core.c 68.3 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19 20
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
21
#include <linux/slab.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27 28 29
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33 34
#include "dummy.h"

35 36 37 38 39 40 41 42 43
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

44 45 46
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
47
static int has_full_constraints;
48
static bool board_wants_dummy_regulator;
49

50
/*
51 52 53 54 55 56
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
57
	const char *dev_name;   /* The dev_name() for the consumer */
58
	const char *supply;
59
	struct regulator_dev *regulator;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
79 80
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr);
81 82 83 84 85 86
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);

87 88 89 90 91 92 93 94 95 96
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
126
		rdev_err(rdev, "no constraints\n");
127 128 129
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130
		rdev_err(rdev, "operation not allowed\n");
131 132 133 134 135 136 137 138 139 140 141 142 143 144
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

166 167 168 169 170 171 172
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
static int regulator_check_mode(struct regulator_dev *rdev, int mode)
{
195 196 197 198 199 200 201 202 203 204
	switch (mode) {
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

205
	if (!rdev->constraints) {
206
		rdev_err(rdev, "no constraints\n");
207 208 209
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210
		rdev_err(rdev, "operation not allowed\n");
211 212 213
		return -EPERM;
	}
	if (!(rdev->constraints->valid_modes_mask & mode)) {
214
		rdev_err(rdev, "invalid mode %x\n", mode);
215 216 217 218 219 220 221 222 223
		return -EINVAL;
	}
	return 0;
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
224
		rdev_err(rdev, "no constraints\n");
225 226 227
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228
		rdev_err(rdev, "operation not allowed\n");
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
249
	struct regulator_dev *rdev = dev_get_drvdata(dev);
250 251 252 253 254 255 256 257
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
258
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259 260 261 262

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
263
	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 265 266

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
267
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268

269 270 271 272 273
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

274
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
275 276
}

D
David Brownell 已提交
277
static ssize_t regulator_print_opmode(char *buf, int mode)
278 279 280 281 282 283 284 285 286 287 288 289 290 291
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
292 293
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
294
{
295
	struct regulator_dev *rdev = dev_get_drvdata(dev);
296

D
David Brownell 已提交
297 298
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
299
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
300 301 302

static ssize_t regulator_print_state(char *buf, int state)
{
303 304 305 306 307 308 309 310
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
311 312 313 314
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
315 316 317 318 319
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
320

321
	return ret;
D
David Brownell 已提交
322
}
323
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
324

D
David Brownell 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

366 367 368
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
369
	struct regulator_dev *rdev = dev_get_drvdata(dev);
370 371 372 373 374 375

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
376
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377 378 379 380

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
381
	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 383 384 385 386 387

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
388
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389 390 391 392

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
393
	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 395 396 397 398 399

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
400
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401 402 403 404

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
405
	struct regulator_dev *rdev = dev_get_drvdata(dev);
406 407 408 409 410 411

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
412
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413 414 415 416

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
417
	struct regulator_dev *rdev = dev_get_drvdata(dev);
418 419 420 421 422
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
423
		uA += regulator->uA_load;
424 425 426
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
427
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428 429 430 431

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
432
	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 434 435 436 437 438
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
439
	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 441 442 443 444 445 446 447 448 449 450 451 452

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
453
	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 455 456

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
457 458
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
459 460 461 462

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
463
	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 465 466

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
467 468
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
469 470 471 472

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
473
	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 475 476

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
477 478
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
479 480 481 482

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
483
	struct regulator_dev *rdev = dev_get_drvdata(dev);
484

D
David Brownell 已提交
485 486
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
487
}
488 489
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
490 491 492 493

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
494
	struct regulator_dev *rdev = dev_get_drvdata(dev);
495

D
David Brownell 已提交
496 497
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
498
}
499 500
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
501 502 503 504

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506

D
David Brownell 已提交
507 508
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
509
}
510 511
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
512 513 514 515

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
516
	struct regulator_dev *rdev = dev_get_drvdata(dev);
517

D
David Brownell 已提交
518 519
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
520
}
521 522
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
523 524 525 526

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528

D
David Brownell 已提交
529 530
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
531
}
532 533
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
534 535 536 537

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
538
	struct regulator_dev *rdev = dev_get_drvdata(dev);
539

D
David Brownell 已提交
540 541
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
542
}
543 544 545
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

546

547 548 549 550
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
551
static struct device_attribute regulator_dev_attrs[] = {
552
	__ATTR(name, 0444, regulator_name_show, NULL),
553 554 555 556 557 558 559
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
560
	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580 581
	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
		return;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0)
		return;

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
598
		current_uA += sibling->uA_load;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
	err = regulator_check_mode(rdev, mode);
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
614 615 616 617 618 619 620 621 622 623 624
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
625
			rdev_warn(rdev, "No configuration\n");
626 627 628 629
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
630
		rdev_err(rdev, "invalid configuration\n");
631 632
		return -EINVAL;
	}
633

634
	if (!can_set_state) {
635
		rdev_err(rdev, "no way to set suspend state\n");
636
		return -EINVAL;
637
	}
638 639 640 641 642 643

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
644
		rdev_err(rdev, "failed to enabled/disable\n");
645 646 647 648 649 650
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
651
			rdev_err(rdev, "failed to set voltage\n");
652 653 654 655 656 657 658
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
659
			rdev_err(rdev, "failed to set mode\n");
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
690
	char buf[80] = "";
691 692
	int count = 0;
	int ret;
693

694
	if (constraints->min_uV && constraints->max_uV) {
695
		if (constraints->min_uV == constraints->max_uV)
696 697
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
698
		else
699 700 701 702 703 704 705 706 707 708 709 710 711
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

	if (constraints->min_uA && constraints->max_uA) {
712
		if (constraints->min_uA == constraints->max_uA)
713 714
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
715
		else
716 717 718 719 720 721 722 723 724
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
725
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
726
	}
727

728 729 730 731 732 733 734 735 736
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

737
	rdev_info(rdev, "regulator: %s\n", buf);
738 739
}

740
static int machine_constraints_voltage(struct regulator_dev *rdev,
741
	struct regulation_constraints *constraints)
742
{
743
	struct regulator_ops *ops = rdev->desc->ops;
744
	int ret;
745
	unsigned selector;
746 747 748 749 750 751

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
		rdev->constraints->min_uV == rdev->constraints->max_uV &&
		ops->set_voltage) {
		ret = ops->set_voltage(rdev,
752 753 754
				       rdev->constraints->min_uV,
				       rdev->constraints->max_uV,
				       &selector);
755
			if (ret < 0) {
756 757
				rdev_err(rdev, "failed to apply %duV constraint\n",
					 rdev->constraints->min_uV);
758 759 760 761
				rdev->constraints = NULL;
				return ret;
			}
	}
762

763 764 765 766 767 768 769 770 771 772 773
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

774 775
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
776
		if (count == 1 && !cmin) {
777
			cmin = 1;
778
			cmax = INT_MAX;
779 780
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
781 782
		}

783 784
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
785
			return 0;
786

787
		/* else require explicit machine-level constraints */
788
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
789
			rdev_err(rdev, "invalid voltage constraints\n");
790
			return -EINVAL;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
810
			rdev_err(rdev, "unsupportable voltage constraints\n");
811
			return -EINVAL;
812 813 814 815
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
816 817
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
818 819 820
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
821 822
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
823 824 825 826
			constraints->max_uV = max_uV;
		}
	}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
842
	const struct regulation_constraints *constraints)
843 844 845 846
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

847 848 849 850
	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
				    GFP_KERNEL);
	if (!rdev->constraints)
		return -ENOMEM;
851

852
	ret = machine_constraints_voltage(rdev, rdev->constraints);
853 854 855
	if (ret != 0)
		goto out;

856
	/* do we need to setup our suspend state */
857
	if (constraints->initial_state) {
858
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
859
		if (ret < 0) {
860
			rdev_err(rdev, "failed to set suspend state\n");
861 862 863 864
			rdev->constraints = NULL;
			goto out;
		}
	}
865

866 867
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
868
			rdev_err(rdev, "no set_mode operation\n");
869 870 871 872
			ret = -EINVAL;
			goto out;
		}

873
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
874
		if (ret < 0) {
875
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
876 877 878 879
			goto out;
		}
	}

880 881 882
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
883 884
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
885 886
		ret = ops->enable(rdev);
		if (ret < 0) {
887
			rdev_err(rdev, "failed to enable\n");
888 889 890 891 892
			rdev->constraints = NULL;
			goto out;
		}
	}

893 894 895 896 897 898 899
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
900 901
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
902 903 904 905 906 907 908 909 910 911 912 913 914
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
	struct regulator_dev *supply_rdev)
{
	int err;

	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
				"supply");
	if (err) {
915 916
		rdev_err(rdev, "could not add device link %s err %d\n",
			 supply_rdev->dev.kobj.name, err);
917 918 919 920 921 922 923 924 925
		       goto out;
	}
	rdev->supply = supply_rdev;
	list_add(&rdev->slist, &supply_rdev->supply_list);
out:
	return err;
}

/**
926
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
927 928
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
929
 * @consumer_dev_name: dev_name() string for device supply applies to
930
 * @supply:       symbolic name for supply
931 932 933 934 935
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
936 937
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
938 939
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
940 941
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
942 943
{
	struct regulator_map *node;
944
	int has_dev;
945

946 947 948 949 950 951
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

952 953 954
	if (supply == NULL)
		return -EINVAL;

955 956 957 958 959
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

960
	list_for_each_entry(node, &regulator_map_list, list) {
961 962 963 964
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
965
			continue;
966 967
		}

968 969 970 971
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
972 973 974 975
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
976 977 978
		return -EBUSY;
	}

979
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
980 981 982 983 984 985
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

986 987 988 989 990 991
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
992 993
	}

994 995 996 997
	list_add(&node->list, &regulator_map_list);
	return 0;
}

998 999 1000 1001 1002 1003 1004
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1005
			kfree(node->dev_name);
1006 1007 1008 1009 1010
			kfree(node);
		}
	}
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
#define REG_STR_SIZE	32

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
			supply_name);
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1037
		sysfs_attr_init(&regulator->dev_attr.attr);
1038 1039 1040 1041 1042 1043 1044 1045
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1046
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1063 1064
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1083 1084 1085 1086 1087 1088 1089
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1090 1091 1092
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1093 1094 1095 1096
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1097
	const char *devname = NULL;
1098
	int ret;
1099 1100

	if (id == NULL) {
1101
		pr_err("get() with no identifier\n");
1102 1103 1104
		return regulator;
	}

1105 1106 1107
	if (dev)
		devname = dev_name(dev);

1108 1109 1110
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1111 1112 1113 1114 1115 1116
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1117
			rdev = map->regulator;
1118
			goto found;
1119
		}
1120
	}
1121

1122 1123 1124 1125 1126
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1127 1128 1129 1130 1131 1132 1133 1134
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1135 1136
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1137 1138 1139 1140 1141
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1142 1143 1144 1145
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1156 1157 1158
	if (!try_module_get(rdev->owner))
		goto out;

1159 1160 1161 1162 1163 1164
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1176
out:
1177
	mutex_unlock(&regulator_list_mutex);
1178

1179 1180
	return regulator;
}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1199 1200
EXPORT_SYMBOL_GPL(regulator_get);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1256 1257 1258
	rdev->open_count--;
	rdev->exclusive = 0;

1259 1260 1261 1262 1263
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1275 1276 1277
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1278
	int ret, delay;
1279

1280 1281 1282 1283 1284 1285 1286
	if (rdev->use_count == 0) {
		/* do we need to enable the supply regulator first */
		if (rdev->supply) {
			mutex_lock(&rdev->supply->mutex);
			ret = _regulator_enable(rdev->supply);
			mutex_unlock(&rdev->supply->mutex);
			if (ret < 0) {
1287
				rdev_err(rdev, "failed to enable: %d\n", ret);
1288 1289
				return ret;
			}
1290 1291 1292 1293
		}
	}

	/* check voltage and requested load before enabling */
1294 1295 1296
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1297

1298 1299 1300 1301 1302 1303 1304
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1305
			if (!rdev->desc->ops->enable)
1306
				return -EINVAL;
1307 1308 1309 1310 1311 1312 1313

			/* Query before enabling in case configuration
			 * dependant.  */
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1314
				rdev_warn(rdev, "enable_time() failed: %d\n",
1315
					   ret);
1316
				delay = 0;
1317
			}
1318

1319 1320
			trace_regulator_enable(rdev_get_name(rdev));

1321 1322 1323 1324 1325 1326 1327
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1328 1329
			trace_regulator_enable_delay(rdev_get_name(rdev));

1330
			if (delay >= 1000) {
1331
				mdelay(delay / 1000);
1332 1333
				udelay(delay % 1000);
			} else if (delay) {
1334
				udelay(delay);
1335
			}
1336

1337 1338
			trace_regulator_enable_complete(rdev_get_name(rdev));

1339
		} else if (ret < 0) {
1340
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1341 1342
			return ret;
		}
1343
		/* Fallthrough on positive return values - already enabled */
1344 1345
	}

1346 1347 1348
	rdev->use_count++;

	return 0;
1349 1350 1351 1352 1353 1354
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1355 1356 1357 1358
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1359
 * NOTE: the output value can be set by other drivers, boot loader or may be
1360
 * hardwired in the regulator.
1361 1362 1363
 */
int regulator_enable(struct regulator *regulator)
{
1364 1365
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1366

1367
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1368
	ret = _regulator_enable(rdev);
1369
	mutex_unlock(&rdev->mutex);
1370 1371 1372 1373 1374
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1375 1376
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1377 1378
{
	int ret = 0;
1379
	*supply_rdev_ptr = NULL;
1380

D
David Brownell 已提交
1381
	if (WARN(rdev->use_count <= 0,
1382
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1383 1384
		return -EIO;

1385
	/* are we the last user and permitted to disable ? */
1386 1387
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1388 1389

		/* we are last user */
1390 1391
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1392 1393
			trace_regulator_disable(rdev_get_name(rdev));

1394 1395
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1396
				rdev_err(rdev, "failed to disable\n");
1397 1398
				return ret;
			}
1399

1400 1401
			trace_regulator_disable_complete(rdev_get_name(rdev));

1402 1403
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1404 1405 1406
		}

		/* decrease our supplies ref count and disable if required */
1407
		*supply_rdev_ptr = rdev->supply;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1426 1427 1428
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1429
 *
1430
 * NOTE: this will only disable the regulator output if no other consumer
1431 1432
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1433 1434 1435
 */
int regulator_disable(struct regulator *regulator)
{
1436
	struct regulator_dev *rdev = regulator->rdev;
1437
	struct regulator_dev *supply_rdev = NULL;
1438
	int ret = 0;
1439

1440
	mutex_lock(&rdev->mutex);
1441
	ret = _regulator_disable(rdev, &supply_rdev);
1442
	mutex_unlock(&rdev->mutex);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	/* decrease our supplies ref count and disable if required */
	while (supply_rdev != NULL) {
		rdev = supply_rdev;

		mutex_lock(&rdev->mutex);
		_regulator_disable(rdev, &supply_rdev);
		mutex_unlock(&rdev->mutex);
	}

1453 1454 1455 1456 1457
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1458 1459
static int _regulator_force_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1460 1461 1462 1463 1464 1465 1466 1467
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1468
			rdev_err(rdev, "failed to force disable\n");
1469 1470 1471
			return ret;
		}
		/* notify other consumers that power has been forced off */
1472 1473
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1474 1475 1476
	}

	/* decrease our supplies ref count and disable if required */
1477
	*supply_rdev_ptr = rdev->supply;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	rdev->use_count = 0;
	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1494
	struct regulator_dev *supply_rdev = NULL;
1495 1496 1497 1498
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	regulator->uA_load = 0;
1499
	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1500
	mutex_unlock(&regulator->rdev->mutex);
1501 1502 1503 1504

	if (supply_rdev)
		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));

1505 1506 1507 1508 1509 1510
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1511
	/* If we don't know then assume that the regulator is always on */
1512
	if (!rdev->desc->ops->is_enabled)
1513
		return 1;
1514

1515
	return rdev->desc->ops->is_enabled(rdev);
1516 1517 1518 1519 1520 1521
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1522 1523 1524 1525 1526 1527 1528
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1529 1530 1531
 */
int regulator_is_enabled(struct regulator *regulator)
{
1532 1533 1534 1535 1536 1537 1538
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1539 1540 1541
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1565
 * zero if this selector code can't be used on this system, or a
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1636
 * Regulator system constraints must be set for this regulator before
1637 1638 1639 1640 1641 1642
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1643
	unsigned selector;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_voltage) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1659

1660 1661 1662 1663
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1664 1665
	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1666 1667 1668 1669 1670 1671
	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);

	if (rdev->desc->ops->list_voltage)
		selector = rdev->desc->ops->list_voltage(rdev, selector);
	else
		selector = -1;
1672

1673 1674
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

1675
out:
1676
	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

static int _regulator_get_voltage(struct regulator_dev *rdev)
{
	/* sanity check */
	if (rdev->desc->ops->get_voltage)
		return rdev->desc->ops->get_voltage(rdev);
	else
		return -EINVAL;
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1804
	int regulator_curr_mode;
1805 1806 1807 1808 1809 1810 1811 1812 1813

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	/* constraints check */
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
	if (ret < 0)
		goto out;
	ret = -EINVAL;

	/* sanity check */
	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0) {
1913
		rdev_err(rdev, "invalid output voltage found\n");
1914 1915 1916 1917 1918 1919 1920 1921 1922
		goto out;
	}

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
1923
		rdev_err(rdev, "invalid input voltage found\n");
1924 1925 1926 1927 1928
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
1929
		total_uA_load += consumer->uA_load;
1930 1931 1932 1933

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
1934 1935
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0) {
1936 1937
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
1938 1939 1940 1941
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
1942
	if (ret < 0) {
1943
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
1956
 * @nb: notifier block
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
1971
 * @nb: notifier block
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

1983 1984 1985
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
1986 1987 1988 1989 1990 1991 1992 1993 1994
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	struct regulator_dev *_rdev;

	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);

	/* now notify regulator we supply */
1995
	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1996 1997 1998
		mutex_lock(&_rdev->mutex);
		_notifier_call_chain(_rdev, event, data);
		mutex_unlock(&_rdev->mutex);
1999
	}
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2030 2031
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_enable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2074
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2075
	for (--i; i >= 0; --i)
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		regulator_disable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2109
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2110
	for (--i; i >= 0; --i)
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2140
 * @rdev: regulator source
2141
 * @event: notifier block
2142
 * @data: callback-specific data.
2143 2144 2145
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2146
 * Note lock must be held by caller.
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
	if (ops->get_voltage) {
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2212 2213 2214 2215 2216
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
	if (ops->set_voltage) {
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2297 2298
/**
 * regulator_register - register regulator
2299 2300
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2301
 * @init_data: platform provided init data, passed through by driver
2302
 * @driver_data: private regulator data
2303 2304 2305 2306 2307
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2308
	struct device *dev, const struct regulator_init_data *init_data,
2309
	void *driver_data)
2310 2311 2312
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2313
	int ret, i;
2314 2315 2316 2317 2318 2319 2320

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2321 2322
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2323 2324
		return ERR_PTR(-EINVAL);

2325 2326 2327
	if (!init_data)
		return ERR_PTR(-EINVAL);

2328 2329 2330 2331 2332 2333 2334
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2335
	rdev->reg_data = driver_data;
2336 2337 2338 2339 2340 2341 2342 2343
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->supply_list);
	INIT_LIST_HEAD(&rdev->list);
	INIT_LIST_HEAD(&rdev->slist);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2344 2345 2346
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2347 2348
		if (ret < 0)
			goto clean;
2349 2350 2351
	}

	/* register with sysfs */
2352
	rdev->dev.class = &regulator_class;
2353
	rdev->dev.parent = dev;
2354 2355
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2356
	ret = device_register(&rdev->dev);
2357 2358
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2359
		goto clean;
2360
	}
2361 2362 2363

	dev_set_drvdata(&rdev->dev, rdev);

2364 2365 2366 2367 2368
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2369 2370 2371 2372 2373
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2374
	/* set supply regulator if it exists */
2375 2376 2377
	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
		dev_err(dev,
			"Supply regulator specified by both name and dev\n");
2378
		ret = -EINVAL;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		goto scrub;
	}

	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
2397
			ret = -ENODEV;
2398 2399 2400 2401 2402 2403 2404 2405
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2406
	if (init_data->supply_regulator_dev) {
2407
		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2408 2409
		ret = set_supply(rdev,
			dev_get_drvdata(init_data->supply_regulator_dev));
D
David Brownell 已提交
2410 2411
		if (ret < 0)
			goto scrub;
2412 2413 2414 2415 2416 2417
	}

	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2418
			init_data->consumer_supplies[i].dev_name,
2419
			init_data->consumer_supplies[i].supply);
2420 2421
		if (ret < 0)
			goto unset_supplies;
2422
	}
2423 2424 2425

	list_add(&rdev->list, &regulator_list);
out:
2426 2427
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2428

2429 2430 2431
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2432 2433
scrub:
	device_unregister(&rdev->dev);
2434 2435 2436 2437
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2438 2439 2440 2441
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2442 2443 2444 2445 2446
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2447
 * @rdev: regulator to unregister
2448 2449 2450 2451 2452 2453 2454 2455 2456
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2457
	WARN_ON(rdev->open_count);
2458
	unset_regulator_supplies(rdev);
2459 2460 2461 2462
	list_del(&rdev->list);
	if (rdev->supply)
		sysfs_remove_link(&rdev->dev.kobj, "supply");
	device_unregister(&rdev->dev);
2463
	kfree(rdev->constraints);
2464 2465 2466 2467 2468
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2469
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2492
			rdev_err(rdev, "failed to prepare\n");
2493 2494 2495 2496 2497 2498 2499 2500 2501
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2535 2536
/**
 * rdev_get_drvdata - get rdev regulator driver data
2537
 * @rdev: regulator
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2574
 * @rdev: regulator
2575 2576 2577 2578 2579 2580 2581
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2594 2595
static int __init regulator_init(void)
{
2596 2597 2598 2599 2600 2601 2602
	int ret;

	ret = class_register(&regulator_class);

	regulator_dummy_init();

	return ret;
2603 2604 2605 2606
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2625
		if (!ops->disable || (c && c->always_on))
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
2645
			rdev_info(rdev, "disabling\n");
2646 2647
			ret = ops->disable(rdev);
			if (ret != 0) {
2648
				rdev_err(rdev, "couldn't disable: %d\n", ret);
2649 2650 2651 2652 2653 2654 2655
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
2656
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);