1. 21 1月, 2016 9 次提交
  2. 16 1月, 2016 6 次提交
  3. 15 1月, 2016 12 次提交
  4. 30 12月, 2015 1 次提交
    • V
      mm: memcontrol: fix possible memcg leak due to interrupted reclaim · 6df38689
      Vladimir Davydov 提交于
      Memory cgroup reclaim can be interrupted with mem_cgroup_iter_break()
      once enough pages have been reclaimed, in which case, in contrast to a
      full round-trip over a cgroup sub-tree, the current position stored in
      mem_cgroup_reclaim_iter of the target cgroup does not get invalidated
      and so is left holding the reference to the last scanned cgroup.  If the
      target cgroup does not get scanned again (we might have just reclaimed
      the last page or all processes might exit and free their memory
      voluntary), we will leak it, because there is nobody to put the
      reference held by the iterator.
      
      The problem is easy to reproduce by running the following command
      sequence in a loop:
      
          mkdir /sys/fs/cgroup/memory/test
          echo 100M > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
          echo $$ > /sys/fs/cgroup/memory/test/cgroup.procs
          memhog 150M
          echo $$ > /sys/fs/cgroup/memory/cgroup.procs
          rmdir test
      
      The cgroups generated by it will never get freed.
      
      This patch fixes this issue by making mem_cgroup_iter avoid taking
      reference to the current position.  In order not to hit use-after-free
      bug while running reclaim in parallel with cgroup deletion, we make use
      of ->css_released cgroup callback to clear references to the dying
      cgroup in all reclaim iterators that might refer to it.  This callback
      is called right before scheduling rcu work which will free css, so if we
      access iter->position from rcu read section, we might be sure it won't
      go away under us.
      
      [hannes@cmpxchg.org: clean up css ref handling]
      Fixes: 5ac8fb31 ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
      Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com>
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@kernel.org>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: <stable@vger.kernel.org>	[3.19+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6df38689
  5. 28 12月, 2015 1 次提交
    • R
      cgroup: Fix uninitialized variable warning · eed67d75
      Ross Zwisler 提交于
      Commit 1f7dd3e5 ("cgroup: fix handling of multi-destination migration
      from subtree_control enabling") introduced the following compiler warning:
      
      mm/memcontrol.c: In function ‘mem_cgroup_can_attach’:
      mm/memcontrol.c:4790:9: warning: ‘memcg’ may be used uninitialized in this function [-Wmaybe-uninitialized]
         mc.to = memcg;
               ^
      
      Fix this by initializing 'memcg' to NULL.
      
      This was found using gcc (GCC) 4.9.2 20150212 (Red Hat 4.9.2-6).
      Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      eed67d75
  6. 13 12月, 2015 2 次提交
  7. 03 12月, 2015 1 次提交
    • T
      cgroup: fix handling of multi-destination migration from subtree_control enabling · 1f7dd3e5
      Tejun Heo 提交于
      Consider the following v2 hierarchy.
      
        P0 (+memory) --- P1 (-memory) --- A
                                       \- B
             
      P0 has memory enabled in its subtree_control while P1 doesn't.  If
      both A and B contain processes, they would belong to the memory css of
      P1.  Now if memory is enabled on P1's subtree_control, memory csses
      should be created on both A and B and A's processes should be moved to
      the former and B's processes the latter.  IOW, enabling controllers
      can cause atomic migrations into different csses.
      
      The core cgroup migration logic has been updated accordingly but the
      controller migration methods haven't and still assume that all tasks
      migrate to a single target css; furthermore, the methods were fed the
      css in which subtree_control was updated which is the parent of the
      target csses.  pids controller depends on the migration methods to
      move charges and this made the controller attribute charges to the
      wrong csses often triggering the following warning by driving a
      counter negative.
      
       WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
       Modules linked in:
       CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
       ...
        ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
        ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
        ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
       Call Trace:
        [<ffffffff81551ffc>] dump_stack+0x4e/0x82
        [<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
        [<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
        [<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
        [<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
        [<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
        [<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
        [<ffffffff81189016>] cgroup_attach_task+0x176/0x200
        [<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
        [<ffffffff81189684>] cgroup_procs_write+0x14/0x20
        [<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
        [<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
        [<ffffffff81265f88>] __vfs_write+0x28/0xe0
        [<ffffffff812666fc>] vfs_write+0xac/0x1a0
        [<ffffffff81267019>] SyS_write+0x49/0xb0
        [<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
      
      This patch fixes the bug by removing @css parameter from the three
      migration methods, ->can_attach, ->cancel_attach() and ->attach() and
      updating cgroup_taskset iteration helpers also return the destination
      css in addition to the task being migrated.  All controllers are
      updated accordingly.
      
      * Controllers which don't care whether there are one or multiple
        target csses can be converted trivially.  cpu, io, freezer, perf,
        netclassid and netprio fall in this category.
      
      * cpuset's current implementation assumes that there's single source
        and destination and thus doesn't support v2 hierarchy already.  The
        only change made by this patchset is how that single destination css
        is obtained.
      
      * memory migration path already doesn't do anything on v2.  How the
        single destination css is obtained is updated and the prep stage of
        mem_cgroup_can_attach() is reordered to accomodate the change.
      
      * pids is the only controller which was affected by this bug.  It now
        correctly handles multi-destination migrations and no longer causes
        counter underflow from incorrect accounting.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reported-and-tested-by: NDaniel Wagner <daniel.wagner@bmw-carit.de>
      Cc: Aleksa Sarai <cyphar@cyphar.com>
      1f7dd3e5
  8. 07 11月, 2015 3 次提交
    • A
      mm/memcontrol.c: uninline mem_cgroup_usage · 6f646156
      Andrew Morton 提交于
      gcc version 5.2.1 20151010 (Debian 5.2.1-22)
      $ size mm/memcontrol.o mm/memcontrol.o.before
         text    data     bss     dec     hex filename
        35535    7908      64   43507    a9f3 mm/memcontrol.o
        35762    7908      64   43734    aad6 mm/memcontrol.o.before
      
      Cc: Michal Hocko <mhocko@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6f646156
    • M
      mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM · 71baba4b
      Mel Gorman 提交于
      __GFP_WAIT was used to signal that the caller was in atomic context and
      could not sleep.  Now it is possible to distinguish between true atomic
      context and callers that are not willing to sleep.  The latter should
      clear __GFP_DIRECT_RECLAIM so kswapd will still wake.  As clearing
      __GFP_WAIT behaves differently, there is a risk that people will clear the
      wrong flags.  This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
      indicate what it does -- setting it allows all reclaim activity, clearing
      them prevents it.
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71baba4b
    • M
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep... · d0164adc
      Mel Gorman 提交于
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
      
      __GFP_WAIT has been used to identify atomic context in callers that hold
      spinlocks or are in interrupts.  They are expected to be high priority and
      have access one of two watermarks lower than "min" which can be referred
      to as the "atomic reserve".  __GFP_HIGH users get access to the first
      lower watermark and can be called the "high priority reserve".
      
      Over time, callers had a requirement to not block when fallback options
      were available.  Some have abused __GFP_WAIT leading to a situation where
      an optimisitic allocation with a fallback option can access atomic
      reserves.
      
      This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
      cannot sleep and have no alternative.  High priority users continue to use
      __GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
      are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
      callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
      redefined as a caller that is willing to enter direct reclaim and wake
      kswapd for background reclaim.
      
      This patch then converts a number of sites
      
      o __GFP_ATOMIC is used by callers that are high priority and have memory
        pools for those requests. GFP_ATOMIC uses this flag.
      
      o Callers that have a limited mempool to guarantee forward progress clear
        __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
        into this category where kswapd will still be woken but atomic reserves
        are not used as there is a one-entry mempool to guarantee progress.
      
      o Callers that are checking if they are non-blocking should use the
        helper gfpflags_allow_blocking() where possible. This is because
        checking for __GFP_WAIT as was done historically now can trigger false
        positives. Some exceptions like dm-crypt.c exist where the code intent
        is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
        flag manipulations.
      
      o Callers that built their own GFP flags instead of starting with GFP_KERNEL
        and friends now also need to specify __GFP_KSWAPD_RECLAIM.
      
      The first key hazard to watch out for is callers that removed __GFP_WAIT
      and was depending on access to atomic reserves for inconspicuous reasons.
      In some cases it may be appropriate for them to use __GFP_HIGH.
      
      The second key hazard is callers that assembled their own combination of
      GFP flags instead of starting with something like GFP_KERNEL.  They may
      now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
      if it's missed in most cases as other activity will wake kswapd.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d0164adc
  9. 06 11月, 2015 5 次提交