, flags & FOLL_WRITE))
1076 1077 1078 1079
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1080
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1081 1082 1083 1084 1085 1086 1087
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1088
	if (flags & FOLL_WRITE && !pud_write(*pud))
1089 1090 1091 1092 1093 1094 1095 1096
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1097
		touch_pud(vma, addr, pud, flags);
1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1107 1108
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1175
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1176 1177 1178
{
	pmd_t entry;
	unsigned long haddr;
1179
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1180

J
Jan Kara 已提交
1181 1182
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1183 1184 1185
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1186 1187
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1188
	haddr = vmf->address & HPAGE_PMD_MASK;
1189
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1190
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1191 1192

unlock:
J
Jan Kara 已提交
1193
	spin_unlock(vmf->ptl);
1194 1195
}

1196 1197
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1198
{
J
Jan Kara 已提交
1199 1200
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1201
	struct mem_cgroup *memcg;
1202 1203
	pgtable_t pgtable;
	pmd_t _pmd;
1204 1205
	int i;
	vm_fault_t ret = 0;
1206
	struct page **pages;
1207
	struct mmu_notifier_range range;
1208

1209 1210
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1211 1212 1213 1214 1215 1216
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1217
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1218
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1219
		if (unlikely(!pages[i] ||
1220
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1221
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1222
			if (pages[i])
1223
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1224
			while (--i >= 0) {
1225 1226
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1227 1228
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1229 1230
				put_page(pages[i]);
			}
1231 1232 1233 1234
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1235
		set_page_private(pages[i], (unsigned long)memcg);
1236 1237 1238 1239
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1240
				   haddr + PAGE_SIZE * i, vma);
1241 1242 1243 1244
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1245 1246
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1247
	mmu_notifier_invalidate_range_start(&range);
1248

J
Jan Kara 已提交
1249 1250
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1251
		goto out_free_pages;
1252
	VM_BUG_ON_PAGE(!PageHead(page), page);
1253

1254 1255 1256 1257 1258 1259
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1260
	 * See Documentation/vm/mmu_notifier.rst
1261
	 */
J
Jan Kara 已提交
1262
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1263

J
Jan Kara 已提交
1264
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1265
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1266 1267

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1268
		pte_t entry;
1269 1270
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1271 1272
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1273
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1274
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1275
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1276 1277 1278 1279
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1280 1281 1282 1283
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1284
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1285
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1286
	spin_unlock(vmf->ptl);
1287

1288 1289 1290 1291
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1292
	mmu_notifier_invalidate_range_only_end(&range);
1293

1294 1295 1296 1297 1298 1299 1300
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1301
	spin_unlock(vmf->ptl);
1302
	mmu_notifier_invalidate_range_end(&range);
A
Andrea Arcangeli 已提交
1303
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1304 1305
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1306
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1307
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1308
	}
1309 1310 1311 1312
	kfree(pages);
	goto out;
}

1313
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1314
{
J
Jan Kara 已提交
1315
	struct vm_area_struct *vma = vmf->vma;
1316
	struct page *page = NULL, *new_page;
1317
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1318
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1319
	struct mmu_notifier_range range;
1320
	gfp_t huge_gfp;			/* for allocation and charge */
1321
	vm_fault_t ret = 0;
1322

J
Jan Kara 已提交
1323
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1324
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1325 1326
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1327 1328
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1329 1330 1331
		goto out_unlock;

	page = pmd_page(orig_pmd);
1332
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1333 1334
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1335
	 * part.
1336
	 */
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1350 1351
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1352
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1353 1354
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1355
		ret |= VM_FAULT_WRITE;
1356
		unlock_page(page);
1357 1358
		goto out_unlock;
	}
1359
	unlock_page(page);
1360
	get_page(page);
J
Jan Kara 已提交
1361
	spin_unlock(vmf->ptl);
1362
alloc:
1363
	if (__transparent_hugepage_enabled(vma) &&
1364
	    !transparent_hugepage_debug_cow()) {
1365 1366
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1367
	} else
1368 1369
		new_page = NULL;

1370 1371 1372
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1373
		if (!page) {
J
Jan Kara 已提交
1374
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1375
			ret |= VM_FAULT_FALLBACK;
1376
		} else {
J
Jan Kara 已提交
1377
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1378
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1379
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1380 1381
				ret |= VM_FAULT_FALLBACK;
			}
1382
			put_page(page);
1383
		}
1384
		count_vm_event(THP_FAULT_FALLBACK);
1385 1386 1387
		goto out;
	}

1388
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1389
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1390
		put_page(new_page);
J
Jan Kara 已提交
1391
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1392
		if (page)
1393
			put_page(page);
1394
		ret |= VM_FAULT_FALLBACK;
1395
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1396 1397 1398
		goto out;
	}

1399
	count_vm_event(THP_FAULT_ALLOC);
1400
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1401

1402
	if (!page)
1403
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1404
	else
1405 1406
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1407 1408
	__SetPageUptodate(new_page);

1409 1410
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1411
	mmu_notifier_invalidate_range_start(&range);
1412

J
Jan Kara 已提交
1413
	spin_lock(vmf->ptl);
1414
	if (page)
1415
		put_page(page);
J
Jan Kara 已提交
1416 1417
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1418
		mem_cgroup_cancel_charge(new_page, memcg, true);
1419
		put_page(new_page);
1420
		goto out_mn;
A
Andrea Arcangeli 已提交
1421
	} else {
1422
		pmd_t entry;
1423
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1424
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1425
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1426
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1427
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1428
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1429 1430
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1431
		if (!page) {
K
Kirill A. Shutemov 已提交
1432
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1433
		} else {
1434
			VM_BUG_ON_PAGE(!PageHead(page), page);
1435
			page_remove_rmap(page, true);
1436 1437
			put_page(page);
		}
1438 1439
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1440
	spin_unlock(vmf->ptl);
1441
out_mn:
1442 1443 1444 1445
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1446
	mmu_notifier_invalidate_range_only_end(&range);
1447 1448
out:
	return ret;
1449
out_unlock:
J
Jan Kara 已提交
1450
	spin_unlock(vmf->ptl);
1451
	return ret;
1452 1453
}

1454 1455 1456 1457 1458 1459
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1460
	return pmd_write(pmd) ||
1461 1462 1463
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1464
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1465 1466 1467 1468
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1469
	struct mm_struct *mm = vma->vm_mm;
1470 1471
	struct page *page = NULL;

1472
	assert_spin_locked(pmd_lockptr(mm, pmd));
1473

1474
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1475 1476
		goto out;

1477 1478 1479 1480
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1481
	/* Full NUMA hinting faults to serialise migration in fault paths */
1482
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1483 1484
		goto out;

1485
	page = pmd_page(*pmd);
1486
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1487
	if (flags & FOLL_TOUCH)
1488
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1489
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1490 1491 1492 1493
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1494 1495
		 * For anon THP:
		 *
1496 1497 1498 1499 1500 1501 1502
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1503 1504 1505 1506 1507 1508
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1509
		 */
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1521
	}
1522
skip_mlock:
1523
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1524
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1525
	if (flags & FOLL_GET)
1526
		get_page(page);
1527 1528 1529 1530 1531

out:
	return page;
}

1532
/* NUMA hinting page fault entry point for trans huge pmds */
1533
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1534
{
J
Jan Kara 已提交
1535
	struct vm_area_struct *vma = vmf->vma;
1536
	struct anon_vma *anon_vma = NULL;
1537
	struct page *page;
J
Jan Kara 已提交
1538
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1539
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1540
	int target_nid, last_cpupid = -1;
1541 1542
	bool page_locked;
	bool migrated = false;
1543
	bool was_writable;
1544
	int flags = 0;
1545

J
Jan Kara 已提交
1546 1547
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1548 1549
		goto out_unlock;

1550 1551 1552 1553 1554
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1555 1556
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1557 1558
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1559
		spin_unlock(vmf->ptl);
1560
		put_and_wait_on_page_locked(page);
1561 1562 1563
		goto out;
	}

1564
	page = pmd_page(pmd);
1565
	BUG_ON(is_huge_zero_page(page));
1566
	page_nid = page_to_nid(page);
1567
	last_cpupid = page_cpupid_last(page);
1568
	count_vm_numa_event(NUMA_HINT_FAULTS);
1569
	if (page_nid == this_nid) {
1570
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1571 1572
		flags |= TNF_FAULT_LOCAL;
	}
1573

1574
	/* See similar comment in do_numa_page for explanation */
1575
	if (!pmd_savedwrite(pmd))
1576 1577
		flags |= TNF_NO_GROUP;

1578 1579 1580 1581
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1582 1583
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1584
	if (target_nid == NUMA_NO_NODE) {
1585
		/* If the page was locked, there are no parallel migrations */
1586
		if (page_locked)
1587
			goto clear_pmdnuma;
1588
	}
1589

1590
	/* Migration could have started since the pmd_trans_migrating check */
1591
	if (!page_locked) {
1592
		page_nid = NUMA_NO_NODE;
1593 1594
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1595
		spin_unlock(vmf->ptl);
1596
		put_and_wait_on_page_locked(page);
1597 1598 1599
		goto out;
	}

1600 1601 1602 1603
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1604
	get_page(page);
J
Jan Kara 已提交
1605
	spin_unlock(vmf->ptl);
1606
	anon_vma = page_lock_anon_vma_read(page);
1607

P
Peter Zijlstra 已提交
1608
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1609 1610
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1611 1612
		unlock_page(page);
		put_page(page);
1613
		page_nid = NUMA_NO_NODE;
1614
		goto out_unlock;
1615
	}
1616

1617 1618 1619
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1620
		page_nid = NUMA_NO_NODE;
1621 1622 1623
		goto clear_pmdnuma;
	}

1624 1625 1626 1627 1628 1629
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1630 1631 1632 1633
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1634
	 */
1635
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1636
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1649

1650 1651
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1652
	 * and access rights restored.
1653
	 */
J
Jan Kara 已提交
1654
	spin_unlock(vmf->ptl);
1655

K
Kirill A. Shutemov 已提交
1656
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1657
				vmf->pmd, pmd, vmf->address, page, target_nid);
1658 1659
	if (migrated) {
		flags |= TNF_MIGRATED;
1660
		page_nid = target_nid;
1661 1662
	} else
		flags |= TNF_MIGRATE_FAIL;
1663

1664
	goto out;
1665
clear_pmdnuma:
1666
	BUG_ON(!PageLocked(page));
1667
	was_writable = pmd_savedwrite(pmd);
1668
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1669
	pmd = pmd_mkyoung(pmd);
1670 1671
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1672 1673
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1674
	unlock_page(page);
1675
out_unlock:
J
Jan Kara 已提交
1676
	spin_unlock(vmf->ptl);
1677 1678 1679 1680 1681

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1682
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1683
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1684
				flags);
1685

1686 1687 1688
	return 0;
}

1689 1690 1691 1692 1693
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1694 1695 1696 1697 1698 1699
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1700
	bool ret = false;
1701

1702
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1703

1704 1705
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1706
		goto out_unlocked;
1707 1708

	orig_pmd = *pmd;
1709
	if (is_huge_zero_pmd(orig_pmd))
1710 1711
		goto out;

1712 1713 1714 1715 1716 1717
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1736
		split_huge_page(page);
1737
		unlock_page(page);
1738
		put_page(page);
1739 1740 1741 1742 1743 1744 1745 1746
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1747
		pmdp_invalidate(vma, addr, pmd);
1748 1749 1750 1751 1752 1753
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1754 1755

	mark_page_lazyfree(page);
1756
	ret = true;
1757 1758 1759 1760 1761 1762
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1763 1764 1765 1766 1767 1768
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1769
	mm_dec_nr_ptes(mm);
1770 1771
}

1772
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1773
		 pmd_t *pmd, unsigned long addr)
1774
{
1775
	pmd_t orig_pmd;
1776
	spinlock_t *ptl;
1777

1778
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1779

1780 1781
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1793 1794
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1795 1796
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1797
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1798
	} else if (is_huge_zero_pmd(orig_pmd)) {
1799
		zap_deposited_table(tlb->mm, pmd);
1800
		spin_unlock(ptl);
1801
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1802
	} else {
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1821
		if (PageAnon(page)) {
1822
			zap_deposited_table(tlb->mm, pmd);
1823 1824
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1825 1826
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1827
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1828
		}
1829

1830
		spin_unlock(ptl);
1831 1832
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1833
	}
1834
	return 1;
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1863
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1864
		  unsigned long new_addr, unsigned long old_end,
1865
		  pmd_t *old_pmd, pmd_t *new_pmd)
1866
{
1867
	spinlock_t *old_ptl, *new_ptl;
1868 1869
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1870
	bool force_flush = false;
1871 1872 1873

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1874
	    old_end - old_addr < HPAGE_PMD_SIZE)
1875
		return false;
1876 1877 1878 1879 1880 1881 1882

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1883
		return false;
1884 1885
	}

1886 1887 1888 1889
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1890 1891
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1892 1893 1894
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1895
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1896
		if (pmd_present(pmd))
1897
			force_flush = true;
1898
		VM_BUG_ON(!pmd_none(*new_pmd));
1899

1900
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1901
			pgtable_t pgtable;
1902 1903 1904
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1905 1906
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1907 1908
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1909 1910
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1911
		spin_unlock(old_ptl);
1912
		return true;
1913
	}
1914
	return false;
1915 1916
}

1917 1918 1919 1920 1921 1922
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1923
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1924
		unsigned long addr, pgprot_t newprot, int prot_numa)
1925 1926
{
	struct mm_struct *mm = vma->vm_mm;
1927
	spinlock_t *ptl;
1928 1929 1930
	pmd_t entry;
	bool preserve_write;
	int ret;
1931

1932
	ptl = __pmd_trans_huge_lock(pmd, vma);
1933 1934
	if (!ptl)
		return 0;
1935

1936 1937
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1952 1953
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1954 1955 1956 1957 1958 1959
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1960 1961 1962 1963 1964 1965 1966
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1967

1968 1969 1970
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1992
	entry = pmdp_invalidate(vma, addr, pmd);
1993

1994 1995 1996 1997 1998 1999 2000 2001
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2002 2003 2004 2005
	return ret;
}

/*
2006
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2007
 *
2008 2009
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2010
 */
2011
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2012
{
2013 2014
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2015 2016
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2017 2018 2019
		return ptl;
	spin_unlock(ptl);
	return NULL;
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2054
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2074
	count_vm_event(THP_SPLIT_PUD);
2075 2076 2077 2078 2079 2080 2081 2082

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2083
	struct mmu_notifier_range range;
2084

2085
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2086
				address & HPAGE_PUD_MASK,
2087 2088 2089
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2090 2091
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2092
	__split_huge_pud_locked(vma, pud, range.start);
2093 2094 2095

out:
	spin_unlock(ptl);
2096 2097 2098 2099
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2100
	mmu_notifier_invalidate_range_only_end(&range);
2101 2102 2103
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2104 2105 2106 2107 2108 2109 2110 2111
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2112 2113 2114 2115 2116 2117
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2118
	 * See Documentation/vm/mmu_notifier.rst
2119 2120
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2139
		unsigned long haddr, bool freeze)
2140 2141 2142 2143
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2144
	pmd_t old_pmd, _pmd;
2145
	bool young, write, soft_dirty, pmd_migration = false;
2146
	unsigned long addr;
2147 2148 2149 2150 2151
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2152 2153
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2154 2155 2156

	count_vm_event(THP_SPLIT_PMD);

2157 2158
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2159 2160 2161 2162 2163 2164
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2165 2166 2167
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2168 2169
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2170 2171 2172 2173
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2174
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2175 2176
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2177 2178 2179 2180 2181 2182 2183 2184 2185
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2186 2187 2188
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2212
	if (unlikely(pmd_migration)) {
2213 2214
		swp_entry_t entry;

2215
		entry = pmd_to_swp_entry(old_pmd);
2216
		page = pfn_to_page(swp_offset(entry));
2217 2218 2219 2220
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2221
		page = pmd_page(old_pmd);
2222 2223 2224 2225 2226 2227
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2228
	VM_BUG_ON_PAGE(!page_count(page), page);
2229
	page_ref_add(page, HPAGE_PMD_NR - 1);
2230

2231 2232 2233 2234
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2235 2236 2237
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2238
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2239 2240 2241 2242 2243 2244
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2245
		if (freeze || pmd_migration) {
2246 2247 2248
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2249 2250
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2251
		} else {
2252
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2253
			entry = maybe_mkwrite(entry, vma);
2254 2255 2256 2257
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2258 2259
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2260
		}
2261
		pte = pte_offset_map(&_pmd, addr);
2262
		BUG_ON(!pte_none(*pte));
2263
		set_pte_at(mm, addr, pte, entry);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2279
		__dec_node_page_state(page, NR_ANON_THPS);
2280 2281 2282 2283 2284 2285 2286 2287 2288
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2289 2290

	if (freeze) {
2291
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2292 2293 2294 2295
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2296 2297 2298
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2299
		unsigned long address, bool freeze, struct page *page)
2300 2301
{
	spinlock_t *ptl;
2302
	struct mmu_notifier_range range;
2303

2304
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2305
				address & HPAGE_PMD_MASK,
2306 2307 2308
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2309 2310 2311 2312 2313 2314 2315 2316 2317

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2318
	if (pmd_trans_huge(*pmd)) {
2319
		page = pmd_page(*pmd);
2320
		if (PageMlocked(page))
2321
			clear_page_mlock(page);
2322
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2323
		goto out;
2324
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2325
out:
2326
	spin_unlock(ptl);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2340
	mmu_notifier_invalidate_range_only_end(&range);
2341 2342
}

2343 2344
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2345
{
2346
	pgd_t *pgd;
2347
	p4d_t *p4d;
2348
	pud_t *pud;
2349 2350
	pmd_t *pmd;

2351
	pgd = pgd_offset(vma->vm_mm, address);
2352 2353 2354
	if (!pgd_present(*pgd))
		return;

2355 2356 2357 2358 2359
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2360 2361 2362 2363
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2364

2365
	__split_huge_pmd(vma, pmd, address, freeze, page);
2366 2367
}

2368
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2381
		split_huge_pmd_address(vma, start, false, NULL);
2382 2383 2384 2385 2386 2387 2388 2389 2390

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2391
		split_huge_pmd_address(vma, end, false, NULL);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2405
			split_huge_pmd_address(next, nstart, false, NULL);
2406 2407
	}
}
2408

2409
static void unmap_page(struct page *page)
2410
{
2411
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2412
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2413
	bool unmap_success;
2414 2415 2416

	VM_BUG_ON_PAGE(!PageHead(page), page);

2417
	if (PageAnon(page))
2418
		ttu_flags |= TTU_SPLIT_FREEZE;
2419

M
Minchan Kim 已提交
2420 2421
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2422 2423
}

2424
static void remap_page(struct page *page)
2425
{
2426
	int i;
2427 2428 2429 2430 2431 2432
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2433 2434
}

2435
static void __split_huge_page_tail(struct page *head, int tail,
2436 2437 2438 2439
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2440
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2441 2442

	/*
2443 2444 2445 2446
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2447 2448 2449 2450 2451
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2452
			 (1L << PG_swapcache) |
2453 2454 2455
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2456
			 (1L << PG_workingset) |
2457
			 (1L << PG_locked) |
2458 2459
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2460

2461 2462 2463 2464 2465 2466
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2467
	/* Page flags must be visible before we make the page non-compound. */
2468 2469
	smp_wmb();

2470 2471 2472 2473 2474 2475
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2476 2477
	clear_compound_head(page_tail);

2478 2479 2480 2481
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2482 2483 2484 2485 2486 2487
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2488 2489 2490 2491 2492 2493

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2494 2495 2496
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2497
static void __split_huge_page(struct page *page, struct list_head *list,
2498
		pgoff_t end, unsigned long flags)
2499 2500
{
	struct page *head = compound_head(page);
2501
	pg_data_t *pgdat = page_pgdat(head);
2502
	struct lruvec *lruvec;
2503 2504
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2505
	int i;
2506

2507
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2508 2509 2510 2511

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2512 2513 2514 2515 2516 2517 2518 2519
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2520
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2521
		__split_huge_page_tail(head, i, lruvec, list);
2522 2523
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2524
			ClearPageDirty(head + i);
2525
			__delete_from_page_cache(head + i, NULL);
2526 2527
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2528
			put_page(head + i);
2529 2530 2531 2532 2533 2534
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2535 2536
		}
	}
2537 2538

	ClearPageCompound(head);
2539 2540 2541

	split_page_owner(head, HPAGE_PMD_ORDER);

2542 2543
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2544
		/* Additional pin to swap cache */
2545
		if (PageSwapCache(head)) {
2546
			page_ref_add(head, 2);
2547 2548
			xa_unlock(&swap_cache->i_pages);
		} else {
2549
			page_ref_inc(head);
2550
		}
2551
	} else {
M
Matthew Wilcox 已提交
2552
		/* Additional pin to page cache */
2553
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2554
		xa_unlock(&head->mapping->i_pages);
2555 2556
	}

2557
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2558

2559
	remap_page(head);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2578 2579
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2580
	int i, compound, ret;
2581 2582 2583 2584 2585 2586

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2587
	compound = compound_mapcount(page);
2588
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2589 2590
		return compound;
	ret = compound;
2591 2592
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2593 2594 2595
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2596 2597 2598 2599 2600
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2659 2660 2661 2662 2663
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2664
	/* Additional pins from page cache */
2665 2666 2667 2668 2669 2670 2671 2672 2673
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2696
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2697
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2698 2699 2700
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2701
	bool mlocked;
2702
	unsigned long flags;
2703
	pgoff_t end;
2704 2705 2706 2707 2708

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2709 2710 2711
	if (PageWriteback(page))
		return -EBUSY;

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2726
		end = -1;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2740 2741 2742 2743 2744 2745 2746 2747 2748

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2749 2750 2751
	}

	/*
2752
	 * Racy check if we can split the page, before unmap_page() will
2753 2754
	 * split PMDs
	 */
2755
	if (!can_split_huge_page(head, &extra_pins)) {
2756 2757 2758 2759
		ret = -EBUSY;
		goto out_unlock;
	}

2760
	mlocked = PageMlocked(page);
2761
	unmap_page(head);
2762 2763
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2764 2765 2766 2767
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2768
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2769
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2770 2771

	if (mapping) {
M
Matthew Wilcox 已提交
2772
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2773 2774

		/*
M
Matthew Wilcox 已提交
2775
		 * Check if the head page is present in page cache.
2776 2777
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2778 2779
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2780 2781 2782
			goto fail;
	}

2783
	/* Prevent deferred_split_scan() touching ->_refcount */
2784
	spin_lock(&ds_queue->split_queue_lock);
2785 2786
	count = page_count(head);
	mapcount = total_mapcount(head);
2787
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2788
		if (!list_empty(page_deferred_list(head))) {
2789
			ds_queue->split_queue_len--;
2790 2791
			list_del(page_deferred_list(head));
		}
2792 2793 2794 2795 2796 2797 2798
		if (mapping) {
			if (PageSwapBacked(page))
				__dec_node_page_state(page, NR_SHMEM_THPS);
			else
				__dec_node_page_state(page, NR_FILE_THPS);
		}

2799
		spin_unlock(&ds_queue->split_queue_lock);
2800
		__split_huge_page(page, list, end, flags);
2801 2802 2803 2804 2805 2806
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2807
	} else {
2808 2809 2810 2811 2812 2813 2814 2815
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2816
		spin_unlock(&ds_queue->split_queue_lock);
2817
fail:		if (mapping)
M
Matthew Wilcox 已提交
2818
			xa_unlock(&mapping->i_pages);
2819
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2820
		remap_page(head);
2821 2822 2823 2824
		ret = -EBUSY;
	}

out_unlock:
2825 2826 2827 2828 2829 2830
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2831 2832 2833 2834
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2835 2836 2837

void free_transhuge_page(struct page *page)
{
2838
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2839 2840
	unsigned long flags;

2841
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2842
	if (!list_empty(page_deferred_list(page))) {
2843
		ds_queue->split_queue_len--;
2844 2845
		list_del(page_deferred_list(page));
	}
2846
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2847 2848 2849 2850 2851
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2852 2853 2854 2855
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2856 2857 2858 2859
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2873
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2874
	if (list_empty(page_deferred_list(page))) {
2875
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2876 2877
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2878 2879 2880 2881 2882
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2883
	}
2884
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2885 2886 2887 2888 2889
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2890
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2891
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2892 2893 2894 2895 2896

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2897
	return READ_ONCE(ds_queue->split_queue_len);
2898 2899 2900 2901 2902
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2903
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2904
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2905 2906 2907 2908 2909
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2910 2911 2912 2913 2914
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2915
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2916
	/* Take pin on all head pages to avoid freeing them under us */
2917
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2918 2919
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2920 2921 2922 2923
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2924
			list_del_init(page_deferred_list(page));
2925
			ds_queue->split_queue_len--;
2926
		}
2927 2928
		if (!--sc->nr_to_scan)
			break;
2929
	}
2930
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2931 2932 2933

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2934 2935
		if (!trylock_page(page))
			goto next;
2936 2937 2938 2939
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2940
next:
2941 2942 2943
		put_page(page);
	}

2944 2945 2946
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2947

2948 2949 2950 2951
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2952
	if (!split && list_empty(&ds_queue->split_queue))
2953 2954
		return SHRINK_STOP;
	return split;
2955 2956 2957 2958 2959 2960
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2961 2962
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2963
};
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2989
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3002
	pr_info("%lu of %lu THP split\n", split, total);
3003 3004 3005 3006 3007 3008 3009 3010

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
3011 3012
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3013 3014 3015 3016
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3027
	pmd_t pmdswp;
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3038 3039 3040 3041
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3061 3062
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3063
	if (is_write_migration_entry(entry))
3064
		pmde = maybe_pmd_mkwrite(pmde, vma);
3065 3066

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3067 3068 3069 3070
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3071
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3072
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3073 3074 3075 3076
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif