vmscan.c 120.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
52
#include <linux/psi.h>
L
Linus Torvalds 已提交
53 54 55 56 57

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
58
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
59

60 61
#include "internal.h"

62 63 64
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
65
struct scan_control {
66 67 68
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

69 70 71 72 73
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
74

75 76 77 78 79
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
80

81
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
82 83 84 85 86 87 88 89
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

90 91 92 93 94 95 96
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
97

98 99 100 101 102
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
103 104 105 106 107 108 109 110 111 112 113 114
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

115 116 117 118 119
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
120 121 122 123 124 125 126 127 128 129

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
164 165 166 167 168
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
169 170 171 172

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

173
#ifdef CONFIG_MEMCG_KMEM
174 175 176 177 178 179 180 181 182 183 184 185 186 187

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

188 189 190 191 192 193 194 195 196
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
197
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
198 199 200
	if (id < 0)
		goto unlock;

201 202 203 204 205 206
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

207
		shrinker_nr_max = id + 1;
208
	}
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
237
#ifdef CONFIG_MEMCG
238 239
static bool global_reclaim(struct scan_control *sc)
{
240
	return !sc->target_mem_cgroup;
241
}
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
263
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 265 266 267
		return true;
#endif
	return false;
}
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
291
#else
292 293 294 295
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
296 297 298 299 300

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
301 302 303 304 305 306 307 308 309 310 311 312

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
313 314
#endif

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

333 334 335 336 337 338 339
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340
{
341 342 343
	unsigned long lru_size;
	int zid;

344
	if (!mem_cgroup_disabled())
345 346 347
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348

349 350 351
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
352

353 354 355 356 357 358 359 360 361 362 363 364
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
365 366 367

}

L
Linus Torvalds 已提交
368
/*
G
Glauber Costa 已提交
369
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
370
 */
371
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
372
{
G
Glauber Costa 已提交
373 374 375 376 377 378 379 380
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
381 382 383 384 385 386

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

387
	return 0;
388 389 390 391 392

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
393 394 395 396
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
397 398 399 400 401 402
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

403 404 405
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
406

407 408
void register_shrinker_prepared(struct shrinker *shrinker)
{
409 410
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
411
#ifdef CONFIG_MEMCG_KMEM
412 413
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
414
#endif
415
	up_write(&shrinker_rwsem);
416 417 418 419 420 421 422 423 424
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
425
	return 0;
L
Linus Torvalds 已提交
426
}
427
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
428 429 430 431

/*
 * Remove one
 */
432
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
433
{
434 435
	if (!shrinker->nr_deferred)
		return;
436 437
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
438 439 440
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
441
	kfree(shrinker->nr_deferred);
442
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
443
}
444
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
445 446

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
447

448
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
449
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
450 451 452 453
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
454
	long freeable;
G
Glauber Costa 已提交
455 456 457 458 459
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
460
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
461

462 463 464
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

465
	freeable = shrinker->count_objects(shrinker, shrinkctl);
466 467
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
468 469 470 471 472 473 474 475 476

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
477 478 479 480 481 482 483 484 485 486 487 488
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
489 490 491 492 493 494 495 496 497 498 499

	/*
	 * Make sure we apply some minimal pressure on default priority
	 * even on small cgroups. Stale objects are not only consuming memory
	 * by themselves, but can also hold a reference to a dying cgroup,
	 * preventing it from being reclaimed. A dying cgroup with all
	 * corresponding structures like per-cpu stats and kmem caches
	 * can be really big, so it may lead to a significant waste of memory.
	 */
	delta = max_t(unsigned long long, delta, min(freeable, batch_size));

G
Glauber Costa 已提交
500 501
	total_scan += delta;
	if (total_scan < 0) {
502
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
503
		       shrinker->scan_objects, total_scan);
504
		total_scan = freeable;
505 506 507
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
508 509 510 511 512 513 514

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
515
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
516 517 518 519 520
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
521 522
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
523 524 525 526 527 528

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
529 530
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
531 532

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
533
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
534

535 536 537 538 539 540 541 542 543 544 545
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
546
	 * than the total number of objects on slab (freeable), we must be
547 548 549 550
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
551
	       total_scan >= freeable) {
D
Dave Chinner 已提交
552
		unsigned long ret;
553
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
554

555
		shrinkctl->nr_to_scan = nr_to_scan;
556
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
557 558 559 560
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
561

562 563 564
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
565 566 567 568

		cond_resched();
	}

569 570 571 572
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
573 574 575 576 577
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
578 579
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
580 581 582 583
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

584
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
585
	return freed;
586 587
}

588 589 590 591 592
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
593 594
	unsigned long ret, freed = 0;
	int i;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
616 617 618
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
619 620 621 622
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

666
/**
667
 * shrink_slab - shrink slab caches
668 669
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
670
 * @memcg: memory cgroup whose slab caches to target
671
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
672
 *
673
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
674
 *
675 676
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
677
 *
678 679
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
680
 *
681 682
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
683
 *
684
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
685
 */
686 687
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
688
				 int priority)
L
Linus Torvalds 已提交
689
{
690
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
691 692
	struct shrinker *shrinker;

693
	if (!mem_cgroup_is_root(memcg))
694
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
695

696
	if (!down_read_trylock(&shrinker_rwsem))
697
		goto out;
L
Linus Torvalds 已提交
698 699

	list_for_each_entry(shrinker, &shrinker_list, list) {
700 701 702
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
703
			.memcg = memcg,
704
		};
705

706 707 708 709
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
710 711 712 713 714 715 716 717 718
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
719
	}
720

L
Linus Torvalds 已提交
721
	up_read(&shrinker_rwsem);
722 723
out:
	cond_resched();
D
Dave Chinner 已提交
724
	return freed;
L
Linus Torvalds 已提交
725 726
}

727 728 729 730 731 732 733 734
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
735
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
736
		do {
737
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
738 739 740 741 742 743 744 745 746 747 748 749
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
750 751
static inline int is_page_cache_freeable(struct page *page)
{
752 753 754 755 756
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
757 758 759
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
760 761
}

762
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
763
{
764
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
765
		return 1;
766
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
767
		return 1;
768
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
788
	lock_page(page);
789 790
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
791 792 793
	unlock_page(page);
}

794 795 796 797 798 799 800 801 802 803 804 805
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
806
/*
A
Andrew Morton 已提交
807 808
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
809
 */
810
static pageout_t pageout(struct page *page, struct address_space *mapping,
811
			 struct scan_control *sc)
L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
820
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
836
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
837 838
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
839
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
840 841 842 843 844 845 846
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
847
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
848 849 850 851 852 853 854
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
855 856
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
857 858 859 860 861 862 863
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
864
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
865 866 867
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
868

L
Linus Torvalds 已提交
869 870 871 872
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
873
		trace_mm_vmscan_writepage(page);
874
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
875 876 877 878 879 880
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

881
/*
N
Nick Piggin 已提交
882 883
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
884
 */
885 886
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
887
{
888
	unsigned long flags;
889
	int refcount;
890

891 892
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
893

M
Matthew Wilcox 已提交
894
	xa_lock_irqsave(&mapping->i_pages, flags);
895
	/*
N
Nick Piggin 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
915
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
916 917
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
918
	 * and thus under the i_pages lock, then this ordering is not required.
919
	 */
920 921 922 923 924
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
925
		goto cannot_free;
926
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
927
	if (unlikely(PageDirty(page))) {
928
		page_ref_unfreeze(page, refcount);
929
		goto cannot_free;
N
Nick Piggin 已提交
930
	}
931 932 933

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
934
		mem_cgroup_swapout(page, swap);
935
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
936
		xa_unlock_irqrestore(&mapping->i_pages, flags);
937
		put_swap_page(page, swap);
N
Nick Piggin 已提交
938
	} else {
939
		void (*freepage)(struct page *);
940
		void *shadow = NULL;
941 942

		freepage = mapping->a_ops->freepage;
943 944 945 946 947 948 949 950 951
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
952 953 954 955 956
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
957
		 * same address_space.
958 959
		 */
		if (reclaimed && page_is_file_cache(page) &&
960
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
961
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
962
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
963
		xa_unlock_irqrestore(&mapping->i_pages, flags);
964 965 966

		if (freepage != NULL)
			freepage(page);
967 968 969 970 971
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
972
	xa_unlock_irqrestore(&mapping->i_pages, flags);
973 974 975
	return 0;
}

N
Nick Piggin 已提交
976 977 978 979 980 981 982 983
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
984
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
985 986 987 988 989
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
990
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
991 992 993 994 995
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1007
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1008 1009 1010
	put_page(page);		/* drop ref from isolate */
}

1011 1012 1013
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1014
	PAGEREF_KEEP,
1015 1016 1017 1018 1019 1020
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1021
	int referenced_ptes, referenced_page;
1022 1023
	unsigned long vm_flags;

1024 1025
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1026
	referenced_page = TestClearPageReferenced(page);
1027 1028 1029 1030 1031 1032 1033 1034

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1035
	if (referenced_ptes) {
1036
		if (PageSwapBacked(page))
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1054
		if (referenced_page || referenced_ptes > 1)
1055 1056
			return PAGEREF_ACTIVATE;

1057 1058 1059 1060 1061 1062
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1063 1064
		return PAGEREF_KEEP;
	}
1065 1066

	/* Reclaim if clean, defer dirty pages to writeback */
1067
	if (referenced_page && !PageSwapBacked(page))
1068 1069 1070
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1071 1072
}

1073 1074 1075 1076
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1077 1078
	struct address_space *mapping;

1079 1080 1081 1082
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1083 1084
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1085 1086 1087 1088 1089 1090 1091 1092
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1093 1094 1095 1096 1097 1098 1099 1100

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1101 1102
}

L
Linus Torvalds 已提交
1103
/*
A
Andrew Morton 已提交
1104
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1105
 */
A
Andrew Morton 已提交
1106
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1107
				      struct pglist_data *pgdat,
1108
				      struct scan_control *sc,
1109
				      enum ttu_flags ttu_flags,
1110
				      struct reclaim_stat *stat,
1111
				      bool force_reclaim)
L
Linus Torvalds 已提交
1112 1113
{
	LIST_HEAD(ret_pages);
1114
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1115
	int pgactivate = 0;
1116 1117 1118 1119 1120 1121
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1122 1123
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129 1130

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1131
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1132
		bool dirty, writeback;
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137 1138

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1139
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1140 1141
			goto keep;

1142
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1143 1144

		sc->nr_scanned++;
1145

1146
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1147
			goto activate_locked;
L
Lee Schermerhorn 已提交
1148

1149
		if (!sc->may_unmap && page_mapped(page))
1150 1151
			goto keep_locked;

L
Linus Torvalds 已提交
1152
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1153 1154
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1155 1156
			sc->nr_scanned++;

1157 1158 1159
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1160
		/*
1161
		 * The number of dirty pages determines if a node is marked
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1173 1174 1175 1176 1177 1178
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1179
		mapping = page_mapping(page);
1180
		if (((dirty || writeback) && mapping &&
1181
		     inode_write_congested(mapping->host)) ||
1182
		    (writeback && PageReclaim(page)))
1183 1184
			nr_congested++;

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1196 1197
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1198
		 *
1199
		 * 2) Global or new memcg reclaim encounters a page that is
1200 1201 1202
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1203
		 *    reclaim and continue scanning.
1204
		 *
1205 1206
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1207 1208 1209 1210 1211
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1212
		 * 3) Legacy memcg encounters a page that is already marked
1213 1214 1215 1216
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1217 1218 1219 1220 1221 1222 1223 1224 1225
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1226
		 */
1227
		if (PageWriteback(page)) {
1228 1229 1230
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1231
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1232
				nr_immediate++;
1233
				goto activate_locked;
1234 1235

			/* Case 2 above */
1236
			} else if (sane_reclaim(sc) ||
1237
			    !PageReclaim(page) || !may_enter_fs) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1250
				nr_writeback++;
1251
				goto activate_locked;
1252 1253 1254

			/* Case 3 above */
			} else {
1255
				unlock_page(page);
1256
				wait_on_page_writeback(page);
1257 1258 1259
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1260
			}
1261
		}
L
Linus Torvalds 已提交
1262

1263 1264 1265
		if (!force_reclaim)
			references = page_check_references(page, sc);

1266 1267
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1268
			goto activate_locked;
1269
		case PAGEREF_KEEP:
1270
			nr_ref_keep++;
1271
			goto keep_locked;
1272 1273 1274 1275
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1276 1277 1278 1279

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1280
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1281
		 */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1307 1308 1309
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1310 1311 1312
					if (!add_to_swap(page))
						goto activate_locked;
				}
1313

1314
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1315

1316 1317 1318
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1319 1320 1321 1322
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1323
		}
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1329
		if (page_mapped(page)) {
1330 1331 1332 1333 1334
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1335
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1341
			/*
1342 1343 1344 1345 1346 1347 1348 1349
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1350
			 */
1351
			if (page_is_file_cache(page) &&
1352 1353
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1354 1355 1356 1357 1358 1359
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1360
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1361 1362
				SetPageReclaim(page);

1363
				goto activate_locked;
1364 1365
			}

1366
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1367
				goto keep_locked;
1368
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1369
				goto keep_locked;
1370
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1371 1372
				goto keep_locked;

1373 1374 1375 1376 1377 1378
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1379
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1380 1381 1382 1383 1384
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1385
				if (PageWriteback(page))
1386
					goto keep;
1387
				if (PageDirty(page))
L
Linus Torvalds 已提交
1388
					goto keep;
1389

L
Linus Torvalds 已提交
1390 1391 1392 1393
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1394
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1414
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1425
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1426 1427
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1444 1445
		}

S
Shaohua Li 已提交
1446 1447 1448 1449 1450 1451 1452 1453
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1454

S
Shaohua Li 已提交
1455
			count_vm_event(PGLAZYFREED);
1456
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1457 1458
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1459 1460 1461 1462 1463 1464 1465
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1466
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1467
free_it:
1468
		nr_reclaimed++;
1469 1470 1471 1472 1473

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1474 1475 1476 1477 1478
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1479 1480 1481
		continue;

activate_locked:
1482
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1483 1484
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1485
			try_to_free_swap(page);
1486
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1487 1488 1489
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1490
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1491
		}
L
Linus Torvalds 已提交
1492 1493 1494 1495
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1496
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1497
	}
1498

1499
	mem_cgroup_uncharge_list(&free_pages);
1500
	try_to_unmap_flush();
1501
	free_unref_page_list(&free_pages);
1502

L
Linus Torvalds 已提交
1503
	list_splice(&ret_pages, page_list);
1504
	count_vm_events(PGACTIVATE, pgactivate);
1505

1506 1507 1508 1509 1510 1511
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1512 1513 1514
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1515
	}
1516
	return nr_reclaimed;
L
Linus Torvalds 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1527
	unsigned long ret;
1528 1529 1530 1531
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1532
		if (page_is_file_cache(page) && !PageDirty(page) &&
1533
		    !__PageMovable(page)) {
1534 1535 1536 1537 1538
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1539
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1540
			TTU_IGNORE_ACCESS, NULL, true);
1541
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1542
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1543 1544 1545
	return ret;
}

A
Andy Whitcroft 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1556
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1557 1558 1559 1560 1561 1562 1563
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1564 1565
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1566 1567
		return ret;

A
Andy Whitcroft 已提交
1568
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1578
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1579 1580 1581 1582 1583 1584
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1585
			bool migrate_dirty;
1586 1587 1588 1589

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1590 1591 1592 1593 1594
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1595
			 */
1596 1597 1598
			if (!trylock_page(page))
				return ret;

1599
			mapping = page_mapping(page);
1600
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1601 1602
			unlock_page(page);
			if (!migrate_dirty)
1603 1604 1605
				return ret;
		}
	}
1606

1607 1608 1609
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1623 1624 1625 1626 1627 1628

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1629
			enum lru_list lru, unsigned long *nr_zone_taken)
1630 1631 1632 1633 1634 1635 1636 1637 1638
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1639
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1640
#endif
1641 1642
	}

1643 1644
}

L
Linus Torvalds 已提交
1645
/*
1646
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652 1653 1654
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1655
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1656
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1657
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1658
 * @nr_scanned:	The number of pages that were scanned.
1659
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1660
 * @mode:	One of the LRU isolation modes
1661
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1662 1663 1664
 *
 * returns how many pages were moved onto *@dst.
 */
1665
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1666
		struct lruvec *lruvec, struct list_head *dst,
1667
		unsigned long *nr_scanned, struct scan_control *sc,
1668
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1669
{
H
Hugh Dickins 已提交
1670
	struct list_head *src = &lruvec->lists[lru];
1671
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1672
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1673
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1674
	unsigned long skipped = 0;
1675
	unsigned long scan, total_scan, nr_pages;
1676
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1677

1678 1679 1680 1681
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1682 1683
		struct page *page;

L
Linus Torvalds 已提交
1684 1685 1686
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1687
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1688

1689 1690
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1691
			nr_skipped[page_zonenum(page)]++;
1692 1693 1694
			continue;
		}

1695 1696 1697 1698 1699 1700 1701
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1702
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1703
		case 0:
M
Mel Gorman 已提交
1704 1705 1706
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1707 1708 1709 1710 1711 1712 1713
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1714

A
Andy Whitcroft 已提交
1715 1716 1717
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1718 1719
	}

1720 1721 1722 1723 1724 1725 1726
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1727 1728 1729
	if (!list_empty(&pages_skipped)) {
		int zid;

1730
		list_splice(&pages_skipped, src);
1731 1732 1733 1734 1735
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1736
			skipped += nr_skipped[zid];
1737 1738
		}
	}
1739
	*nr_scanned = total_scan;
1740
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1741
				    total_scan, skipped, nr_taken, mode, lru);
1742
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1743 1744 1745
	return nr_taken;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1757 1758 1759
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1760 1761 1762 1763 1764
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1765
 *
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1776
	VM_BUG_ON_PAGE(!page_count(page), page);
1777
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1778

1779 1780
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1781
		struct lruvec *lruvec;
1782

1783
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1784
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1785
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1786
			int lru = page_lru(page);
1787
			get_page(page);
1788
			ClearPageLRU(page);
1789 1790
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1791
		}
1792
		spin_unlock_irq(zone_lru_lock(zone));
1793 1794 1795 1796
	}
	return ret;
}

1797
/*
F
Fengguang Wu 已提交
1798 1799 1800 1801 1802
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1803
 */
M
Mel Gorman 已提交
1804
static int too_many_isolated(struct pglist_data *pgdat, int file,
1805 1806 1807 1808 1809 1810 1811
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1812
	if (!sane_reclaim(sc))
1813 1814 1815
		return 0;

	if (file) {
M
Mel Gorman 已提交
1816 1817
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1818
	} else {
M
Mel Gorman 已提交
1819 1820
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1821 1822
	}

1823 1824 1825 1826 1827
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1828
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1829 1830
		inactive >>= 3;

1831 1832 1833
	return isolated > inactive;
}

1834
static noinline_for_stack void
H
Hugh Dickins 已提交
1835
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1836
{
1837
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1838
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1839
	LIST_HEAD(pages_to_free);
1840 1841 1842 1843 1844

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1845
		struct page *page = lru_to_page(page_list);
1846
		int lru;
1847

1848
		VM_BUG_ON_PAGE(PageLRU(page), page);
1849
		list_del(&page->lru);
1850
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1851
			spin_unlock_irq(&pgdat->lru_lock);
1852
			putback_lru_page(page);
M
Mel Gorman 已提交
1853
			spin_lock_irq(&pgdat->lru_lock);
1854 1855
			continue;
		}
1856

M
Mel Gorman 已提交
1857
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1858

1859
		SetPageLRU(page);
1860
		lru = page_lru(page);
1861 1862
		add_page_to_lru_list(page, lruvec, lru);

1863 1864
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1865 1866
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1867
		}
1868 1869 1870
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1871
			del_page_from_lru_list(page, lruvec, lru);
1872 1873

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1874
				spin_unlock_irq(&pgdat->lru_lock);
1875
				mem_cgroup_uncharge(page);
1876
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1877
				spin_lock_irq(&pgdat->lru_lock);
1878 1879
			} else
				list_add(&page->lru, &pages_to_free);
1880 1881 1882
		}
	}

1883 1884 1885 1886
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1902
/*
1903
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1904
 * of reclaimed pages
L
Linus Torvalds 已提交
1905
 */
1906
static noinline_for_stack unsigned long
1907
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1908
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1909 1910
{
	LIST_HEAD(page_list);
1911
	unsigned long nr_scanned;
1912
	unsigned long nr_reclaimed = 0;
1913
	unsigned long nr_taken;
1914
	struct reclaim_stat stat = {};
1915
	isolate_mode_t isolate_mode = 0;
1916
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1917
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1918
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1919
	bool stalled = false;
1920

M
Mel Gorman 已提交
1921
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1922 1923 1924 1925 1926 1927
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1928 1929 1930 1931 1932 1933

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1934
	lru_add_drain();
1935 1936

	if (!sc->may_unmap)
1937
		isolate_mode |= ISOLATE_UNMAPPED;
1938

M
Mel Gorman 已提交
1939
	spin_lock_irq(&pgdat->lru_lock);
1940

1941 1942
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1943

M
Mel Gorman 已提交
1944
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1945
	reclaim_stat->recent_scanned[file] += nr_taken;
1946

1947 1948
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1949
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1950 1951 1952 1953
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1954
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1955 1956
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1957
	}
M
Mel Gorman 已提交
1958
	spin_unlock_irq(&pgdat->lru_lock);
1959

1960
	if (nr_taken == 0)
1961
		return 0;
A
Andy Whitcroft 已提交
1962

S
Shaohua Li 已提交
1963
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1964
				&stat, false);
1965

M
Mel Gorman 已提交
1966
	spin_lock_irq(&pgdat->lru_lock);
1967

1968 1969
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1970
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1971 1972 1973 1974
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1975
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1976 1977
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1978
	}
N
Nick Piggin 已提交
1979

1980
	putback_inactive_pages(lruvec, &page_list);
1981

M
Mel Gorman 已提交
1982
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1983

M
Mel Gorman 已提交
1984
	spin_unlock_irq(&pgdat->lru_lock);
1985

1986
	mem_cgroup_uncharge_list(&page_list);
1987
	free_unref_page_list(&page_list);
1988

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2003 2004 2005 2006 2007 2008 2009 2010
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2011

M
Mel Gorman 已提交
2012
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014
	return nr_reclaimed;
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2024
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2025
 * the pages are mapped, the processing is slow (page_referenced()) so we
2026
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2027 2028 2029 2030
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2031
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2032
 * But we had to alter page->flags anyway.
2033 2034
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2035
 */
2036

2037
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2038
				     struct list_head *list,
2039
				     struct list_head *pages_to_free,
2040 2041
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2042
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2043
	struct page *page;
2044
	int nr_pages;
2045
	int nr_moved = 0;
2046 2047 2048

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2049
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2050

2051
		VM_BUG_ON_PAGE(PageLRU(page), page);
2052 2053
		SetPageLRU(page);

2054
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2055
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2056
		list_move(&page->lru, &lruvec->lists[lru]);
2057

2058 2059 2060
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2061
			del_page_from_lru_list(page, lruvec, lru);
2062 2063

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2064
				spin_unlock_irq(&pgdat->lru_lock);
2065
				mem_cgroup_uncharge(page);
2066
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2067
				spin_lock_irq(&pgdat->lru_lock);
2068 2069
			} else
				list_add(&page->lru, pages_to_free);
2070 2071
		} else {
			nr_moved += nr_pages;
2072 2073
		}
	}
2074

2075
	if (!is_active_lru(lru)) {
2076
		__count_vm_events(PGDEACTIVATE, nr_moved);
2077 2078 2079
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2080 2081

	return nr_moved;
2082
}
2083

H
Hugh Dickins 已提交
2084
static void shrink_active_list(unsigned long nr_to_scan,
2085
			       struct lruvec *lruvec,
2086
			       struct scan_control *sc,
2087
			       enum lru_list lru)
L
Linus Torvalds 已提交
2088
{
2089
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2090
	unsigned long nr_scanned;
2091
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2092
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2093
	LIST_HEAD(l_active);
2094
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2095
	struct page *page;
2096
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2097 2098
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2099
	isolate_mode_t isolate_mode = 0;
2100
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2101
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2102 2103

	lru_add_drain();
2104 2105

	if (!sc->may_unmap)
2106
		isolate_mode |= ISOLATE_UNMAPPED;
2107

M
Mel Gorman 已提交
2108
	spin_lock_irq(&pgdat->lru_lock);
2109

2110 2111
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2112

M
Mel Gorman 已提交
2113
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2114
	reclaim_stat->recent_scanned[file] += nr_taken;
2115

M
Mel Gorman 已提交
2116
	__count_vm_events(PGREFILL, nr_scanned);
2117
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2118

M
Mel Gorman 已提交
2119
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2125

2126
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2127 2128 2129 2130
			putback_lru_page(page);
			continue;
		}

2131 2132 2133 2134 2135 2136 2137 2138
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2139 2140
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2141
			nr_rotated += hpage_nr_pages(page);
2142 2143 2144 2145 2146 2147 2148 2149 2150
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2151
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2152 2153 2154 2155
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2156

2157
		ClearPageActive(page);	/* we are de-activating */
2158
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2159 2160 2161
		list_add(&page->lru, &l_inactive);
	}

2162
	/*
2163
	 * Move pages back to the lru list.
2164
	 */
M
Mel Gorman 已提交
2165
	spin_lock_irq(&pgdat->lru_lock);
2166
	/*
2167 2168 2169
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2170
	 * get_scan_count.
2171
	 */
2172
	reclaim_stat->recent_rotated[file] += nr_rotated;
2173

2174 2175
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2176 2177
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2178

2179
	mem_cgroup_uncharge_list(&l_hold);
2180
	free_unref_page_list(&l_hold);
2181 2182
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2183 2184
}

2185 2186 2187
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2188
 *
2189 2190 2191
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2192
 *
2193 2194
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2195
 *
2196 2197
 * If that fails and refaulting is observed, the inactive list grows.
 *
2198
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2199
 * on this LRU, maintained by the pageout code. An inactive_ratio
2200
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2201
 *
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2212
 */
2213
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2214 2215
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2216
{
2217
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2218 2219 2220 2221 2222
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2223
	unsigned long gb;
2224

2225 2226 2227 2228 2229 2230
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2231

2232 2233
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2234

2235
	if (memcg)
2236
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2237
	else
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2254

2255 2256 2257 2258 2259
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2260

2261
	return inactive * inactive_ratio < active;
2262 2263
}

2264
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2265 2266
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2267
{
2268
	if (is_active_lru(lru)) {
2269 2270
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2271
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2272 2273 2274
		return 0;
	}

2275
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2276 2277
}

2278 2279 2280 2281 2282 2283 2284
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2285 2286 2287 2288 2289 2290
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2291 2292
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2293
 */
2294
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2295 2296
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2297
{
2298
	int swappiness = mem_cgroup_swappiness(memcg);
2299 2300 2301
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2302
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2303
	unsigned long anon_prio, file_prio;
2304
	enum scan_balance scan_balance;
2305
	unsigned long anon, file;
2306
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2307
	enum lru_list lru;
2308 2309

	/* If we have no swap space, do not bother scanning anon pages. */
2310
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2311
		scan_balance = SCAN_FILE;
2312 2313
		goto out;
	}
2314

2315 2316 2317 2318 2319 2320 2321
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2322
	if (!global_reclaim(sc) && !swappiness) {
2323
		scan_balance = SCAN_FILE;
2324 2325 2326 2327 2328 2329 2330 2331
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2332
	if (!sc->priority && swappiness) {
2333
		scan_balance = SCAN_EQUAL;
2334 2335 2336
		goto out;
	}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2347 2348 2349 2350
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2351

M
Mel Gorman 已提交
2352 2353 2354 2355 2356 2357
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2358
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2359 2360 2361 2362
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2363

M
Mel Gorman 已提交
2364
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2376 2377 2378
		}
	}

2379
	/*
2380 2381 2382 2383 2384 2385 2386
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2387
	 */
2388
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2389
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2390
		scan_balance = SCAN_FILE;
2391 2392 2393
		goto out;
	}

2394 2395
	scan_balance = SCAN_FRACT;

2396 2397 2398 2399
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2400
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2401
	file_prio = 200 - anon_prio;
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2414

2415 2416 2417 2418
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2419

M
Mel Gorman 已提交
2420
	spin_lock_irq(&pgdat->lru_lock);
2421 2422 2423
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2424 2425
	}

2426 2427 2428
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2429 2430 2431
	}

	/*
2432 2433 2434
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2435
	 */
2436
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2437
	ap /= reclaim_stat->recent_rotated[0] + 1;
2438

2439
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2440
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2441
	spin_unlock_irq(&pgdat->lru_lock);
2442

2443 2444 2445 2446
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2447 2448 2449 2450 2451
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2452

2453 2454 2455 2456 2457 2458 2459 2460
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2461

2462 2463 2464 2465 2466
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2467
			/*
2468 2469
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2470 2471
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2472
			 */
2473 2474
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2487
		}
2488 2489 2490

		*lru_pages += size;
		nr[lru] = scan;
2491
	}
2492
}
2493

2494
/*
2495
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2496
 */
2497
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2498
			      struct scan_control *sc, unsigned long *lru_pages)
2499
{
2500
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2501
	unsigned long nr[NR_LRU_LISTS];
2502
	unsigned long targets[NR_LRU_LISTS];
2503 2504 2505 2506 2507
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2508
	bool scan_adjusted;
2509

2510
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2511

2512 2513 2514
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2529 2530 2531
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2532 2533 2534
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2535 2536 2537 2538 2539 2540
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2541
							    lruvec, memcg, sc);
2542 2543
			}
		}
2544

2545 2546
		cond_resched();

2547 2548 2549 2550 2551
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2552
		 * requested. Ensure that the anon and file LRUs are scanned
2553 2554 2555 2556 2557 2558 2559
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2560 2561 2562 2563 2564 2565 2566 2567 2568
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2600 2601 2602 2603 2604 2605 2606 2607
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2608
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2609 2610 2611 2612
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2613
/* Use reclaim/compaction for costly allocs or under memory pressure */
2614
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2615
{
2616
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2617
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2618
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2619 2620 2621 2622 2623
		return true;

	return false;
}

2624
/*
M
Mel Gorman 已提交
2625 2626 2627 2628 2629
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2630
 */
2631
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2632 2633 2634 2635 2636 2637
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2638
	int z;
2639 2640

	/* If not in reclaim/compaction mode, stop */
2641
	if (!in_reclaim_compaction(sc))
2642 2643
		return false;

2644
	/* Consider stopping depending on scan and reclaim activity */
2645
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2646
		/*
2647
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2648 2649
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2650
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2651 2652 2653 2654 2655
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2656
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2657 2658 2659 2660 2661 2662 2663 2664 2665
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2666 2667 2668 2669 2670

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2671
	pages_for_compaction = compact_gap(sc->order);
2672
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2673
	if (get_nr_swap_pages() > 0)
2674
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2675 2676 2677 2678 2679
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2680 2681
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2682
		if (!managed_zone(zone))
2683 2684 2685
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2686
		case COMPACT_SUCCESS:
2687 2688 2689 2690 2691 2692
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2693
	}
2694
	return true;
2695 2696
}

2697 2698 2699 2700 2701 2702
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2703
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2704
{
2705
	struct reclaim_state *reclaim_state = current->reclaim_state;
2706
	unsigned long nr_reclaimed, nr_scanned;
2707
	bool reclaimable = false;
L
Linus Torvalds 已提交
2708

2709 2710 2711
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2712
			.pgdat = pgdat,
2713 2714
			.priority = sc->priority,
		};
2715
		unsigned long node_lru_pages = 0;
2716
		struct mem_cgroup *memcg;
2717

2718 2719
		memset(&sc->nr, 0, sizeof(sc->nr));

2720 2721
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2722

2723 2724
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2725
			unsigned long lru_pages;
2726
			unsigned long reclaimed;
2727
			unsigned long scanned;
2728

R
Roman Gushchin 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2743 2744
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2745
					continue;
2746
				}
2747
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2748 2749 2750
				break;
			case MEMCG_PROT_NONE:
				break;
2751 2752
			}

2753
			reclaimed = sc->nr_reclaimed;
2754
			scanned = sc->nr_scanned;
2755 2756
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2757

2758 2759
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2760

2761 2762 2763 2764 2765
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2766
			/*
2767 2768
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2769
			 * node.
2770 2771 2772 2773 2774
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2775
			 */
2776 2777
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2778 2779 2780
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2781
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2782

2783 2784 2785
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2786 2787
		}

2788 2789
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2790 2791 2792
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2793 2794 2795
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2839 2840 2841 2842 2843 2844 2845 2846
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2847 2848 2849 2850 2851 2852 2853
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2854 2855
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2856

2857
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2858
					 sc->nr_scanned - nr_scanned, sc));
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2869
	return reclaimable;
2870 2871
}

2872
/*
2873 2874 2875
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2876
 */
2877
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2878
{
M
Mel Gorman 已提交
2879
	unsigned long watermark;
2880
	enum compact_result suitable;
2881

2882 2883 2884 2885 2886 2887 2888
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2889

2890
	/*
2891 2892 2893 2894 2895 2896 2897
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2898
	 */
2899
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2900

2901
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2902 2903
}

L
Linus Torvalds 已提交
2904 2905 2906 2907 2908 2909 2910 2911
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2912
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2913
{
2914
	struct zoneref *z;
2915
	struct zone *zone;
2916 2917
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2918
	gfp_t orig_mask;
2919
	pg_data_t *last_pgdat = NULL;
2920

2921 2922 2923 2924 2925
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2926
	orig_mask = sc->gfp_mask;
2927
	if (buffer_heads_over_limit) {
2928
		sc->gfp_mask |= __GFP_HIGHMEM;
2929
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2930
	}
2931

2932
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2933
					sc->reclaim_idx, sc->nodemask) {
2934 2935 2936 2937
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2938
		if (global_reclaim(sc)) {
2939 2940
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2941
				continue;
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2954
			    compaction_ready(zone, sc)) {
2955 2956
				sc->compaction_ready = true;
				continue;
2957
			}
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2968 2969 2970 2971 2972 2973 2974
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2975
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2976 2977 2978 2979
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2980
			/* need some check for avoid more shrink_zone() */
2981
		}
2982

2983 2984 2985 2986
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2987
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2988
	}
2989

2990 2991 2992 2993 2994
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2995
}
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
3007
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3008 3009 3010 3011 3012 3013 3014 3015
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022 3023
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3024 3025 3026 3027
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3028 3029 3030
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3031
 */
3032
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3034
{
3035
	int initial_priority = sc->priority;
3036 3037 3038
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3039
retry:
3040 3041
	delayacct_freepages_start();

3042
	if (global_reclaim(sc))
3043
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3044

3045
	do {
3046 3047
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3048
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3049
		shrink_zones(zonelist, sc);
3050

3051
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052 3053 3054 3055
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3056

3057 3058 3059 3060 3061 3062
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3063
	} while (--sc->priority >= 0);
3064

3065 3066 3067 3068 3069 3070 3071
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3072
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3073 3074
	}

3075 3076
	delayacct_freepages_end();

3077 3078 3079
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3080
	/* Aborted reclaim to try compaction? don't OOM, then */
3081
	if (sc->compaction_ready)
3082 3083
		return 1;

3084
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3085
	if (sc->memcg_low_skipped) {
3086
		sc->priority = initial_priority;
3087 3088
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3089 3090 3091
		goto retry;
	}

3092
	return 0;
L
Linus Torvalds 已提交
3093 3094
}

3095
static bool allow_direct_reclaim(pg_data_t *pgdat)
3096 3097 3098 3099 3100 3101 3102
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3103 3104 3105
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3106 3107
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3108 3109 3110 3111
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3112 3113
			continue;

3114 3115 3116 3117
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3118 3119 3120 3121
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3122 3123 3124 3125
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3126
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3138 3139 3140 3141
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3142
 */
3143
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3144 3145
					nodemask_t *nodemask)
{
3146
	struct zoneref *z;
3147
	struct zone *zone;
3148
	pg_data_t *pgdat = NULL;
3149 3150 3151 3152 3153 3154 3155 3156 3157

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3158 3159 3160 3161 3162 3163 3164 3165
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3166

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3182
					gfp_zone(gfp_mask), nodemask) {
3183 3184 3185 3186 3187
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3188
		if (allow_direct_reclaim(pgdat))
3189 3190 3191 3192 3193 3194
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3195
		goto out;
3196

3197 3198 3199
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3210
			allow_direct_reclaim(pgdat), HZ);
3211 3212

		goto check_pending;
3213 3214 3215 3216
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3217
		allow_direct_reclaim(pgdat));
3218 3219 3220 3221 3222 3223 3224

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3225 3226
}

3227
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3228
				gfp_t gfp_mask, nodemask_t *nodemask)
3229
{
3230
	unsigned long nr_reclaimed;
3231
	struct scan_control sc = {
3232
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3233
		.gfp_mask = current_gfp_context(gfp_mask),
3234
		.reclaim_idx = gfp_zone(gfp_mask),
3235 3236 3237
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3238
		.may_writepage = !laptop_mode,
3239
		.may_unmap = 1,
3240
		.may_swap = 1,
3241 3242
	};

G
Greg Thelen 已提交
3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3251
	/*
3252 3253 3254
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3255
	 */
3256
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3257 3258
		return 1;

3259 3260
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3261
				sc.gfp_mask,
3262
				sc.reclaim_idx);
3263

3264
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3265 3266 3267 3268

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3269 3270
}

A
Andrew Morton 已提交
3271
#ifdef CONFIG_MEMCG
3272

3273
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3274
						gfp_t gfp_mask, bool noswap,
3275
						pg_data_t *pgdat,
3276
						unsigned long *nr_scanned)
3277 3278
{
	struct scan_control sc = {
3279
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3280
		.target_mem_cgroup = memcg,
3281 3282
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3283
		.reclaim_idx = MAX_NR_ZONES - 1,
3284 3285
		.may_swap = !noswap,
	};
3286
	unsigned long lru_pages;
3287

3288 3289
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3290

3291
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3292
						      sc.may_writepage,
3293 3294
						      sc.gfp_mask,
						      sc.reclaim_idx);
3295

3296 3297 3298
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3299
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3300 3301 3302
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3303
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3304 3305 3306

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3307
	*nr_scanned = sc.nr_scanned;
3308 3309 3310
	return sc.nr_reclaimed;
}

3311
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3312
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3313
					   gfp_t gfp_mask,
3314
					   bool may_swap)
3315
{
3316
	struct zonelist *zonelist;
3317
	unsigned long nr_reclaimed;
3318
	unsigned long pflags;
3319
	int nid;
3320
	unsigned int noreclaim_flag;
3321
	struct scan_control sc = {
3322
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3323
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3324
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3325
		.reclaim_idx = MAX_NR_ZONES - 1,
3326 3327 3328 3329
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3330
		.may_swap = may_swap,
3331
	};
3332

3333 3334 3335 3336 3337
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3338
	nid = mem_cgroup_select_victim_node(memcg);
3339

3340
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3341 3342 3343

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3344 3345
					    sc.gfp_mask,
					    sc.reclaim_idx);
3346

3347
	psi_memstall_enter(&pflags);
3348
	noreclaim_flag = memalloc_noreclaim_save();
3349

3350
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3351

3352
	memalloc_noreclaim_restore(noreclaim_flag);
3353
	psi_memstall_leave(&pflags);
3354 3355 3356 3357

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3358 3359 3360
}
#endif

3361
static void age_active_anon(struct pglist_data *pgdat,
3362
				struct scan_control *sc)
3363
{
3364
	struct mem_cgroup *memcg;
3365

3366 3367 3368 3369 3370
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3371
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3372

3373
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3374
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3375
					   sc, LRU_ACTIVE_ANON);
3376 3377 3378

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3379 3380
}

3381 3382 3383 3384 3385
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3386
{
3387 3388 3389
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3390

3391 3392
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3411 3412
}

3413 3414 3415 3416 3417 3418 3419 3420
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3421 3422 3423 3424 3425 3426
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3427
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3428
{
3429
	/*
3430
	 * The throttled processes are normally woken up in balance_pgdat() as
3431
	 * soon as allow_direct_reclaim() is true. But there is a potential
3432 3433 3434 3435 3436 3437 3438 3439 3440
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3441
	 */
3442 3443
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3444

3445 3446 3447 3448
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3449 3450 3451
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3452 3453
	}

3454
	return false;
3455 3456
}

3457
/*
3458 3459
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3460 3461
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3462 3463
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3464
 */
3465
static bool kswapd_shrink_node(pg_data_t *pgdat,
3466
			       struct scan_control *sc)
3467
{
3468 3469
	struct zone *zone;
	int z;
3470

3471 3472
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3473
	for (z = 0; z <= sc->reclaim_idx; z++) {
3474
		zone = pgdat->node_zones + z;
3475
		if (!managed_zone(zone))
3476
			continue;
3477

3478 3479
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3480 3481

	/*
3482 3483
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3484
	 */
3485
	shrink_node(pgdat, sc);
3486

3487
	/*
3488 3489 3490 3491 3492
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3493
	 */
3494
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3495
		sc->order = 0;
3496

3497
	return sc->nr_scanned >= sc->nr_to_reclaim;
3498 3499
}

L
Linus Torvalds 已提交
3500
/*
3501 3502 3503
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3504
 *
3505
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3506 3507
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3508
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3509 3510 3511
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3512
 */
3513
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3514 3515
{
	int i;
3516 3517
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3518
	unsigned long pflags;
3519
	struct zone *zone;
3520 3521
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3522
		.order = order,
3523
		.priority = DEF_PRIORITY,
3524
		.may_writepage = !laptop_mode,
3525
		.may_unmap = 1,
3526
		.may_swap = 1,
3527
	};
3528

3529
	psi_memstall_enter(&pflags);
3530 3531
	__fs_reclaim_acquire();

3532
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3533

3534
	do {
3535
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3536
		bool raise_priority = true;
3537
		bool ret;
3538

3539
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3540

3541
		/*
3542 3543 3544 3545 3546 3547 3548 3549
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3550 3551 3552 3553
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3554
				if (!managed_zone(zone))
3555
					continue;
3556

3557
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3558
				break;
L
Linus Torvalds 已提交
3559 3560
			}
		}
3561

3562
		/*
3563 3564 3565
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3566
		 */
3567 3568
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3569

3570 3571 3572 3573 3574 3575
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3576
		age_active_anon(pgdat, &sc);
3577

3578 3579 3580 3581
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3582
		if (sc.priority < DEF_PRIORITY - 2)
3583 3584
			sc.may_writepage = 1;

3585 3586 3587
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3588
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3589 3590 3591
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3592
		/*
3593 3594 3595
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3596
		 */
3597
		if (kswapd_shrink_node(pgdat, &sc))
3598
			raise_priority = false;
3599 3600 3601 3602 3603 3604 3605

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3606
				allow_direct_reclaim(pgdat))
3607
			wake_up_all(&pgdat->pfmemalloc_wait);
3608

3609
		/* Check if kswapd should be suspending */
3610 3611 3612 3613
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3614
			break;
3615

3616
		/*
3617 3618
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3619
		 */
3620 3621
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3622
			sc.priority--;
3623
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3624

3625 3626 3627
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3628
out:
3629
	snapshot_refaults(NULL, pgdat);
3630
	__fs_reclaim_release();
3631
	psi_memstall_leave(&pflags);
3632
	/*
3633 3634 3635 3636
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3637
	 */
3638
	return sc.order;
L
Linus Torvalds 已提交
3639 3640
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3657 3658
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3659 3660 3661 3662 3663 3664 3665 3666 3667
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3668 3669 3670 3671 3672 3673 3674
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3675
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3688
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3689

3690
		remaining = schedule_timeout(HZ/10);
3691 3692 3693 3694 3695 3696 3697

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3698
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3699 3700 3701
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3702 3703 3704 3705 3706 3707 3708 3709
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3710 3711
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3723 3724 3725 3726

		if (!kthread_should_stop())
			schedule();

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3737 3738
/*
 * The background pageout daemon, started as a kernel thread
3739
 * from the init process.
L
Linus Torvalds 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3752 3753
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3754 3755
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3756

L
Linus Torvalds 已提交
3757 3758 3759
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3760
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3761

R
Rusty Russell 已提交
3762
	if (!cpumask_empty(cpumask))
3763
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3778
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3779
	set_freezable();
L
Linus Torvalds 已提交
3780

3781 3782
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3783
	for ( ; ; ) {
3784
		bool ret;
3785

3786 3787 3788
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3789 3790 3791
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3792

3793 3794
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3795
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3796
		pgdat->kswapd_order = 0;
3797
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3798

3799 3800 3801 3802 3803 3804 3805 3806
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3818 3819
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3820 3821 3822
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3823
	}
3824

3825
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3826
	current->reclaim_state = NULL;
3827

L
Linus Torvalds 已提交
3828 3829 3830 3831
	return 0;
}

/*
3832 3833 3834 3835 3836
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3837
 */
3838 3839
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3840 3841 3842
{
	pg_data_t *pgdat;

3843
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3844 3845
		return;

3846
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3847
		return;
3848
	pgdat = zone->zone_pgdat;
3849 3850
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3851
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3852
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3853
		return;
3854

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3867
		return;
3868
	}
3869

3870 3871
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3872
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3873 3874
}

3875
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3876
/*
3877
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3878 3879 3880 3881 3882
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3883
 */
3884
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3885
{
3886 3887
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3888
		.nr_to_reclaim = nr_to_reclaim,
3889
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3890
		.reclaim_idx = MAX_NR_ZONES - 1,
3891
		.priority = DEF_PRIORITY,
3892
		.may_writepage = 1,
3893 3894
		.may_unmap = 1,
		.may_swap = 1,
3895
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3896
	};
3897
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3898 3899
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3900
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3901

3902
	fs_reclaim_acquire(sc.gfp_mask);
3903
	noreclaim_flag = memalloc_noreclaim_save();
3904 3905
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3906

3907
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3908

3909
	p->reclaim_state = NULL;
3910
	memalloc_noreclaim_restore(noreclaim_flag);
3911
	fs_reclaim_release(sc.gfp_mask);
3912

3913
	return nr_reclaimed;
L
Linus Torvalds 已提交
3914
}
3915
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3921
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3922
{
3923
	int nid;
L
Linus Torvalds 已提交
3924

3925 3926 3927
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3928

3929
		mask = cpumask_of_node(pgdat->node_id);
3930

3931 3932 3933
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3934
	}
3935
	return 0;
L
Linus Torvalds 已提交
3936 3937
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3953
		BUG_ON(system_state < SYSTEM_RUNNING);
3954 3955
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3956
		pgdat->kswapd = NULL;
3957 3958 3959 3960
	}
	return ret;
}

3961
/*
3962
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3963
 * hold mem_hotplug_begin/end().
3964 3965 3966 3967 3968
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3969
	if (kswapd) {
3970
		kthread_stop(kswapd);
3971 3972
		NODE_DATA(nid)->kswapd = NULL;
	}
3973 3974
}

L
Linus Torvalds 已提交
3975 3976
static int __init kswapd_init(void)
{
3977
	int nid, ret;
3978

L
Linus Torvalds 已提交
3979
	swap_setup();
3980
	for_each_node_state(nid, N_MEMORY)
3981
 		kswapd_run(nid);
3982 3983 3984 3985
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3986 3987 3988 3989
	return 0;
}

module_init(kswapd_init)
3990 3991 3992

#ifdef CONFIG_NUMA
/*
3993
 * Node reclaim mode
3994
 *
3995
 * If non-zero call node_reclaim when the number of free pages falls below
3996 3997
 * the watermarks.
 */
3998
int node_reclaim_mode __read_mostly;
3999

4000
#define RECLAIM_OFF 0
4001
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4002
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4003
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4004

4005
/*
4006
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4007 4008 4009
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4010
#define NODE_RECLAIM_PRIORITY 4
4011

4012
/*
4013
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4014 4015 4016 4017
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4018 4019 4020 4021 4022 4023
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4024
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4025
{
4026 4027 4028
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4039
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4040
{
4041 4042
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4043 4044

	/*
4045
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4046
	 * potentially reclaimable. Otherwise, we have to worry about
4047
	 * pages like swapcache and node_unmapped_file_pages() provides
4048 4049
	 * a better estimate
	 */
4050 4051
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4052
	else
4053
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4054 4055

	/* If we can't clean pages, remove dirty pages from consideration */
4056 4057
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4058 4059 4060 4061 4062 4063 4064 4065

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4066
/*
4067
 * Try to free up some pages from this node through reclaim.
4068
 */
4069
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4070
{
4071
	/* Minimum pages needed in order to stay on node */
4072
	const unsigned long nr_pages = 1 << order;
4073 4074
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4075
	unsigned int noreclaim_flag;
4076
	struct scan_control sc = {
4077
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4078
		.gfp_mask = current_gfp_context(gfp_mask),
4079
		.order = order,
4080 4081 4082
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4083
		.may_swap = 1,
4084
		.reclaim_idx = gfp_zone(gfp_mask),
4085
	};
4086 4087

	cond_resched();
4088
	fs_reclaim_acquire(sc.gfp_mask);
4089
	/*
4090
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4091
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4092
	 * and RECLAIM_UNMAP.
4093
	 */
4094 4095
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4096 4097
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4098

4099
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4100
		/*
4101
		 * Free memory by calling shrink node with increasing
4102 4103 4104
		 * priorities until we have enough memory freed.
		 */
		do {
4105
			shrink_node(pgdat, &sc);
4106
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4107
	}
4108

4109
	p->reclaim_state = NULL;
4110 4111
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4112
	fs_reclaim_release(sc.gfp_mask);
4113
	return sc.nr_reclaimed >= nr_pages;
4114
}
4115

4116
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4117
{
4118
	int ret;
4119 4120

	/*
4121
	 * Node reclaim reclaims unmapped file backed pages and
4122
	 * slab pages if we are over the defined limits.
4123
	 *
4124 4125
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4126 4127
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4128
	 * unmapped file backed pages.
4129
	 */
4130
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4131
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4132
		return NODE_RECLAIM_FULL;
4133 4134

	/*
4135
	 * Do not scan if the allocation should not be delayed.
4136
	 */
4137
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4138
		return NODE_RECLAIM_NOSCAN;
4139 4140

	/*
4141
	 * Only run node reclaim on the local node or on nodes that do not
4142 4143 4144 4145
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4146 4147
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4148

4149 4150
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4151

4152 4153
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4154

4155 4156 4157
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4158
	return ret;
4159
}
4160
#endif
L
Lee Schermerhorn 已提交
4161 4162 4163 4164 4165 4166

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4167
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4168 4169
 *
 * Reasons page might not be evictable:
4170
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4171
 * (2) page is part of an mlocked VMA
4172
 *
L
Lee Schermerhorn 已提交
4173
 */
4174
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4175
{
4176 4177 4178 4179 4180 4181 4182
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4183
}
4184

4185
#ifdef CONFIG_SHMEM
4186
/**
4187 4188 4189
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4190
 *
4191
 * Checks pages for evictability and moves them to the appropriate lru list.
4192 4193
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4194
 */
4195
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4196
{
4197
	struct lruvec *lruvec;
4198
	struct pglist_data *pgdat = NULL;
4199 4200 4201
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4202

4203 4204
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4205
		struct pglist_data *pagepgdat = page_pgdat(page);
4206

4207
		pgscanned++;
4208 4209 4210 4211 4212
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4213
		}
4214
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4215

4216 4217
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4218

4219
		if (page_evictable(page)) {
4220 4221
			enum lru_list lru = page_lru_base_type(page);

4222
			VM_BUG_ON_PAGE(PageActive(page), page);
4223
			ClearPageUnevictable(page);
4224 4225
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4226
			pgrescued++;
4227
		}
4228
	}
4229

4230
	if (pgdat) {
4231 4232
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4233
		spin_unlock_irq(&pgdat->lru_lock);
4234 4235
	}
}
4236
#endif /* CONFIG_SHMEM */