backref.c 59.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 */

6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9 10 11
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
12 13 14
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
15
#include "locking.h"
16

17 18 19
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

20 21 22 23 24 25
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

26 27 28 29
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
30 31
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
32
{
33
	u64 offset = 0;
34 35
	struct extent_inode_elem *e;

36 37
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
38 39 40 41
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
42

43 44 45 46 47 48 49 50
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
51 52 53 54 55 56 57

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
58
	e->offset = key->offset + offset;
59 60 61 62 63
	*eie = e;

	return 0;
}

64 65 66 67 68 69 70 71 72 73
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

74 75
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
76 77
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

106
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 108 109 110 111 112 113
		if (ret < 0)
			return ret;
	}

	return 0;
}

114
struct preftree {
L
Liu Bo 已提交
115
	struct rb_root_cached root;
116
	unsigned int count;
117 118
};

L
Liu Bo 已提交
119
#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
120 121 122 123 124 125 126

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

146 147 148 149 150
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151
					sizeof(struct prelim_ref),
152
					0,
153
					SLAB_MEM_SPREAD,
154 155 156 157 158 159
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

160
void __cold btrfs_prelim_ref_exit(void)
161
{
162
	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

206 207
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
208 209 210 211 212 213 214 215 216 217
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

218 219 220
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
221
 * Callers should assume that newref has been freed after calling.
222
 */
223 224
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
225 226
			      struct prelim_ref *newref,
			      struct share_check *sc)
227
{
L
Liu Bo 已提交
228
	struct rb_root_cached *root;
229 230 231 232
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;
L
Liu Bo 已提交
233
	bool leftmost = true;
234 235

	root = &preftree->root;
L
Liu Bo 已提交
236
	p = &root->rb_root.rb_node;
237 238 239 240 241 242 243 244 245

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
L
Liu Bo 已提交
246
			leftmost = false;
247 248 249 250 251 252 253 254 255 256 257
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
258 259
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
260 261 262 263 264 265 266
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
267 268 269 270 271 272
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

273
	update_share_count(sc, 0, newref->count);
274
	preftree->count++;
275
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276
	rb_link_node(&newref->rbnode, parent, p);
L
Liu Bo 已提交
277
	rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 279 280 281 282 283 284 285 286 287
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

L
Liu Bo 已提交
288 289
	rbtree_postorder_for_each_entry_safe(ref, next_ref,
					     &preftree->root.rb_root, rbnode)
290 291
		free_pref(ref);

L
Liu Bo 已提交
292
	preftree->root = RB_ROOT_CACHED;
293
	preftree->count = 0;
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
328
 *                (see add_missing_keys)
329 330 331 332 333
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
334 335
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
336
			  const struct btrfs_key *key, int level, u64 parent,
337 338
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
339
{
340
	struct prelim_ref *ref;
341

342 343 344
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

345
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 347 348 349
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
350
	if (key) {
351
		ref->key_for_search = *key;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
375
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
376
	}
377

378
	ref->inode_list = NULL;
379 380 381 382
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
383 384
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
385 386
}

387
/* direct refs use root == 0, key == NULL */
388 389
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
390 391
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
392
{
393
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
394
			      parent, wanted_disk_byte, count, sc, gfp_mask);
395 396 397
}

/* indirect refs use parent == 0 */
398 399
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
400
			    const struct btrfs_key *key, int level,
401 402
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
403 404 405 406 407
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
408
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
409
			      wanted_disk_byte, count, sc, gfp_mask);
410 411
}

412
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
413
			   struct ulist *parents, struct prelim_ref *ref,
414
			   int level, u64 time_seq, const u64 *extent_item_pos,
415
			   u64 total_refs, bool ignore_offset)
416
{
417 418 419 420
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
421
	struct btrfs_key *key_for_search = &ref->key_for_search;
422
	struct btrfs_file_extent_item *fi;
423
	struct extent_inode_elem *eie = NULL, *old = NULL;
424
	u64 disk_byte;
425 426
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
427

428 429 430
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
431 432
		if (ret < 0)
			return ret;
433
		return 0;
434
	}
435 436

	/*
437 438 439
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
440
	 */
441
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
442
		if (time_seq == SEQ_LAST)
443 444 445 446
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
447

448
	while (!ret && count < total_refs) {
449
		eb = path->nodes[0];
450 451 452 453 454 455 456 457 458 459 460 461 462
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
463
			old = NULL;
464
			count++;
465 466 467
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
468
						&eie, ignore_offset);
469 470 471
				if (ret < 0)
					break;
			}
472 473
			if (ret > 0)
				goto next;
474 475
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
476 477 478 479 480 481
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
482
			}
483
			eie = NULL;
484
		}
485
next:
486
		if (time_seq == SEQ_LAST)
487 488 489
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
490 491
	}

492 493
	if (ret > 0)
		ret = 0;
494 495
	else if (ret < 0)
		free_inode_elem_list(eie);
496
	return ret;
497 498 499 500 501 502
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
503 504 505
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
506 507
				const u64 *extent_item_pos, u64 total_refs,
				bool ignore_offset)
508 509 510 511 512 513 514
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
515
	int index;
516 517 518 519

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
520 521 522

	index = srcu_read_lock(&fs_info->subvol_srcu);

523
	root = btrfs_get_fs_root(fs_info, &root_key, false);
524
	if (IS_ERR(root)) {
525
		srcu_read_unlock(&fs_info->subvol_srcu, index);
526 527 528 529
		ret = PTR_ERR(root);
		goto out;
	}

530
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
531 532 533 534 535
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

536 537
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
538
	else if (time_seq == SEQ_LAST)
539
		root_level = btrfs_header_level(root->node);
540 541
	else
		root_level = btrfs_old_root_level(root, time_seq);
542

543 544
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
545
		goto out;
546
	}
547 548

	path->lowest_level = level;
549
	if (time_seq == SEQ_LAST)
550 551 552 553 554
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
555 556 557 558

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

559 560
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
561 562 563
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
564 565 566 567
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
568
	while (!eb) {
569
		if (WARN_ON(!level)) {
570 571 572 573 574
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
575 576
	}

577
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
578
			      extent_item_pos, total_refs, ignore_offset);
579
out:
580 581
	path->lowest_level = 0;
	btrfs_release_path(path);
582 583 584
	return ret;
}

585 586 587 588 589 590 591 592
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

593
/*
594
 * We maintain three separate rbtrees: one for direct refs, one for
595 596 597 598 599 600 601 602 603 604 605 606 607
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
608
 */
609 610
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
611
				 struct preftrees *preftrees,
612
				 const u64 *extent_item_pos, u64 total_refs,
613
				 struct share_check *sc, bool ignore_offset)
614 615 616 617 618
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
619
	struct ulist_iterator uiter;
620
	struct rb_node *rnode;
621 622 623 624 625 626

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
627 628 629 630
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
631
	 */
L
Liu Bo 已提交
632
	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
633 634 635 636 637 638 639 640 641
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

L
Liu Bo 已提交
642
		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
643
		preftrees->indirect.count--;
644 645 646

		if (ref->count == 0) {
			free_pref(ref);
647
			continue;
648 649
		}

650 651
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
652
			free_pref(ref);
653 654 655
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
656 657
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
658
					   total_refs, ignore_offset);
659 660 661 662 663
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
664 665
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
666
			continue;
667
		} else if (err) {
668
			free_pref(ref);
669 670 671
			ret = err;
			goto out;
		}
672 673

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
674 675
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
676
		ref->parent = node ? node->val : 0;
677
		ref->inode_list = unode_aux_to_inode_list(node);
678

679
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
680
		while ((node = ulist_next(parents, &uiter))) {
681 682
			struct prelim_ref *new_ref;

683 684
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
685
			if (!new_ref) {
686
				free_pref(ref);
687
				ret = -ENOMEM;
688
				goto out;
689 690 691
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
692
			new_ref->inode_list = unode_aux_to_inode_list(node);
693 694
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
695
		}
696

697
		/*
698
		 * Now it's a direct ref, put it in the direct tree. We must
699 700 701
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
702

703
		ulist_reinit(parents);
704
		cond_resched();
705
	}
706
out:
707 708 709 710
	ulist_free(parents);
	return ret;
}

711 712 713
/*
 * read tree blocks and add keys where required.
 */
714
static int add_missing_keys(struct btrfs_fs_info *fs_info,
715
			    struct preftrees *preftrees)
716
{
717
	struct prelim_ref *ref;
718
	struct extent_buffer *eb;
719 720
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
721

L
Liu Bo 已提交
722
	while ((node = rb_first_cached(&tree->root))) {
723
		ref = rb_entry(node, struct prelim_ref, rbnode);
L
Liu Bo 已提交
724
		rb_erase_cached(node, &tree->root);
725 726 727

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
728
		BUG_ON(!ref->wanted_disk_byte);
729

730 731
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
				     ref->level - 1, NULL);
732
		if (IS_ERR(eb)) {
733
			free_pref(ref);
734 735
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
736
			free_pref(ref);
737 738 739
			free_extent_buffer(eb);
			return -EIO;
		}
740 741 742 743 744 745 746
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
747
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
748
		cond_resched();
749 750 751 752
	}
	return 0;
}

753 754 755 756
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
757 758
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
759
			    struct preftrees *preftrees, u64 *total_refs,
760
			    struct share_check *sc)
761
{
762
	struct btrfs_delayed_ref_node *node;
763
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
764
	struct btrfs_key key;
765
	struct btrfs_key tmp_op_key;
766
	struct rb_node *n;
767
	int count;
768
	int ret = 0;
769

770
	if (extent_op && extent_op->update_key)
771
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
772

773
	spin_lock(&head->lock);
774
	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
775 776
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
777 778 779 780 781 782 783 784 785
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
786
			count = node->ref_mod;
787 788
			break;
		case BTRFS_DROP_DELAYED_REF:
789
			count = node->ref_mod * -1;
790 791 792 793
			break;
		default:
			BUG_ON(1);
		}
794
		*total_refs += count;
795 796
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
797
			/* NORMAL INDIRECT METADATA backref */
798 799 800
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
801 802
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
803 804
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
805 806 807
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
808
			/* SHARED DIRECT METADATA backref */
809 810 811
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
812

813 814
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
815
					     sc, GFP_ATOMIC);
816 817 818
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
819
			/* NORMAL INDIRECT DATA backref */
820 821 822 823 824 825
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
826 827 828 829 830

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
831
			if (sc && sc->inum && ref->objectid != sc->inum) {
832
				ret = BACKREF_FOUND_SHARED;
833
				goto out;
834 835
			}

836
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
837 838
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
839 840 841
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
842
			/* SHARED DIRECT FULL backref */
843 844 845
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
846

847 848 849
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
850 851 852 853 854
			break;
		}
		default:
			WARN_ON(1);
		}
855 856 857 858 859
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
860
			break;
861
	}
862 863 864
	if (!ret)
		ret = extent_is_shared(sc);
out:
865 866
	spin_unlock(&head->lock);
	return ret;
867 868 869 870
}

/*
 * add all inline backrefs for bytenr to the list
871 872
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
873
 */
874 875
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
876
			   int *info_level, struct preftrees *preftrees,
877
			   u64 *total_refs, struct share_check *sc)
878
{
879
	int ret = 0;
880 881 882
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
883
	struct btrfs_key found_key;
884 885 886 887 888 889 890 891 892 893
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
894
	slot = path->slots[0];
895 896 897 898 899 900

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
901
	*total_refs += btrfs_extent_refs(leaf, ei);
902
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
903 904 905 906

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

907 908
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
909 910 911 912 913 914
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
915 916
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
917 918 919 920 921 922 923 924 925 926
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
927 928 929
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
930
			return -EUCLEAN;
931

932 933 934 935
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
936 937
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
938
					     bytenr, 1, NULL, GFP_NOFS);
939 940 941 942 943 944 945
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
946

947
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
948
					     bytenr, count, sc, GFP_NOFS);
949 950 951
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
952 953
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
954
					       bytenr, 1, NULL, GFP_NOFS);
955 956 957 958 959 960 961 962 963 964 965 966
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
967

968
			if (sc && sc->inum && key.objectid != sc->inum) {
969 970 971 972
				ret = BACKREF_FOUND_SHARED;
				break;
			}

973
			root = btrfs_extent_data_ref_root(leaf, dref);
974

975 976
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
977
					       sc, GFP_NOFS);
978 979 980 981 982
			break;
		}
		default:
			WARN_ON(1);
		}
983 984
		if (ret)
			return ret;
985 986 987 988 989 990 991 992
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
993 994
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
995
 */
996 997
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
998
			  int info_level, struct preftrees *preftrees,
999
			  struct share_check *sc)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1029
			/* SHARED DIRECT METADATA backref */
1030 1031
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1032
					     bytenr, 1, NULL, GFP_NOFS);
1033 1034
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1035
			/* SHARED DIRECT FULL backref */
1036 1037 1038 1039 1040 1041
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1042 1043
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1044
					     sc, GFP_NOFS);
1045 1046 1047
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1048
			/* NORMAL INDIRECT METADATA backref */
1049 1050
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1051
					       1, NULL, GFP_NOFS);
1052 1053
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1054
			/* NORMAL INDIRECT DATA backref */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1066

1067
			if (sc && sc->inum && key.objectid != sc->inum) {
1068 1069 1070 1071
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1072
			root = btrfs_extent_data_ref_root(leaf, dref);
1073 1074
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1075
					       sc, GFP_NOFS);
1076 1077 1078 1079 1080
			break;
		}
		default:
			WARN_ON(1);
		}
1081 1082 1083
		if (ret)
			return ret;

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1095
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1096 1097 1098 1099
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1100 1101 1102 1103 1104
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1105 1106 1107 1108
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1109 1110 1111 1112
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1113
			     u64 time_seq, struct ulist *refs,
1114
			     struct ulist *roots, const u64 *extent_item_pos,
1115
			     struct share_check *sc, bool ignore_offset)
1116 1117 1118 1119
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1120
	struct btrfs_delayed_ref_head *head;
1121 1122
	int info_level = 0;
	int ret;
1123
	struct prelim_ref *ref;
1124
	struct rb_node *node;
1125
	struct extent_inode_elem *eie = NULL;
1126
	/* total of both direct AND indirect refs! */
1127
	u64 total_refs = 0;
1128 1129 1130 1131 1132
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1133 1134 1135

	key.objectid = bytenr;
	key.offset = (u64)-1;
1136 1137 1138 1139
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1140 1141 1142 1143

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1144
	if (!trans) {
1145
		path->search_commit_root = 1;
1146 1147
		path->skip_locking = 1;
	}
1148

1149
	if (time_seq == SEQ_LAST)
1150 1151
		path->skip_locking = 1;

1152 1153 1154 1155 1156 1157
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1158 1159
	head = NULL;

1160 1161 1162 1163 1164
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1165
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1166
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1167
	    time_seq != SEQ_LAST) {
1168
#else
1169
	if (trans && time_seq != SEQ_LAST) {
1170
#endif
1171 1172 1173 1174 1175 1176
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1177
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1178 1179
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1180
				refcount_inc(&head->refs);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1191
				btrfs_put_delayed_ref_head(head);
1192 1193
				goto again;
			}
1194
			spin_unlock(&delayed_refs->lock);
1195
			ret = add_delayed_refs(fs_info, head, time_seq,
1196
					       &preftrees, &total_refs, sc);
1197
			mutex_unlock(&head->mutex);
1198
			if (ret)
1199
				goto out;
1200 1201
		} else {
			spin_unlock(&delayed_refs->lock);
1202
		}
1203 1204 1205 1206 1207 1208
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1209
		path->slots[0]--;
1210
		leaf = path->nodes[0];
1211
		slot = path->slots[0];
1212 1213
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1214 1215
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1216 1217
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
1218
					      &total_refs, sc);
1219 1220
			if (ret)
				goto out;
1221
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1222
					     &preftrees, sc);
1223 1224 1225 1226 1227
			if (ret)
				goto out;
		}
	}

1228
	btrfs_release_path(path);
1229

1230
	ret = add_missing_keys(fs_info, &preftrees);
1231 1232 1233
	if (ret)
		goto out;

L
Liu Bo 已提交
1234
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1235

1236
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1237
				    extent_item_pos, total_refs, sc, ignore_offset);
1238 1239 1240
	if (ret)
		goto out;

L
Liu Bo 已提交
1241
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1242

1243 1244 1245 1246 1247 1248 1249
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
L
Liu Bo 已提交
1250
	node = rb_first_cached(&preftrees.direct.root);
1251 1252 1253
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1264
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1265 1266
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1267 1268 1269 1270
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1271 1272
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1273 1274
			if (ret < 0)
				goto out;
1275 1276
		}
		if (ref->count && ref->parent) {
1277 1278
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1279
				struct extent_buffer *eb;
1280

1281 1282
				eb = read_tree_block(fs_info, ref->parent, 0,
						     ref->level, NULL);
1283 1284 1285 1286
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1287
					free_extent_buffer(eb);
1288 1289
					ret = -EIO;
					goto out;
1290
				}
1291 1292
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1293
				ret = find_extent_in_eb(eb, bytenr,
1294
							*extent_item_pos, &eie, ignore_offset);
1295
				btrfs_tree_read_unlock_blocking(eb);
1296
				free_extent_buffer(eb);
1297 1298 1299
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1300
			}
1301 1302 1303
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1304 1305
			if (ret < 0)
				goto out;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1316
			eie = NULL;
1317
		}
1318
		cond_resched();
1319 1320 1321 1322
	}

out:
	btrfs_free_path(path);
1323 1324 1325 1326 1327

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1328 1329
	if (ret < 0)
		free_inode_elem_list(eie);
1330 1331 1332
	return ret;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1343
		eie = unode_aux_to_inode_list(node);
1344
		free_inode_elem_list(eie);
1345 1346 1347 1348 1349 1350
		node->aux = 0;
	}

	ulist_free(blocks);
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1361
				u64 time_seq, struct ulist **leafs,
1362
				const u64 *extent_item_pos, bool ignore_offset)
1363 1364 1365 1366
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1367
	if (!*leafs)
1368 1369
		return -ENOMEM;

1370
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1371
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1372
	if (ret < 0 && ret != -ENOENT) {
1373
		free_leaf_list(*leafs);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1393 1394
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1395 1396
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1397 1398 1399
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1400
	struct ulist_iterator uiter;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1412
	ULIST_ITER_INIT(&uiter);
1413
	while (1) {
1414
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1415
					tmp, *roots, NULL, NULL, ignore_offset);
1416 1417 1418 1419 1420
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1421
		node = ulist_next(tmp, &uiter);
1422 1423 1424
		if (!node)
			break;
		bytenr = node->val;
1425
		cond_resched();
1426 1427 1428 1429 1430 1431
	}

	ulist_free(tmp);
	return 0;
}

1432 1433
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1434 1435
			 u64 time_seq, struct ulist **roots,
			 bool ignore_offset)
1436 1437 1438 1439 1440
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1441
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1442
					time_seq, roots, ignore_offset);
1443 1444 1445 1446 1447
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1457 1458 1459
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1460 1461
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1462
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1463
{
1464 1465
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1466 1467 1468 1469
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1470
	struct seq_list elem = SEQ_LIST_INIT(elem);
1471
	int ret = 0;
1472
	struct share_check shared = {
1473
		.root_objectid = root->root_key.objectid,
1474 1475 1476
		.inum = inum,
		.share_count = 0,
	};
1477 1478 1479 1480 1481 1482 1483 1484 1485

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1486 1487 1488
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1489
		down_read(&fs_info->commit_root_sem);
1490 1491 1492 1493
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1494 1495 1496
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1497
					roots, NULL, &shared, false);
1498
		if (ret == BACKREF_FOUND_SHARED) {
1499
			/* this is the only condition under which we return 1 */
1500 1501 1502 1503 1504
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1505
		ret = 0;
1506 1507 1508 1509
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1510
		shared.share_count = 0;
1511 1512
		cond_resched();
	}
1513 1514

	if (trans) {
1515
		btrfs_put_tree_mod_seq(fs_info, &elem);
1516 1517
		btrfs_end_transaction(trans);
	} else {
1518
		up_read(&fs_info->commit_root_sem);
1519
	}
1520 1521 1522 1523 1524
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1534
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1535 1536 1537
	unsigned long ptr;

	key.objectid = inode_objectid;
1538
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1578
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1607 1608 1609 1610
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1611 1612 1613 1614
{
	int slot;
	u64 next_inum;
	int ret;
1615
	s64 bytes_left = ((s64)size) - 1;
1616 1617
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1618
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1619
	struct btrfs_inode_ref *iref;
1620 1621 1622 1623

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1624
	path->leave_spinning = 1;
1625
	while (1) {
M
Mark Fasheh 已提交
1626
		bytes_left -= name_len;
1627 1628
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1629
					   name_off, name_len);
1630
		if (eb != eb_in) {
1631 1632
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1633
			free_extent_buffer(eb);
1634
		}
1635 1636
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1637 1638
		if (ret > 0)
			ret = -ENOENT;
1639 1640
		if (ret)
			break;
M
Mark Fasheh 已提交
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1651
		if (eb != eb_in) {
1652 1653 1654 1655
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1656
		}
1657 1658
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1659 1660 1661 1662

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1663 1664 1665 1666 1667 1668 1669
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1670
	path->leave_spinning = leave_spinning;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1684 1685
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1686 1687 1688
{
	int ret;
	u64 flags;
1689
	u64 size = 0;
1690
	u32 item_size;
1691
	const struct extent_buffer *eb;
1692 1693 1694
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1695 1696 1697 1698
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1699 1700 1701 1702 1703 1704 1705
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1706 1707 1708 1709 1710
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1711
	}
1712
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1713
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1714
		size = fs_info->nodesize;
1715 1716 1717
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1718
	if (found_key->objectid > logical ||
1719
	    found_key->objectid + size <= logical) {
1720 1721
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1722
		return -ENOENT;
J
Jan Schmidt 已提交
1723
	}
1724 1725 1726 1727 1728 1729 1730 1731

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1732 1733
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1734 1735
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1747 1748 1749 1750 1751 1752 1753 1754

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1755
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1756 1757 1758
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1759 1760 1761 1762 1763 1764 1765
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1766 1767 1768 1769 1770 1771 1772 1773 1774
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1785 1786 1787 1788
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1789
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1790 1791 1792 1793
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1794
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1795 1796 1797
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
1798
		return -EUCLEAN;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1811
 * call and may be modified (see get_extent_inline_ref comment).
1812 1813 1814 1815
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1816 1817
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1818 1819 1820 1821 1822 1823 1824 1825 1826
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1827
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1828
					      &eiref, &type);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1852 1853 1854 1855 1856 1857 1858

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1859 1860 1861 1862
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1863
{
1864
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1865 1866
	int ret = 0;

1867
	for (eie = inode_list; eie; eie = eie->next) {
1868 1869 1870 1871
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1872
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1873
		if (ret) {
1874 1875 1876
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1877 1878
			break;
		}
1879 1880 1881 1882 1883 1884 1885
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1886
 * the given parameters.
1887 1888 1889
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1890
				u64 extent_item_objectid, u64 extent_item_pos,
1891
				int search_commit_root,
1892 1893
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1894 1895
{
	int ret;
1896
	struct btrfs_trans_handle *trans = NULL;
1897 1898
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1899 1900
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1901
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1902 1903
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1904

1905
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1906
			extent_item_objectid);
1907

1908
	if (!search_commit_root) {
1909 1910 1911
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1912
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1913 1914
	} else {
		down_read(&fs_info->commit_root_sem);
1915
	}
1916

J
Jan Schmidt 已提交
1917
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1918
				   tree_mod_seq_elem.seq, &refs,
1919
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1920 1921
	if (ret)
		goto out;
1922

J
Jan Schmidt 已提交
1923 1924
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1925
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1926 1927
						tree_mod_seq_elem.seq, &roots,
						ignore_offset);
J
Jan Schmidt 已提交
1928 1929
		if (ret)
			break;
J
Jan Schmidt 已提交
1930 1931
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1932 1933 1934 1935 1936 1937
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1938 1939 1940 1941
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1942
		}
1943
		ulist_free(roots);
1944 1945
	}

1946
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1947
out:
1948
	if (!search_commit_root) {
1949
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1950
		btrfs_end_transaction(trans);
1951 1952
	} else {
		up_read(&fs_info->commit_root_sem);
1953 1954
	}

1955 1956 1957 1958 1959
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
1960 1961
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1962 1963
{
	int ret;
J
Jan Schmidt 已提交
1964
	u64 extent_item_pos;
1965
	u64 flags = 0;
1966
	struct btrfs_key found_key;
1967
	int search_commit_root = path->search_commit_root;
1968

1969
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1970
	btrfs_release_path(path);
1971 1972
	if (ret < 0)
		return ret;
1973
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1974
		return -EINVAL;
1975

J
Jan Schmidt 已提交
1976
	extent_item_pos = logical - found_key.objectid;
1977 1978
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
1979
					iterate, ctx, ignore_offset);
1980 1981 1982 1983

	return ret;
}

M
Mark Fasheh 已提交
1984 1985 1986 1987 1988 1989
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1990
{
1991
	int ret = 0;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2003
	while (!ret) {
2004 2005 2006 2007
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2018 2019 2020 2021 2022
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
2023 2024
		btrfs_release_path(path);

2025
		item = btrfs_item_nr(slot);
2026 2027 2028 2029 2030
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2031 2032
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
2033 2034
				cur, found_key.objectid,
				fs_root->root_key.objectid);
M
Mark Fasheh 已提交
2035 2036
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2037
			if (ret)
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2077 2078 2079 2080 2081
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
M
Mark Fasheh 已提交
2082 2083
		btrfs_release_path(path);

2084 2085
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2099
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			cur_offset += sizeof(*extref);
		}
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2132 2133 2134 2135
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2136 2137
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2149
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2150 2151
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2152 2153 2154 2155
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2156
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2171
 * from ipath->fspath->val[i].
2172
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2173
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2174
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2175 2176 2177 2178 2179 2180
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2181
			     inode_to_path, ipath);
2182 2183 2184 2185 2186 2187 2188 2189
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2190
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
2222
		return ERR_CAST(fspath);
2223

2224
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2225
	if (!ifp) {
2226
		kvfree(fspath);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2239 2240
	if (!ipath)
		return;
2241
	kvfree(ipath->fspath);
2242 2243
	kfree(ipath);
}