filter.c 184.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
29
#include <linux/sock_diag.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
34
#include <linux/if_arp.h>
35
#include <linux/gfp.h>
A
Andrey Ignatov 已提交
36
#include <net/inet_common.h>
L
Linus Torvalds 已提交
37 38
#include <net/ip.h>
#include <net/protocol.h>
39
#include <net/netlink.h>
L
Linus Torvalds 已提交
40 41
#include <linux/skbuff.h>
#include <net/sock.h>
42
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
43 44
#include <linux/errno.h>
#include <linux/timer.h>
45
#include <linux/uaccess.h>
46
#include <asm/unaligned.h>
47
#include <asm/cmpxchg.h>
L
Linus Torvalds 已提交
48
#include <linux/filter.h>
49
#include <linux/ratelimit.h>
50
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
51
#include <linux/if_vlan.h>
52
#include <linux/bpf.h>
53
#include <net/sch_generic.h>
54
#include <net/cls_cgroup.h>
55
#include <net/dst_metadata.h>
56
#include <net/dst.h>
57
#include <net/sock_reuseport.h>
58
#include <net/busy_poll.h>
59
#include <net/tcp.h>
60
#include <net/xfrm.h>
61
#include <linux/bpf_trace.h>
62
#include <net/xdp_sock.h>
63 64 65 66
#include <linux/inetdevice.h>
#include <net/ip_fib.h>
#include <net/flow.h>
#include <net/arp.h>
67 68 69 70
#include <net/ipv6.h>
#include <linux/seg6_local.h>
#include <net/seg6.h>
#include <net/seg6_local.h>
L
Linus Torvalds 已提交
71

S
Stephen Hemminger 已提交
72
/**
73
 *	sk_filter_trim_cap - run a packet through a socket filter
S
Stephen Hemminger 已提交
74 75
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
76
 *	@cap: limit on how short the eBPF program may trim the packet
S
Stephen Hemminger 已提交
77
 *
78 79
 * Run the eBPF program and then cut skb->data to correct size returned by
 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
80
 * than pkt_len we keep whole skb->data. This is the socket level
81
 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
S
Stephen Hemminger 已提交
82 83 84
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
85
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
S
Stephen Hemminger 已提交
86 87 88 89
{
	int err;
	struct sk_filter *filter;

90 91 92 93 94
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
95 96
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97
		return -ENOMEM;
98
	}
99 100 101 102
	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
	if (err)
		return err;

S
Stephen Hemminger 已提交
103 104 105 106
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

107 108
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
109
	if (filter) {
110 111 112 113 114 115
		struct sock *save_sk = skb->sk;
		unsigned int pkt_len;

		skb->sk = sk;
		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
		skb->sk = save_sk;
116
		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
S
Stephen Hemminger 已提交
117
	}
118
	rcu_read_unlock();
S
Stephen Hemminger 已提交
119 120 121

	return err;
}
122
EXPORT_SYMBOL(sk_filter_trim_cap);
S
Stephen Hemminger 已提交
123

124
BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125
{
126
	return skb_get_poff(skb);
127 128
}

129
BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 131 132 133 134 135
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

136 137 138
	if (skb->len < sizeof(struct nlattr))
		return 0;

139
	if (a > skb->len - sizeof(struct nlattr))
140 141
		return 0;

142
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 144 145 146 147 148
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

149
BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 151 152 153 154 155
{
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

156 157 158
	if (skb->len < sizeof(struct nlattr))
		return 0;

159
	if (a > skb->len - sizeof(struct nlattr))
160 161
		return 0;

162 163
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
164 165
		return 0;

166
	nla = nla_find_nested(nla, x);
167 168 169 170 171 172
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u8 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return *(u8 *)(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return tmp;
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return *(u8 *)ptr;
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
					 offset);
}

BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u16 tmp, *ptr;
	const int len = sizeof(tmp);

	if (offset >= 0) {
		if (headlen - offset >= len)
			return get_unaligned_be16(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be16_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be16(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
	   data, int, headlen, int, offset)
{
	u32 tmp, *ptr;
	const int len = sizeof(tmp);

	if (likely(offset >= 0)) {
		if (headlen - offset >= len)
			return get_unaligned_be32(data + offset);
		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
			return be32_to_cpu(tmp);
	} else {
		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
		if (likely(ptr))
			return get_unaligned_be32(ptr);
	}

	return -EFAULT;
}

BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
	   int, offset)
{
	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
					  offset);
}

254
BPF_CALL_0(bpf_get_raw_cpu_id)
255 256 257 258
{
	return raw_smp_processor_id();
}

259
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260
	.func		= bpf_get_raw_cpu_id,
261 262 263 264
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
};

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
311 312 313 314 315
	}

	return insn - insn_buf;
}

316
static bool convert_bpf_extensions(struct sock_filter *fp,
317
				   struct bpf_insn **insnp)
318
{
319
	struct bpf_insn *insn = *insnp;
320
	u32 cnt;
321 322 323

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 325 326 327 328 329 330
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 332 333
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 335
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
336 337 338 339 340 341
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342

343
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 345 346 347 348 349 350 351 352 353 354
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
355 356 357
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
358 359
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
360 361 362 363 364
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

365 366
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
367 368 369
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
370 371
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
372 373 374
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 376 377 378
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
379

380 381 382 383
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
384 385
		break;

386 387 388 389 390 391 392 393 394 395
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

396 397 398 399
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
400
	case SKF_AD_OFF + SKF_AD_RANDOM:
401
		/* arg1 = CTX */
402
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403
		/* arg2 = A */
404
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405
		/* arg3 = X */
406
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 409
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410
			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 412
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
413
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 415
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416
			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 418
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
419
			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420
			break;
C
Chema Gonzalez 已提交
421
		case SKF_AD_OFF + SKF_AD_RANDOM:
422 423
			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
			bpf_user_rnd_init_once();
C
Chema Gonzalez 已提交
424
			break;
425 426 427 428
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 430
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
{
	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
	bool endian = BPF_SIZE(fp->code) == BPF_H ||
		      BPF_SIZE(fp->code) == BPF_W;
	bool indirect = BPF_MODE(fp->code) == BPF_IND;
	const int ip_align = NET_IP_ALIGN;
	struct bpf_insn *insn = *insnp;
	int offset = fp->k;

	if (!indirect &&
	    ((unaligned_ok && offset >= 0) ||
	     (!unaligned_ok && offset >= 0 &&
	      offset + ip_align >= 0 &&
	      offset + ip_align % size == 0))) {
462 463
		bool ldx_off_ok = offset <= S16_MAX;

464 465
		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466 467 468 469 470 471 472 473 474 475 476
		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
				      size, 2 + endian + (!ldx_off_ok * 2));
		if (ldx_off_ok) {
			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
					      BPF_REG_D, offset);
		} else {
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
					      BPF_REG_TMP, 0);
		}
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		if (endian)
			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
		*insn++ = BPF_JMP_A(8);
	}

	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
		if (fp->k)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
	}

	switch (BPF_SIZE(fp->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
		break;
	default:
		return false;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
	*insn   = BPF_EXIT_INSN();

	*insnp = insn;
	return true;
}

515
/**
516
 *	bpf_convert_filter - convert filter program
517 518
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
519
 *	@new_prog: allocated 'struct bpf_prog' or NULL
520
 *	@new_len: pointer to store length of converted program
521
 *	@seen_ld_abs: bool whether we've seen ld_abs/ind
522
 *
523 524
 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 * style extended BPF (eBPF).
525 526 527
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
528
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529 530 531
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
532
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533
 */
534
static int bpf_convert_filter(struct sock_filter *prog, int len,
535 536
			      struct bpf_prog *new_prog, int *new_len,
			      bool *seen_ld_abs)
537
{
538 539
	int new_flen = 0, pass = 0, target, i, stack_off;
	struct bpf_insn *new_insn, *first_insn = NULL;
540 541 542 543 544
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546

547
	if (len <= 0 || len > BPF_MAXINSNS)
548 549 550
		return -EINVAL;

	if (new_prog) {
551
		first_insn = new_prog->insnsi;
552 553
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
554 555 556 557 558
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
559
	new_insn = first_insn;
560 561
	fp = prog;

562
	/* Classic BPF related prologue emission. */
563
	if (new_prog) {
564 565 566
		/* Classic BPF expects A and X to be reset first. These need
		 * to be guaranteed to be the first two instructions.
		 */
567 568
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569 570 571 572 573 574

		/* All programs must keep CTX in callee saved BPF_REG_CTX.
		 * In eBPF case it's done by the compiler, here we need to
		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
		 */
		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		if (*seen_ld_abs) {
			/* For packet access in classic BPF, cache skb->data
			 * in callee-saved BPF R8 and skb->len - skb->data_len
			 * (headlen) in BPF R9. Since classic BPF is read-only
			 * on CTX, we only need to cache it once.
			 */
			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
						  BPF_REG_D, BPF_REG_CTX,
						  offsetof(struct sk_buff, data));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
						  offsetof(struct sk_buff, len));
			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
						  offsetof(struct sk_buff, data_len));
			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
		}
590 591 592
	} else {
		new_insn += 3;
	}
593 594

	for (i = 0; i < len; fp++, i++) {
595
		struct bpf_insn tmp_insns[32] = { };
596
		struct bpf_insn *insn = tmp_insns;
597 598

		if (addrs)
599
			addrs[i] = new_insn - first_insn;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;
638 639 640 641 642
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    convert_bpf_ld_abs(fp, &insn)) {
				*seen_ld_abs = true;
				break;
			}
643

644
			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645
			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646
				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647 648 649 650 651 652 653
				/* Error with exception code on div/mod by 0.
				 * For cBPF programs, this was always return 0.
				 */
				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
				*insn++ = BPF_EXIT_INSN();
			}
654

655
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656 657
			break;

658 659 660 661 662 663 664
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
665
	do {								\
666 667 668
		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
		s32 off;						\
									\
669 670
		if (target >= len || target < 0)			\
			goto err;					\
671
		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
672
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
673 674 675 676 677
		off -= insn - tmp_insns;				\
		/* Reject anything not fitting into insn->off. */	\
		if (off < off_min || off > off_max)			\
			goto err;					\
		insn->off = off;					\
678 679
	} while (0)

680 681 682 683
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
699
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700

701 702
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
703 704
				bpf_src = BPF_X;
			} else {
705
				insn->dst_reg = BPF_REG_A;
706 707
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
708
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
709
			}
710 711 712 713 714

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
715
				BPF_EMIT_JMP;
716
				break;
L
Linus Torvalds 已提交
717
			}
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
			/* Convert some jumps when 'jump_true' is next insn. */
			if (fp->jt == 0) {
				switch (BPF_OP(fp->code)) {
				case BPF_JEQ:
					insn->code = BPF_JMP | BPF_JNE | bpf_src;
					break;
				case BPF_JGT:
					insn->code = BPF_JMP | BPF_JLE | bpf_src;
					break;
				case BPF_JGE:
					insn->code = BPF_JMP | BPF_JLT | bpf_src;
					break;
				default:
					goto jmp_rest;
				}

735
				target = i + fp->jf + 1;
736
				BPF_EMIT_JMP;
737
				break;
738
			}
739
jmp_rest:
740 741 742
			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743
			BPF_EMIT_JMP;
744 745 746 747
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
748
			BPF_EMIT_JMP;
749 750 751
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752 753 754 755 756 757 758 759 760 761
		case BPF_LDX | BPF_MSH | BPF_B: {
			struct sock_filter tmp = {
				.code	= BPF_LD | BPF_ABS | BPF_B,
				.k	= fp->k,
			};

			*seen_ld_abs = true;

			/* X = A */
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
763 764
			convert_bpf_ld_abs(&tmp, &insn);
			insn++;
765
			/* A &= 0xf */
766
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767
			/* A <<= 2 */
768
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769 770
			/* tmp = X */
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771
			/* X = A */
772
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773
			/* A = tmp */
774
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775
			break;
776
		}
777 778 779
		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
		 */
780 781
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
782 783 784
			if (BPF_RVAL(fp->code) == BPF_K)
				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
							0, fp->k);
785
			*insn = BPF_EXIT_INSN();
786 787 788 789 790
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
791
			stack_off = fp->k * 4  + 4;
792 793
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
794 795 796 797 798 799 800
					    -stack_off);
			/* check_load_and_stores() verifies that classic BPF can
			 * load from stack only after write, so tracking
			 * stack_depth for ST|STX insns is enough
			 */
			if (new_prog && new_prog->aux->stack_depth < stack_off)
				new_prog->aux->stack_depth = stack_off;
801 802 803 804 805
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
806
			stack_off = fp->k * 4  + 4;
807 808
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809
					    -stack_off);
810 811 812 813 814
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
815 816
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
817 818 819 820
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
821
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822 823 824 825
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
826
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827 828 829 830 831
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
832 833 834
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
835 836
			break;

837
		/* Access seccomp_data fields. */
838
		case BPF_LDX | BPF_ABS | BPF_W:
839 840
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841 842
			break;

S
Stephen Hemminger 已提交
843
		/* Unknown instruction. */
L
Linus Torvalds 已提交
844
		default:
845
			goto err;
L
Linus Torvalds 已提交
846
		}
847 848 849 850 851 852

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
853 854
	}

855 856
	if (!new_prog) {
		/* Only calculating new length. */
857
		*new_len = new_insn - first_insn;
858 859
		if (*seen_ld_abs)
			*new_len += 4; /* Prologue bits. */
860 861 862 863
		return 0;
	}

	pass++;
864 865
	if (new_flen != new_insn - first_insn) {
		new_flen = new_insn - first_insn;
866 867 868 869 870 871 872
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
873
	return 0;
874 875 876
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
877 878
}

879 880
/* Security:
 *
881
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
882
 * __bpf_prog_run(), we check that filter loaded by user never try to read
883
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
884
 * a malicious user doesn't try to abuse us.
885
 */
886
static int check_load_and_stores(const struct sock_filter *filter, int flen)
887
{
888
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889 890 891
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
892

893
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894 895
	if (!masks)
		return -ENOMEM;
896

897 898 899 900 901 902
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
903 904
		case BPF_ST:
		case BPF_STX:
905 906
			memvalid |= (1 << filter[pc].k);
			break;
907 908
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
909 910 911 912 913
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
914 915
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
916 917 918
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
919 920 921 922 923 924 925 926 927
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
928 929 930 931 932 933 934 935 936 937 938
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static bool bpf_check_basics_ok(const struct sock_filter *filter,
				unsigned int flen)
{
	if (filter == NULL)
		return false;
	if (flen == 0 || flen > BPF_MAXINSNS)
		return false;

	return true;
}

L
Linus Torvalds 已提交
1016
/**
1017
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
1023 1024
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
1025
 *
1026 1027 1028
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
1029
 */
1030 1031
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
1032
{
1033
	bool anc_found;
1034
	int pc;
L
Linus Torvalds 已提交
1035

1036
	/* Check the filter code now */
L
Linus Torvalds 已提交
1037
	for (pc = 0; pc < flen; pc++) {
1038
		const struct sock_filter *ftest = &filter[pc];
1039

1040 1041
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
1042
			return -EINVAL;
1043

1044
		/* Some instructions need special checks */
1045 1046 1047 1048
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
1049 1050 1051
			if (ftest->k == 0)
				return -EINVAL;
			break;
R
Rabin Vincent 已提交
1052 1053 1054 1055 1056
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
			if (ftest->k >= 32)
				return -EINVAL;
			break;
1057 1058 1059 1060 1061
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
1062 1063 1064
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
1065 1066
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
1067 1068 1069
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
1070
			if (ftest->k >= (unsigned int)(flen - pc - 1))
1071
				return -EINVAL;
1072
			break;
1073 1074 1075 1076 1077 1078 1079 1080 1081
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
1082
			if (pc + ftest->jt + 1 >= flen ||
1083 1084
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
1085
			break;
1086 1087 1088
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
1089
			anc_found = false;
1090 1091 1092
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
1093 1094
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
1095 1096
		}
	}
1097

1098
	/* Last instruction must be a RET code */
1099
	switch (filter[flen - 1].code) {
1100 1101
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
1102
		return check_load_and_stores(filter, flen);
1103
	}
1104

1105
	return -EINVAL;
L
Linus Torvalds 已提交
1106 1107
}

1108 1109
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
1110
{
1111
	unsigned int fsize = bpf_classic_proglen(fprog);
1112 1113 1114 1115 1116 1117 1118 1119
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
1120 1121 1122

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
1123 1124 1125 1126 1127 1128 1129 1130
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

1131
static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 1133 1134 1135 1136 1137 1138 1139 1140
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

1141 1142
static void __bpf_prog_release(struct bpf_prog *prog)
{
1143
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144 1145 1146 1147 1148
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
1149 1150
}

1151 1152
static void __sk_filter_release(struct sk_filter *fp)
{
1153 1154
	__bpf_prog_release(fp->prog);
	kfree(fp);
1155 1156
}

1157
/**
E
Eric Dumazet 已提交
1158
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1159 1160
 *	@rcu: rcu_head that contains the sk_filter to free
 */
1161
static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 1163 1164
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

1165
	__sk_filter_release(fp);
1166
}
1167 1168 1169 1170 1171 1172 1173 1174 1175

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
1176
	if (refcount_dec_and_test(&fp->refcnt))
1177 1178 1179 1180 1181
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
1182
	u32 filter_size = bpf_prog_size(fp->prog->len);
1183

1184 1185
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
1186
}
1187

1188 1189 1190
/* try to charge the socket memory if there is space available
 * return true on success
 */
1191
static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192
{
1193
	u32 filter_size = bpf_prog_size(fp->prog->len);
1194 1195 1196 1197 1198 1199

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
1200
	}
1201
	return false;
1202 1203
}

1204 1205
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
1206 1207 1208 1209 1210 1211 1212 1213
	if (!refcount_inc_not_zero(&fp->refcnt))
		return false;

	if (!__sk_filter_charge(sk, fp)) {
		sk_filter_release(fp);
		return false;
	}
	return true;
1214 1215
}

1216
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 1218
{
	struct sock_filter *old_prog;
1219
	struct bpf_prog *old_fp;
1220
	int err, new_len, old_len = fp->len;
1221
	bool seen_ld_abs = false;
1222 1223 1224 1225 1226 1227 1228

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229
		     sizeof(struct bpf_insn));
1230 1231 1232 1233 1234 1235

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236
			   GFP_KERNEL | __GFP_NOWARN);
1237 1238 1239 1240 1241 1242
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
1243 1244
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
				 &seen_ld_abs);
1245 1246 1247 1248 1249
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
1250
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

1262
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263 1264
	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
				 &seen_ld_abs);
1265
	if (err)
1266
		/* 2nd bpf_convert_filter() can fail only if it fails
1267 1268
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
1269
		 * by krealloc().
1270 1271 1272
		 */
		goto out_err_free;

1273
	fp = bpf_prog_select_runtime(fp, &err);
1274 1275
	if (err)
		goto out_err_free;
1276

1277 1278 1279 1280 1281 1282
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
1283
	__bpf_prog_release(fp);
1284 1285 1286
	return ERR_PTR(err);
}

1287 1288
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1289 1290 1291
{
	int err;

1292
	fp->bpf_func = NULL;
1293
	fp->jited = 0;
1294

1295
	err = bpf_check_classic(fp->insns, fp->len);
1296
	if (err) {
1297
		__bpf_prog_release(fp);
1298
		return ERR_PTR(err);
1299
	}
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1312 1313 1314
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1315
	bpf_jit_compile(fp);
1316 1317 1318 1319

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1320
	if (!fp->jited)
1321
		fp = bpf_migrate_filter(fp);
1322 1323

	return fp;
1324 1325 1326
}

/**
1327
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1328
 *	@pfp: the unattached filter that is created
1329
 *	@fprog: the filter program
1330
 *
R
Randy Dunlap 已提交
1331
 * Create a filter independent of any socket. We first run some
1332 1333 1334 1335
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1336
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337
{
1338
	unsigned int fsize = bpf_classic_proglen(fprog);
1339
	struct bpf_prog *fp;
1340 1341

	/* Make sure new filter is there and in the right amounts. */
1342
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343 1344
		return -EINVAL;

1345
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346 1347
	if (!fp)
		return -ENOMEM;
1348

1349 1350 1351
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1352 1353 1354 1355 1356
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1357

1358
	/* bpf_prepare_filter() already takes care of freeing
1359 1360
	 * memory in case something goes wrong.
	 */
1361
	fp = bpf_prepare_filter(fp, NULL);
1362 1363
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1364 1365 1366 1367

	*pfp = fp;
	return 0;
}
1368
EXPORT_SYMBOL_GPL(bpf_prog_create);
1369

1370 1371 1372 1373 1374
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1375
 *	@save_orig: save classic BPF program
1376 1377 1378 1379 1380 1381
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382
			      bpf_aux_classic_check_t trans, bool save_orig)
1383 1384 1385
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1386
	int err;
1387 1388

	/* Make sure new filter is there and in the right amounts. */
1389
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1404 1405 1406 1407 1408 1409 1410 1411
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1422
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423

1424
void bpf_prog_destroy(struct bpf_prog *fp)
1425
{
1426
	__bpf_prog_release(fp);
1427
}
1428
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429

1430
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;

1440
	if (!__sk_filter_charge(sk, fp)) {
1441 1442 1443
		kfree(fp);
		return -ENOMEM;
	}
1444
	refcount_set(&fp->refcnt, 1);
1445

1446 1447
	old_fp = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
1448
	rcu_assign_pointer(sk->sk_filter, fp);
1449

1450 1451 1452 1453 1454 1455
	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

1456 1457 1458 1459 1460 1461 1462 1463
static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct bpf_prog *old_prog;
	int err;

	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
		return -ENOMEM;

1464
	if (sk_unhashed(sk) && sk->sk_reuseport) {
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		err = reuseport_alloc(sk);
		if (err)
			return err;
	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
		/* The socket wasn't bound with SO_REUSEPORT */
		return -EINVAL;
	}

	old_prog = reuseport_attach_prog(sk, prog);
	if (old_prog)
		bpf_prog_destroy(old_prog);

	return 0;
}

static
struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
L
Linus Torvalds 已提交
1482
{
1483
	unsigned int fsize = bpf_classic_proglen(fprog);
1484
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1485 1486
	int err;

1487
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1488
		return ERR_PTR(-EPERM);
1489

L
Linus Torvalds 已提交
1490
	/* Make sure new filter is there and in the right amounts. */
1491
	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1492
		return ERR_PTR(-EINVAL);
L
Linus Torvalds 已提交
1493

1494
	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1495
	if (!prog)
1496
		return ERR_PTR(-ENOMEM);
1497

1498
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1499
		__bpf_prog_free(prog);
1500
		return ERR_PTR(-EFAULT);
L
Linus Torvalds 已提交
1501 1502
	}

1503
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1504

1505
	err = bpf_prog_store_orig_filter(prog, fprog);
1506
	if (err) {
1507
		__bpf_prog_free(prog);
1508
		return ERR_PTR(-ENOMEM);
1509 1510
	}

1511
	/* bpf_prepare_filter() already takes care of freeing
1512 1513
	 * memory in case something goes wrong.
	 */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	return bpf_prepare_filter(prog, NULL);
}

/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
1527
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1528 1529 1530 1531
{
	struct bpf_prog *prog = __get_filter(fprog, sk);
	int err;

1532 1533 1534
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1535
	err = __sk_attach_prog(prog, sk);
1536
	if (err < 0) {
1537
		__bpf_prog_release(prog);
1538
		return err;
1539 1540
	}

1541
	return 0;
L
Linus Torvalds 已提交
1542
}
1543
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1544

1545
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546
{
1547
	struct bpf_prog *prog = __get_filter(fprog, sk);
1548
	int err;
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		__bpf_prog_release(prog);
		return err;
	}

	return 0;
}

static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
{
1564
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565
		return ERR_PTR(-EPERM);
1566

1567
	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

1578
	err = __sk_attach_prog(prog, sk);
1579
	if (err < 0) {
1580
		bpf_prog_put(prog);
1581
		return err;
1582 1583 1584 1585 1586
	}

	return 0;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog = __get_bpf(ufd, sk);
	int err;

	if (IS_ERR(prog))
		return PTR_ERR(prog);

	err = __reuseport_attach_prog(prog, sk);
	if (err < 0) {
		bpf_prog_put(prog);
		return err;
	}

	return 0;
}

1604 1605 1606 1607 1608 1609 1610 1611
struct bpf_scratchpad {
	union {
		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
		u8     buff[MAX_BPF_STACK];
	};
};

static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1612

1613 1614 1615 1616 1617 1618
static inline int __bpf_try_make_writable(struct sk_buff *skb,
					  unsigned int write_len)
{
	return skb_ensure_writable(skb, write_len);
}

1619 1620 1621
static inline int bpf_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
1622
	int err = __bpf_try_make_writable(skb, write_len);
1623

1624
	bpf_compute_data_pointers(skb);
1625 1626 1627
	return err;
}

1628 1629 1630 1631 1632
static int bpf_try_make_head_writable(struct sk_buff *skb)
{
	return bpf_try_make_writable(skb, skb_headlen(skb));
}

1633 1634 1635 1636 1637 1638
static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1639 1640 1641 1642 1643 1644
static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
{
	if (skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
}

1645 1646
BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len, u64, flags)
1647 1648 1649
{
	void *ptr;

1650
	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1651
		return -EINVAL;
1652
	if (unlikely(offset > 0xffff))
1653
		return -EFAULT;
1654
	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1655 1656
		return -EFAULT;

1657
	ptr = skb->data + offset;
1658
	if (flags & BPF_F_RECOMPUTE_CSUM)
1659
		__skb_postpull_rcsum(skb, ptr, len, offset);
1660 1661 1662

	memcpy(ptr, from, len);

1663
	if (flags & BPF_F_RECOMPUTE_CSUM)
1664
		__skb_postpush_rcsum(skb, ptr, len, offset);
1665 1666
	if (flags & BPF_F_INVALIDATE_HASH)
		skb_clear_hash(skb);
1667

1668 1669 1670
	return 0;
}

1671
static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1672 1673 1674 1675 1676
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1677 1678
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1679 1680 1681
	.arg5_type	= ARG_ANYTHING,
};

1682 1683
BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
	   void *, to, u32, len)
1684 1685 1686
{
	void *ptr;

1687
	if (unlikely(offset > 0xffff))
1688
		goto err_clear;
1689 1690 1691

	ptr = skb_header_pointer(skb, offset, len, to);
	if (unlikely(!ptr))
1692
		goto err_clear;
1693 1694 1695 1696
	if (ptr != to)
		memcpy(to, ptr, len);

	return 0;
1697 1698 1699
err_clear:
	memset(to, 0, len);
	return -EFAULT;
1700 1701
}

1702
static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1703 1704 1705 1706 1707
	.func		= bpf_skb_load_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
1708 1709
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
1710 1711
};

1712 1713 1714
BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
	   u32, offset, void *, to, u32, len, u32, start_header)
{
1715 1716 1717
	u8 *end = skb_tail_pointer(skb);
	u8 *net = skb_network_header(skb);
	u8 *mac = skb_mac_header(skb);
1718 1719
	u8 *ptr;

1720
	if (unlikely(offset > 0xffff || len > (end - mac)))
1721 1722 1723 1724
		goto err_clear;

	switch (start_header) {
	case BPF_HDR_START_MAC:
1725
		ptr = mac + offset;
1726 1727
		break;
	case BPF_HDR_START_NET:
1728
		ptr = net + offset;
1729 1730 1731 1732 1733
		break;
	default:
		goto err_clear;
	}

1734
	if (likely(ptr >= mac && ptr + len <= end)) {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		memcpy(to, ptr, len);
		return 0;
	}

err_clear:
	memset(to, 0, len);
	return -EFAULT;
}

static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
	.func		= bpf_skb_load_bytes_relative,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto bpf_skb_pull_data_proto = {
	.func		= bpf_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static inline int sk_skb_try_make_writable(struct sk_buff *skb,
					   unsigned int write_len)
{
	int err = __bpf_try_make_writable(skb, write_len);

	bpf_compute_data_end_sk_skb(skb);
	return err;
}

BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
{
	/* Idea is the following: should the needed direct read/write
	 * test fail during runtime, we can pull in more data and redo
	 * again, since implicitly, we invalidate previous checks here.
	 *
	 * Or, since we know how much we need to make read/writeable,
	 * this can be done once at the program beginning for direct
	 * access case. By this we overcome limitations of only current
	 * headroom being accessible.
	 */
	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
}

static const struct bpf_func_proto sk_skb_pull_data_proto = {
	.func		= sk_skb_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1808 1809
BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1810
{
1811
	__sum16 *ptr;
1812

1813 1814
	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
		return -EINVAL;
1815
	if (unlikely(offset > 0xffff || offset & 1))
1816
		return -EFAULT;
1817
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1818 1819
		return -EFAULT;

1820
	ptr = (__sum16 *)(skb->data + offset);
1821
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1822 1823 1824 1825 1826 1827
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		csum_replace_by_diff(ptr, to);
		break;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

1841
static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1852 1853
BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
	   u64, from, u64, to, u64, flags)
1854
{
1855
	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1856
	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1857
	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1858
	__sum16 *ptr;
1859

1860 1861
	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1862
		return -EINVAL;
1863
	if (unlikely(offset > 0xffff || offset & 1))
1864
		return -EFAULT;
1865
	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1866 1867
		return -EFAULT;

1868
	ptr = (__sum16 *)(skb->data + offset);
1869
	if (is_mmzero && !do_mforce && !*ptr)
1870
		return 0;
1871

1872
	switch (flags & BPF_F_HDR_FIELD_MASK) {
1873 1874 1875 1876 1877 1878
	case 0:
		if (unlikely(from != 0))
			return -EINVAL;

		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
		break;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

1889 1890
	if (is_mmzero && !*ptr)
		*ptr = CSUM_MANGLED_0;
1891 1892 1893
	return 0;
}

1894
static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1895 1896 1897 1898 1899 1900 1901 1902
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1903 1904
};

1905 1906
BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
	   __be32 *, to, u32, to_size, __wsum, seed)
1907
{
1908
	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1909
	u32 diff_size = from_size + to_size;
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	int i, j = 0;

	/* This is quite flexible, some examples:
	 *
	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
	 *
	 * Even for diffing, from_size and to_size don't need to be equal.
	 */
	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
		     diff_size > sizeof(sp->diff)))
		return -EINVAL;

	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
		sp->diff[j] = ~from[i];
	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
		sp->diff[j] = to[i];

	return csum_partial(sp->diff, diff_size, seed);
}

1932
static const struct bpf_func_proto bpf_csum_diff_proto = {
1933 1934
	.func		= bpf_csum_diff,
	.gpl_only	= false,
1935
	.pkt_access	= true,
1936
	.ret_type	= RET_INTEGER,
1937
	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1938
	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1939
	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1940
	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1941 1942 1943
	.arg5_type	= ARG_ANYTHING,
};

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
{
	/* The interface is to be used in combination with bpf_csum_diff()
	 * for direct packet writes. csum rotation for alignment as well
	 * as emulating csum_sub() can be done from the eBPF program.
	 */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		return (skb->csum = csum_add(skb->csum, csum));

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_csum_update_proto = {
	.func		= bpf_csum_update,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

1964 1965 1966 1967 1968
static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
{
	return dev_forward_skb(dev, skb);
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
				      struct sk_buff *skb)
{
	int ret = ____dev_forward_skb(dev, skb);

	if (likely(!ret)) {
		skb->dev = dev;
		ret = netif_rx(skb);
	}

	return ret;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
{
	int ret;

	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
		kfree_skb(skb);
		return -ENETDOWN;
	}

	skb->dev = dev;

	__this_cpu_inc(xmit_recursion);
	ret = dev_queue_xmit(skb);
	__this_cpu_dec(xmit_recursion);

	return ret;
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
	/* skb->mac_len is not set on normal egress */
	unsigned int mlen = skb->network_header - skb->mac_header;

	__skb_pull(skb, mlen);

	/* At ingress, the mac header has already been pulled once.
	 * At egress, skb_pospull_rcsum has to be done in case that
	 * the skb is originated from ingress (i.e. a forwarded skb)
	 * to ensure that rcsum starts at net header.
	 */
	if (!skb_at_tc_ingress(skb))
		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
	skb_pop_mac_header(skb);
	skb_reset_mac_len(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
				 u32 flags)
{
2025 2026 2027 2028 2029 2030
	/* Verify that a link layer header is carried */
	if (unlikely(skb->mac_header >= skb->network_header)) {
		kfree_skb(skb);
		return -ERANGE;
	}

2031 2032 2033 2034 2035 2036 2037 2038
	bpf_push_mac_rcsum(skb);
	return flags & BPF_F_INGRESS ?
	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
}

static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
			  u32 flags)
{
2039
	if (dev_is_mac_header_xmit(dev))
2040
		return __bpf_redirect_common(skb, dev, flags);
2041 2042
	else
		return __bpf_redirect_no_mac(skb, dev, flags);
2043 2044
}

2045
BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2046 2047
{
	struct net_device *dev;
2048 2049
	struct sk_buff *clone;
	int ret;
2050

2051 2052 2053
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return -EINVAL;

2054 2055 2056 2057
	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

2058 2059
	clone = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!clone))
2060 2061
		return -ENOMEM;

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	/* For direct write, we need to keep the invariant that the skbs
	 * we're dealing with need to be uncloned. Should uncloning fail
	 * here, we need to free the just generated clone to unclone once
	 * again.
	 */
	ret = bpf_try_make_head_writable(skb);
	if (unlikely(ret)) {
		kfree_skb(clone);
		return -ENOMEM;
	}

2073
	return __bpf_redirect(clone, dev, flags);
2074 2075
}

2076
static const struct bpf_func_proto bpf_clone_redirect_proto = {
2077 2078 2079 2080 2081 2082 2083 2084
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2085 2086
DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2087

2088
BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2089
{
2090
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2091

2092 2093 2094
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return TC_ACT_SHOT;

2095 2096
	ri->ifindex = ifindex;
	ri->flags = flags;
2097

2098 2099 2100 2101 2102
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
2103
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2104 2105 2106 2107 2108 2109 2110 2111 2112
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

2113
	return __bpf_redirect(skb, dev, ri->flags);
2114 2115
}

2116
static const struct bpf_func_proto bpf_redirect_proto = {
2117 2118 2119 2120 2121 2122 2123
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);

	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	tcb->bpf.flags = flags;
	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
	.func           = bpf_sk_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2151 2152
BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
	   struct bpf_map *, map, u32, key, u64, flags)
2153
{
2154
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2155

2156
	/* If user passes invalid input drop the packet. */
2157
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2158
		return SK_DROP;
2159

2160
	tcb->bpf.flags = flags;
2161 2162 2163
	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
	if (!tcb->bpf.sk_redir)
		return SK_DROP;
2164

2165
	return SK_PASS;
2166 2167
}

2168
struct sock *do_sk_redirect_map(struct sk_buff *skb)
2169
{
2170
	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2171

2172
	return tcb->bpf.sk_redir;
2173 2174 2175 2176 2177 2178
}

static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
	.func           = bpf_sk_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
2179 2180
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
2181
	.arg3_type      = ARG_ANYTHING,
2182
	.arg4_type      = ARG_ANYTHING,
2183 2184
};

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, void *, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
	if (unlikely(flags & ~(BPF_F_INGRESS)))
		return SK_DROP;

	msg->flags = flags;
	msg->sk_redir = __sock_hash_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;

	return SK_PASS;
}

static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
	.func           = bpf_msg_redirect_hash,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_PTR_TO_MAP_KEY,
	.arg4_type      = ARG_ANYTHING,
};

2210 2211 2212 2213
BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
	   struct bpf_map *, map, u32, key, u64, flags)
{
	/* If user passes invalid input drop the packet. */
2214
	if (unlikely(flags & ~(BPF_F_INGRESS)))
2215 2216 2217
		return SK_DROP;

	msg->flags = flags;
2218 2219 2220
	msg->sk_redir = __sock_map_lookup_elem(map, key);
	if (!msg->sk_redir)
		return SK_DROP;
2221 2222 2223 2224 2225 2226

	return SK_PASS;
}

struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
{
2227
	return msg->sk_redir;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
	.func           = bpf_msg_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_CONST_MAP_PTR,
	.arg3_type      = ARG_ANYTHING,
	.arg4_type      = ARG_ANYTHING,
};

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->apply_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
	.func           = bpf_msg_apply_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
{
	msg->cork_bytes = bytes;
	return 0;
}

static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
	.func           = bpf_msg_cork_bytes,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
};

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
BPF_CALL_4(bpf_msg_pull_data,
	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
{
	unsigned int len = 0, offset = 0, copy = 0;
	struct scatterlist *sg = msg->sg_data;
	int first_sg, last_sg, i, shift;
	unsigned char *p, *to, *from;
	int bytes = end - start;
	struct page *page;

	if (unlikely(flags || end <= start))
		return -EINVAL;

	/* First find the starting scatterlist element */
	i = msg->sg_start;
	do {
		len = sg[i].length;
		offset += len;
		if (start < offset + len)
			break;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != msg->sg_end);

	if (unlikely(start >= offset + len))
		return -EINVAL;

	if (!msg->sg_copy[i] && bytes <= len)
		goto out;

	first_sg = i;

	/* At this point we need to linearize multiple scatterlist
	 * elements or a single shared page. Either way we need to
	 * copy into a linear buffer exclusively owned by BPF. Then
	 * place the buffer in the scatterlist and fixup the original
	 * entries by removing the entries now in the linear buffer
	 * and shifting the remaining entries. For now we do not try
	 * to copy partial entries to avoid complexity of running out
	 * of sg_entry slots. The downside is reading a single byte
	 * will copy the entire sg entry.
	 */
	do {
		copy += sg[i].length;
		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
		if (bytes < copy)
			break;
	} while (i != msg->sg_end);
	last_sg = i;

	if (unlikely(copy < end - start))
		return -EINVAL;

	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
	if (unlikely(!page))
		return -ENOMEM;
	p = page_address(page);
	offset = 0;

	i = first_sg;
	do {
		from = sg_virt(&sg[i]);
		len = sg[i].length;
		to = p + offset;

		memcpy(to, from, len);
		offset += len;
		sg[i].length = 0;
		put_page(sg_page(&sg[i]));

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (i != last_sg);

	sg[first_sg].length = copy;
	sg_set_page(&sg[first_sg], page, copy, 0);

	/* To repair sg ring we need to shift entries. If we only
	 * had a single entry though we can just replace it and
	 * be done. Otherwise walk the ring and shift the entries.
	 */
	shift = last_sg - first_sg - 1;
	if (!shift)
		goto out;

	i = first_sg + 1;
	do {
		int move_from;

		if (i + shift >= MAX_SKB_FRAGS)
			move_from = i + shift - MAX_SKB_FRAGS;
		else
			move_from = i + shift;

		if (move_from == msg->sg_end)
			break;

		sg[i] = sg[move_from];
		sg[move_from].length = 0;
		sg[move_from].page_link = 0;
		sg[move_from].offset = 0;

		i++;
		if (i == MAX_SKB_FRAGS)
			i = 0;
	} while (1);
	msg->sg_end -= shift;
	if (msg->sg_end < 0)
		msg->sg_end += MAX_SKB_FRAGS;
out:
	msg->data = sg_virt(&sg[i]) + start - offset;
	msg->data_end = msg->data + bytes;

	return 0;
}

static const struct bpf_func_proto bpf_msg_pull_data_proto = {
	.func		= bpf_msg_pull_data,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2398
BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2399
{
2400
	return task_get_classid(skb);
2401 2402 2403 2404 2405 2406 2407 2408 2409
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2410
BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2411
{
2412
	return dst_tclassid(skb);
2413 2414 2415 2416 2417 2418 2419 2420 2421
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2422
BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2423 2424 2425 2426 2427 2428
{
	/* If skb_clear_hash() was called due to mangling, we can
	 * trigger SW recalculation here. Later access to hash
	 * can then use the inline skb->hash via context directly
	 * instead of calling this helper again.
	 */
2429
	return skb_get_hash(skb);
2430 2431 2432 2433 2434 2435 2436 2437 2438
}

static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
	.func		= bpf_get_hash_recalc,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
{
	/* After all direct packet write, this can be used once for
	 * triggering a lazy recalc on next skb_get_hash() invocation.
	 */
	skb_clear_hash(skb);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
	.func		= bpf_set_hash_invalid,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
{
	/* Set user specified hash as L4(+), so that it gets returned
	 * on skb_get_hash() call unless BPF prog later on triggers a
	 * skb_clear_hash().
	 */
	__skb_set_sw_hash(skb, hash, true);
	return 0;
}

static const struct bpf_func_proto bpf_set_hash_proto = {
	.func		= bpf_set_hash,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2473 2474
BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
	   u16, vlan_tci)
2475
{
2476
	int ret;
2477 2478 2479 2480 2481

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

2482
	bpf_push_mac_rcsum(skb);
2483
	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2484 2485
	bpf_pull_mac_rcsum(skb);

2486
	bpf_compute_data_pointers(skb);
2487
	return ret;
2488 2489
}

2490
static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2491 2492 2493 2494 2495 2496 2497 2498
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

2499
BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2500
{
2501
	int ret;
2502

2503
	bpf_push_mac_rcsum(skb);
2504
	ret = skb_vlan_pop(skb);
2505 2506
	bpf_pull_mac_rcsum(skb);

2507
	bpf_compute_data_pointers(skb);
2508
	return ret;
2509 2510
}

2511
static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2512 2513 2514 2515 2516 2517
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
{
	/* Caller already did skb_cow() with len as headroom,
	 * so no need to do it here.
	 */
	skb_push(skb, len);
	memmove(skb->data, skb->data + len, off);
	memset(skb->data + off, 0, len);

	/* No skb_postpush_rcsum(skb, skb->data + off, len)
	 * needed here as it does not change the skb->csum
	 * result for checksum complete when summing over
	 * zeroed blocks.
	 */
	return 0;
}

static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
{
	/* skb_ensure_writable() is not needed here, as we're
	 * already working on an uncloned skb.
	 */
	if (unlikely(!pskb_may_pull(skb, off + len)))
		return -ENOMEM;

	skb_postpull_rcsum(skb, skb->data + off, len);
	memmove(skb->data + len, skb->data, off);
	__skb_pull(skb, len);

	return 0;
}

static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* There's no need for __skb_push()/__skb_pull() pair to
	 * get to the start of the mac header as we're guaranteed
	 * to always start from here under eBPF.
	 */
	ret = bpf_skb_generic_push(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header -= len;
		skb->network_header -= len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
{
	bool trans_same = skb->transport_header == skb->network_header;
	int ret;

	/* Same here, __skb_push()/__skb_pull() pair not needed. */
	ret = bpf_skb_generic_pop(skb, off, len);
	if (likely(!ret)) {
		skb->mac_header += len;
		skb->network_header += len;
		if (trans_same)
			skb->transport_header = skb->network_header;
	}

	return ret;
}

static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2590
	u32 off = skb_mac_header_len(skb);
2591 2592
	int ret;

2593 2594 2595 2596
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2597 2598 2599 2600 2601 2602 2603 2604 2605
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2606 2607
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2608 2609
		/* SKB_GSO_TCPV4 needs to be changed into
		 * SKB_GSO_TCPV6.
2610
		 */
2611 2612 2613
		if (shinfo->gso_type & SKB_GSO_TCPV4) {
			shinfo->gso_type &= ~SKB_GSO_TCPV4;
			shinfo->gso_type |=  SKB_GSO_TCPV6;
2614 2615 2616
		}

		/* Due to IPv6 header, MSS needs to be downgraded. */
2617
		skb_decrease_gso_size(shinfo, len_diff);
2618
		/* Header must be checked, and gso_segs recomputed. */
2619 2620
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	}

	skb->protocol = htons(ETH_P_IPV6);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
{
	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2632
	u32 off = skb_mac_header_len(skb);
2633 2634
	int ret;

2635 2636 2637 2638
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2639 2640 2641 2642 2643 2644 2645 2646 2647
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2648 2649
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2650 2651
		/* SKB_GSO_TCPV6 needs to be changed into
		 * SKB_GSO_TCPV4.
2652
		 */
2653 2654 2655
		if (shinfo->gso_type & SKB_GSO_TCPV6) {
			shinfo->gso_type &= ~SKB_GSO_TCPV6;
			shinfo->gso_type |=  SKB_GSO_TCPV4;
2656 2657 2658
		}

		/* Due to IPv4 header, MSS can be upgraded. */
2659
		skb_increase_gso_size(shinfo, len_diff);
2660
		/* Header must be checked, and gso_segs recomputed. */
2661 2662
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	}

	skb->protocol = htons(ETH_P_IP);
	skb_clear_hash(skb);

	return 0;
}

static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
{
	__be16 from_proto = skb->protocol;

	if (from_proto == htons(ETH_P_IP) &&
	      to_proto == htons(ETH_P_IPV6))
		return bpf_skb_proto_4_to_6(skb);

	if (from_proto == htons(ETH_P_IPV6) &&
	      to_proto == htons(ETH_P_IP))
		return bpf_skb_proto_6_to_4(skb);

	return -ENOTSUPP;
}

2686 2687
BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
	   u64, flags)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
{
	int ret;

	if (unlikely(flags))
		return -EINVAL;

	/* General idea is that this helper does the basic groundwork
	 * needed for changing the protocol, and eBPF program fills the
	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
	 * and other helpers, rather than passing a raw buffer here.
	 *
	 * The rationale is to keep this minimal and without a need to
	 * deal with raw packet data. F.e. even if we would pass buffers
	 * here, the program still needs to call the bpf_lX_csum_replace()
	 * helpers anyway. Plus, this way we keep also separation of
	 * concerns, since f.e. bpf_skb_store_bytes() should only take
	 * care of stores.
	 *
	 * Currently, additional options and extension header space are
	 * not supported, but flags register is reserved so we can adapt
	 * that. For offloads, we mark packet as dodgy, so that headers
	 * need to be verified first.
	 */
	ret = bpf_skb_proto_xlat(skb, proto);
2712
	bpf_compute_data_pointers(skb);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_proto_proto = {
	.func		= bpf_skb_change_proto,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2725
BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2726 2727
{
	/* We only allow a restricted subset to be changed for now. */
2728 2729
	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
		     !skb_pkt_type_ok(pkt_type)))
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		return -EINVAL;

	skb->pkt_type = pkt_type;
	return 0;
}

static const struct bpf_func_proto bpf_skb_change_type_proto = {
	.func		= bpf_skb_change_type,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
{
	switch (skb->protocol) {
	case htons(ETH_P_IP):
		return sizeof(struct iphdr);
	case htons(ETH_P_IPV6):
		return sizeof(struct ipv6hdr);
	default:
		return ~0U;
	}
}

static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2761 2762 2763 2764
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2765 2766 2767 2768 2769 2770 2771 2772 2773
	ret = skb_cow(skb, len_diff);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2774 2775
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2776
		/* Due to header grow, MSS needs to be downgraded. */
2777
		skb_decrease_gso_size(shinfo, len_diff);
2778
		/* Header must be checked, and gso_segs recomputed. */
2779 2780
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	}

	return 0;
}

static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
{
	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
	int ret;

2791 2792 2793 2794
	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
		return -ENOTSUPP;

2795 2796 2797 2798 2799 2800 2801 2802 2803
	ret = skb_unclone(skb, GFP_ATOMIC);
	if (unlikely(ret < 0))
		return ret;

	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
	if (unlikely(ret < 0))
		return ret;

	if (skb_is_gso(skb)) {
2804 2805
		struct skb_shared_info *shinfo = skb_shinfo(skb);

2806
		/* Due to header shrink, MSS can be upgraded. */
2807
		skb_increase_gso_size(shinfo, len_diff);
2808
		/* Header must be checked, and gso_segs recomputed. */
2809 2810
		shinfo->gso_type |= SKB_GSO_DODGY;
		shinfo->gso_segs = 0;
2811 2812 2813 2814 2815 2816 2817
	}

	return 0;
}

static u32 __bpf_skb_max_len(const struct sk_buff *skb)
{
2818 2819
	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
			  SKB_MAX_ALLOC;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
}

static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
{
	bool trans_same = skb->transport_header == skb->network_header;
	u32 len_cur, len_diff_abs = abs(len_diff);
	u32 len_min = bpf_skb_net_base_len(skb);
	u32 len_max = __bpf_skb_max_len(skb);
	__be16 proto = skb->protocol;
	bool shrink = len_diff < 0;
	int ret;

	if (unlikely(len_diff_abs > 0xfffU))
		return -EFAULT;
	if (unlikely(proto != htons(ETH_P_IP) &&
		     proto != htons(ETH_P_IPV6)))
		return -ENOTSUPP;

	len_cur = skb->len - skb_network_offset(skb);
	if (skb_transport_header_was_set(skb) && !trans_same)
		len_cur = skb_network_header_len(skb);
	if ((shrink && (len_diff_abs >= len_cur ||
			len_cur - len_diff_abs < len_min)) ||
	    (!shrink && (skb->len + len_diff_abs > len_max &&
			 !skb_is_gso(skb))))
		return -ENOTSUPP;

	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
		       bpf_skb_net_grow(skb, len_diff_abs);

2850
	bpf_compute_data_pointers(skb);
2851
	return ret;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
}

BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
	   u32, mode, u64, flags)
{
	if (unlikely(flags))
		return -EINVAL;
	if (likely(mode == BPF_ADJ_ROOM_NET))
		return bpf_skb_adjust_net(skb, len_diff);

	return -ENOTSUPP;
}

static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
	.func		= bpf_skb_adjust_room,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
};

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static u32 __bpf_skb_min_len(const struct sk_buff *skb)
{
	u32 min_len = skb_network_offset(skb);

	if (skb_transport_header_was_set(skb))
		min_len = skb_transport_offset(skb);
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		min_len = skb_checksum_start_offset(skb) +
			  skb->csum_offset + sizeof(__sum16);
	return min_len;
}

static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	unsigned int old_len = skb->len;
	int ret;

	ret = __skb_grow_rcsum(skb, new_len);
	if (!ret)
		memset(skb->data + old_len, 0, new_len - old_len);
	return ret;
}

static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
{
	return __skb_trim_rcsum(skb, new_len);
}

2903 2904
static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
					u64 flags)
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 min_len = __bpf_skb_min_len(skb);
	int ret;

	if (unlikely(flags || new_len > max_len || new_len < min_len))
		return -EINVAL;
	if (skb->encapsulation)
		return -ENOTSUPP;

	/* The basic idea of this helper is that it's performing the
	 * needed work to either grow or trim an skb, and eBPF program
	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
	 * bpf_lX_csum_replace() and others rather than passing a raw
	 * buffer here. This one is a slow path helper and intended
	 * for replies with control messages.
	 *
	 * Like in bpf_skb_change_proto(), we want to keep this rather
	 * minimal and without protocol specifics so that we are able
	 * to separate concerns as in bpf_skb_store_bytes() should only
	 * be the one responsible for writing buffers.
	 *
	 * It's really expected to be a slow path operation here for
	 * control message replies, so we're implicitly linearizing,
	 * uncloning and drop offloads from the skb by this.
	 */
	ret = __bpf_try_make_writable(skb, skb->len);
	if (!ret) {
		if (new_len > skb->len)
			ret = bpf_skb_grow_rcsum(skb, new_len);
		else if (new_len < skb->len)
			ret = bpf_skb_trim_rcsum(skb, new_len);
		if (!ret && skb_is_gso(skb))
			skb_gso_reset(skb);
	}
2940 2941 2942 2943 2944 2945 2946
	return ret;
}

BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
	   u64, flags)
{
	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2947

2948
	bpf_compute_data_pointers(skb);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	return ret;
}

static const struct bpf_func_proto bpf_skb_change_tail_proto = {
	.func		= bpf_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

2961
BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2962
	   u64, flags)
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
{
	int ret = __bpf_skb_change_tail(skb, new_len, flags);

	bpf_compute_data_end_sk_skb(skb);
	return ret;
}

static const struct bpf_func_proto sk_skb_change_tail_proto = {
	.func		= sk_skb_change_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
					u64 flags)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
{
	u32 max_len = __bpf_skb_max_len(skb);
	u32 new_len = skb->len + head_room;
	int ret;

	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
		     new_len < skb->len))
		return -EINVAL;

	ret = skb_cow(skb, head_room);
	if (likely(!ret)) {
		/* Idea for this helper is that we currently only
		 * allow to expand on mac header. This means that
		 * skb->protocol network header, etc, stay as is.
		 * Compared to bpf_skb_change_tail(), we're more
		 * flexible due to not needing to linearize or
		 * reset GSO. Intention for this helper is to be
		 * used by an L3 skb that needs to push mac header
		 * for redirection into L2 device.
		 */
		__skb_push(skb, head_room);
		memset(skb->data, 0, head_room);
		skb_reset_mac_header(skb);
	}

3006 3007 3008 3009 3010 3011 3012 3013
	return ret;
}

BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	int ret = __bpf_skb_change_head(skb, head_room, flags);

3014
	bpf_compute_data_pointers(skb);
3015
	return ret;
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
}

static const struct bpf_func_proto bpf_skb_change_head_proto = {
	.func		= bpf_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
	   u64, flags)
{
	int ret = __bpf_skb_change_head(skb, head_room, flags);

	bpf_compute_data_end_sk_skb(skb);
	return ret;
}

static const struct bpf_func_proto sk_skb_change_head_proto = {
	.func		= sk_skb_change_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};
3044 3045 3046 3047 3048 3049
static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
{
	return xdp_data_meta_unsupported(xdp) ? 0 :
	       xdp->data - xdp->data_meta;
}

3050 3051
BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
{
3052
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3053
	unsigned long metalen = xdp_get_metalen(xdp);
3054
	void *data_start = xdp_frame_end + metalen;
3055 3056
	void *data = xdp->data + offset;

3057
	if (unlikely(data < data_start ||
3058 3059 3060
		     data > xdp->data_end - ETH_HLEN))
		return -EINVAL;

3061 3062 3063 3064
	if (metalen)
		memmove(xdp->data_meta + offset,
			xdp->data_meta, metalen);
	xdp->data_meta += offset;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	xdp->data = data;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
	.func		= bpf_xdp_adjust_head,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
{
	void *data_end = xdp->data_end + offset;

	/* only shrinking is allowed for now. */
	if (unlikely(offset >= 0))
		return -EINVAL;

	if (unlikely(data_end < xdp->data + ETH_HLEN))
		return -EINVAL;

	xdp->data_end = data_end;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
	.func		= bpf_xdp_adjust_tail,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3102 3103
BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
{
3104
	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3105 3106 3107 3108 3109
	void *meta = xdp->data_meta + offset;
	unsigned long metalen = xdp->data - meta;

	if (xdp_data_meta_unsupported(xdp))
		return -ENOTSUPP;
3110
	if (unlikely(meta < xdp_frame_end ||
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		     meta > xdp->data))
		return -EINVAL;
	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
		     (metalen > 32)))
		return -EACCES;

	xdp->data_meta = meta;

	return 0;
}

static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
	.func		= bpf_xdp_adjust_meta,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

3130 3131 3132 3133
static int __bpf_tx_xdp(struct net_device *dev,
			struct bpf_map *map,
			struct xdp_buff *xdp,
			u32 index)
3134
{
3135
	struct xdp_frame *xdpf;
3136
	int err, sent;
3137 3138 3139

	if (!dev->netdev_ops->ndo_xdp_xmit) {
		return -EOPNOTSUPP;
3140
	}
3141

3142 3143 3144 3145
	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
	if (unlikely(err))
		return err;

3146 3147 3148 3149
	xdpf = convert_to_xdp_frame(xdp);
	if (unlikely(!xdpf))
		return -EOVERFLOW;

3150
	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3151 3152
	if (sent <= 0)
		return sent;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	return 0;
}

static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
			    struct bpf_map *map,
			    struct xdp_buff *xdp,
			    u32 index)
{
	int err;

3163 3164
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP: {
3165
		struct bpf_dtab_netdev *dst = fwd;
3166

3167
		err = dev_map_enqueue(dst, xdp, dev_rx);
3168 3169
		if (err)
			return err;
3170
		__dev_map_insert_ctx(map, index);
3171 3172 3173
		break;
	}
	case BPF_MAP_TYPE_CPUMAP: {
3174 3175 3176 3177 3178 3179
		struct bpf_cpu_map_entry *rcpu = fwd;

		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
		if (err)
			return err;
		__cpu_map_insert_ctx(map, index);
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		break;
	}
	case BPF_MAP_TYPE_XSKMAP: {
		struct xdp_sock *xs = fwd;

		err = __xsk_map_redirect(map, xdp, xs);
		return err;
	}
	default:
		break;
3190
	}
3191
	return 0;
3192 3193
}

3194 3195
void xdp_do_flush_map(void)
{
3196
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3197 3198 3199
	struct bpf_map *map = ri->map_to_flush;

	ri->map_to_flush = NULL;
3200 3201 3202 3203 3204 3205 3206 3207
	if (map) {
		switch (map->map_type) {
		case BPF_MAP_TYPE_DEVMAP:
			__dev_map_flush(map);
			break;
		case BPF_MAP_TYPE_CPUMAP:
			__cpu_map_flush(map);
			break;
3208 3209 3210
		case BPF_MAP_TYPE_XSKMAP:
			__xsk_map_flush(map);
			break;
3211 3212 3213 3214
		default:
			break;
		}
	}
3215 3216 3217
}
EXPORT_SYMBOL_GPL(xdp_do_flush_map);

3218 3219 3220 3221 3222 3223 3224
static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
{
	switch (map->map_type) {
	case BPF_MAP_TYPE_DEVMAP:
		return __dev_map_lookup_elem(map, index);
	case BPF_MAP_TYPE_CPUMAP:
		return __cpu_map_lookup_elem(map, index);
3225 3226
	case BPF_MAP_TYPE_XSKMAP:
		return __xsk_map_lookup_elem(map, index);
3227 3228 3229 3230 3231
	default:
		return NULL;
	}
}

3232 3233 3234 3235 3236 3237
static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
				   unsigned long aux)
{
	return (unsigned long)xdp_prog->aux != aux;
}

3238 3239
static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
			       struct bpf_prog *xdp_prog)
3240
{
3241
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3242
	unsigned long map_owner = ri->map_owner;
3243
	struct bpf_map *map = ri->map;
3244
	u32 index = ri->ifindex;
3245
	void *fwd = NULL;
3246
	int err;
3247 3248 3249

	ri->ifindex = 0;
	ri->map = NULL;
3250
	ri->map_owner = 0;
3251

3252
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3253 3254 3255 3256
		err = -EFAULT;
		map = NULL;
		goto err;
	}
3257

3258
	fwd = __xdp_map_lookup_elem(map, index);
3259 3260
	if (!fwd) {
		err = -EINVAL;
3261
		goto err;
3262
	}
3263
	if (ri->map_to_flush && ri->map_to_flush != map)
3264 3265
		xdp_do_flush_map();

3266
	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3267 3268 3269 3270
	if (unlikely(err))
		goto err;

	ri->map_to_flush = map;
3271
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3272 3273
	return 0;
err:
3274
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3275 3276 3277
	return err;
}

3278 3279
int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
		    struct bpf_prog *xdp_prog)
3280
{
3281
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3282
	struct net_device *fwd;
W
William Tu 已提交
3283
	u32 index = ri->ifindex;
3284
	int err;
3285

3286 3287 3288
	if (ri->map)
		return xdp_do_redirect_map(dev, xdp, xdp_prog);

W
William Tu 已提交
3289
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3290
	ri->ifindex = 0;
3291
	if (unlikely(!fwd)) {
3292
		err = -EINVAL;
3293
		goto err;
3294 3295
	}

3296
	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3297 3298 3299 3300 3301 3302 3303
	if (unlikely(err))
		goto err;

	_trace_xdp_redirect(dev, xdp_prog, index);
	return 0;
err:
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3304
	return err;
3305 3306 3307
}
EXPORT_SYMBOL_GPL(xdp_do_redirect);

3308 3309
static int xdp_do_generic_redirect_map(struct net_device *dev,
				       struct sk_buff *skb,
3310
				       struct xdp_buff *xdp,
3311
				       struct bpf_prog *xdp_prog)
3312
{
3313
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3314
	unsigned long map_owner = ri->map_owner;
3315
	struct bpf_map *map = ri->map;
W
William Tu 已提交
3316
	u32 index = ri->ifindex;
3317
	void *fwd = NULL;
3318
	int err = 0;
3319 3320

	ri->ifindex = 0;
3321
	ri->map = NULL;
3322
	ri->map_owner = 0;
3323

3324 3325 3326 3327
	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
		err = -EFAULT;
		map = NULL;
		goto err;
3328
	}
3329
	fwd = __xdp_map_lookup_elem(map, index);
3330 3331
	if (unlikely(!fwd)) {
		err = -EINVAL;
3332
		goto err;
3333 3334
	}

3335
	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3336 3337 3338 3339
		struct bpf_dtab_netdev *dst = fwd;

		err = dev_map_generic_redirect(dst, skb, xdp_prog);
		if (unlikely(err))
3340
			goto err;
3341 3342 3343 3344 3345 3346 3347
	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
		struct xdp_sock *xs = fwd;

		err = xsk_generic_rcv(xs, xdp);
		if (err)
			goto err;
		consume_skb(skb);
3348 3349 3350
	} else {
		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
		err = -EBADRQC;
3351
		goto err;
3352
	}
3353

3354 3355 3356 3357 3358 3359 3360 3361
	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
	return 0;
err:
	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
	return err;
}

int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3362
			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3363
{
3364
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3365 3366 3367 3368 3369
	u32 index = ri->ifindex;
	struct net_device *fwd;
	int err = 0;

	if (ri->map)
3370
		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3371 3372 3373 3374 3375

	ri->ifindex = 0;
	fwd = dev_get_by_index_rcu(dev_net(dev), index);
	if (unlikely(!fwd)) {
		err = -EINVAL;
3376
		goto err;
3377 3378
	}

3379 3380
	err = xdp_ok_fwd_dev(fwd, skb->len);
	if (unlikely(err))
3381 3382
		goto err;

3383
	skb->dev = fwd;
3384
	_trace_xdp_redirect(dev, xdp_prog, index);
3385
	generic_xdp_tx(skb, xdp_prog);
3386 3387
	return 0;
err:
3388
	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3389
	return err;
3390 3391 3392
}
EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);

3393 3394
BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
{
3395
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3396 3397 3398 3399 3400 3401

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
3402
	ri->map = NULL;
3403
	ri->map_owner = 0;
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	return XDP_REDIRECT;
}

static const struct bpf_func_proto bpf_xdp_redirect_proto = {
	.func           = bpf_xdp_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

3416
BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3417
	   unsigned long, map_owner)
3418
{
3419
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3420 3421 3422 3423 3424 3425 3426

	if (unlikely(flags))
		return XDP_ABORTED;

	ri->ifindex = ifindex;
	ri->flags = flags;
	ri->map = map;
3427
	ri->map_owner = map_owner;
3428 3429 3430 3431

	return XDP_REDIRECT;
}

3432 3433 3434
/* Note, arg4 is hidden from users and populated by the verifier
 * with the right pointer.
 */
3435 3436 3437 3438 3439 3440 3441 3442 3443
static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
	.func           = bpf_xdp_redirect_map,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_CONST_MAP_PTR,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

3444
static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3445
				  unsigned long off, unsigned long len)
3446
{
3447
	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3448 3449 3450 3451 3452 3453 3454 3455 3456

	if (unlikely(!ptr))
		return len;
	if (ptr != dst_buff)
		memcpy(dst_buff, ptr, len);

	return 0;
}

3457 3458
BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
{
	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(skb_size > skb->len))
		return -EFAULT;

	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
				bpf_skb_copy);
}

static const struct bpf_func_proto bpf_skb_event_output_proto = {
	.func		= bpf_skb_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3478
	.arg4_type	= ARG_PTR_TO_MEM,
3479
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3480 3481
};

3482 3483 3484 3485 3486
static unsigned short bpf_tunnel_key_af(u64 flags)
{
	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
}

3487 3488
BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
	   u32, size, u64, flags)
3489
{
3490 3491
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
	u8 compat[sizeof(struct bpf_tunnel_key)];
3492 3493
	void *to_orig = to;
	int err;
3494

3495 3496 3497 3498 3499 3500 3501 3502
	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
		err = -EINVAL;
		goto err_clear;
	}
	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
		err = -EPROTO;
		goto err_clear;
	}
3503
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3504
		err = -EINVAL;
3505
		switch (size) {
3506
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3507
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3508
			goto set_compat;
3509 3510 3511 3512 3513
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			if (ip_tunnel_info_af(info) != AF_INET)
3514
				goto err_clear;
3515
set_compat:
3516 3517 3518
			to = (struct bpf_tunnel_key *)compat;
			break;
		default:
3519
			goto err_clear;
3520 3521
		}
	}
3522 3523

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3524 3525
	to->tunnel_tos = info->key.tos;
	to->tunnel_ttl = info->key.ttl;
3526
	to->tunnel_ext = 0;
3527

3528
	if (flags & BPF_F_TUNINFO_IPV6) {
3529 3530
		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
		       sizeof(to->remote_ipv6));
3531 3532
		to->tunnel_label = be32_to_cpu(info->key.label);
	} else {
3533
		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3534 3535
		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
		to->tunnel_label = 0;
3536
	}
3537 3538

	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3539
		memcpy(to_orig, to, size);
3540 3541

	return 0;
3542 3543 3544
err_clear:
	memset(to_orig, 0, size);
	return err;
3545 3546
}

3547
static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3548 3549 3550 3551
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3552 3553
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3554 3555 3556
	.arg4_type	= ARG_ANYTHING,
};

3557
BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3558 3559
{
	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3560
	int err;
3561 3562

	if (unlikely(!info ||
3563 3564 3565 3566 3567 3568 3569 3570
		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
		err = -ENOENT;
		goto err_clear;
	}
	if (unlikely(size < info->options_len)) {
		err = -ENOMEM;
		goto err_clear;
	}
3571 3572

	ip_tunnel_info_opts_get(to, info);
3573 3574
	if (size > info->options_len)
		memset(to + info->options_len, 0, size - info->options_len);
3575 3576

	return info->options_len;
3577 3578 3579
err_clear:
	memset(to, 0, size);
	return err;
3580 3581 3582 3583 3584 3585 3586
}

static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
	.func		= bpf_skb_get_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3587 3588
	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3589 3590
};

3591 3592
static struct metadata_dst __percpu *md_dst;

3593 3594
BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3595 3596
{
	struct metadata_dst *md = this_cpu_ptr(md_dst);
3597
	u8 compat[sizeof(struct bpf_tunnel_key)];
3598 3599
	struct ip_tunnel_info *info;

3600
	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3601
			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3602
		return -EINVAL;
3603 3604
	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
		switch (size) {
3605
		case offsetof(struct bpf_tunnel_key, tunnel_label):
3606
		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3607 3608 3609 3610 3611 3612
		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
			/* Fixup deprecated structure layouts here, so we have
			 * a common path later on.
			 */
			memcpy(compat, from, size);
			memset(compat + size, 0, sizeof(compat) - size);
3613
			from = (const struct bpf_tunnel_key *) compat;
3614 3615 3616 3617 3618
			break;
		default:
			return -EINVAL;
		}
	}
3619 3620
	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
		     from->tunnel_ext))
3621
		return -EINVAL;
3622 3623 3624 3625 3626 3627

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
W
William Tu 已提交
3628
	memset(info, 0, sizeof(*info));
3629
	info->mode = IP_TUNNEL_INFO_TX;
3630

3631
	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3632 3633
	if (flags & BPF_F_DONT_FRAGMENT)
		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
W
William Tu 已提交
3634 3635
	if (flags & BPF_F_ZERO_CSUM_TX)
		info->key.tun_flags &= ~TUNNEL_CSUM;
3636 3637
	if (flags & BPF_F_SEQ_NUMBER)
		info->key.tun_flags |= TUNNEL_SEQ;
3638

3639
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3640 3641 3642 3643 3644 3645 3646
	info->key.tos = from->tunnel_tos;
	info->key.ttl = from->tunnel_ttl;

	if (flags & BPF_F_TUNINFO_IPV6) {
		info->mode |= IP_TUNNEL_INFO_IPV6;
		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
		       sizeof(from->remote_ipv6));
3647 3648
		info->key.label = cpu_to_be32(from->tunnel_label) &
				  IPV6_FLOWLABEL_MASK;
3649 3650 3651
	} else {
		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
	}
3652 3653 3654 3655

	return 0;
}

3656
static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3657 3658 3659 3660
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3661 3662
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3663 3664 3665
	.arg4_type	= ARG_ANYTHING,
};

3666 3667
BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
	   const u8 *, from, u32, size)
3668 3669 3670 3671 3672 3673
{
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
	const struct metadata_dst *md = this_cpu_ptr(md_dst);

	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
		return -EINVAL;
3674
	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3675 3676
		return -ENOMEM;

3677
	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3678 3679 3680 3681 3682 3683 3684 3685 3686

	return 0;
}

static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
	.func		= bpf_skb_set_tunnel_opt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
3687 3688
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
3689 3690 3691 3692
};

static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3693 3694
{
	if (!md_dst) {
3695 3696 3697 3698 3699 3700
		struct metadata_dst __percpu *tmp;

		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
						METADATA_IP_TUNNEL,
						GFP_KERNEL);
		if (!tmp)
3701
			return NULL;
3702 3703
		if (cmpxchg(&md_dst, NULL, tmp))
			metadata_dst_free_percpu(tmp);
3704
	}
3705 3706 3707 3708 3709 3710 3711 3712 3713

	switch (which) {
	case BPF_FUNC_skb_set_tunnel_key:
		return &bpf_skb_set_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return &bpf_skb_set_tunnel_opt_proto;
	default:
		return NULL;
	}
3714 3715
}

3716 3717
BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
	   u32, idx)
3718 3719 3720 3721 3722
{
	struct bpf_array *array = container_of(map, struct bpf_array, map);
	struct cgroup *cgrp;
	struct sock *sk;

3723
	sk = skb_to_full_sk(skb);
3724 3725
	if (!sk || !sk_fullsock(sk))
		return -ENOENT;
3726
	if (unlikely(idx >= array->map.max_entries))
3727 3728
		return -E2BIG;

3729
	cgrp = READ_ONCE(array->ptrs[idx]);
3730 3731 3732
	if (unlikely(!cgrp))
		return -EAGAIN;

3733
	return sk_under_cgroup_hierarchy(sk, cgrp);
3734 3735
}

3736 3737
static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
	.func		= bpf_skb_under_cgroup,
3738 3739 3740 3741 3742 3743 3744
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
};

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
#ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
{
	struct sock *sk = skb_to_full_sk(skb);
	struct cgroup *cgrp;

	if (!sk || !sk_fullsock(sk))
		return 0;

	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
	return cgrp->kn->id.id;
}

static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
	.func           = bpf_skb_cgroup_id,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
#endif

3766 3767 3768 3769 3770 3771 3772
static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
				  unsigned long off, unsigned long len)
{
	memcpy(dst_buff, src_buff + off, len);
	return 0;
}

3773 3774
BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
	   u64, flags, void *, meta, u64, meta_size)
3775 3776 3777 3778 3779 3780 3781 3782
{
	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;

	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
		return -EINVAL;
	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
		return -EFAULT;

M
Martin KaFai Lau 已提交
3783 3784
	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
				xdp_size, bpf_xdp_copy);
3785 3786 3787 3788 3789 3790 3791 3792 3793
}

static const struct bpf_func_proto bpf_xdp_event_output_proto = {
	.func		= bpf_xdp_event_output,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_ANYTHING,
3794
	.arg4_type	= ARG_PTR_TO_MEM,
3795
	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3796 3797
};

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
{
	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
}

static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
	.func           = bpf_get_socket_cookie,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
{
	return sock_gen_cookie(ctx->sk);
}

static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
	.func		= bpf_get_socket_cookie_sock_addr,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
{
	return sock_gen_cookie(ctx->sk);
}

static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
	.func		= bpf_get_socket_cookie_sock_ops,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
};

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
{
	struct sock *sk = sk_to_full_sk(skb->sk);
	kuid_t kuid;

	if (!sk || !sk_fullsock(sk))
		return overflowuid;
	kuid = sock_net_uid(sock_net(sk), sk);
	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
}

static const struct bpf_func_proto bpf_get_socket_uid_proto = {
	.func           = bpf_get_socket_uid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;
	int ret = 0;
	int val;

	if (!sk_fullsock(sk))
		return -EINVAL;

	if (level == SOL_SOCKET) {
		if (optlen != sizeof(int))
			return -EINVAL;
		val = *((int *)optval);

		/* Only some socketops are supported */
		switch (optname) {
		case SO_RCVBUF:
			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
			break;
		case SO_SNDBUF:
			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
			break;
		case SO_MAX_PACING_RATE:
			sk->sk_max_pacing_rate = val;
			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
						 sk->sk_max_pacing_rate);
			break;
		case SO_PRIORITY:
			sk->sk_priority = val;
			break;
		case SO_RCVLOWAT:
			if (val < 0)
				val = INT_MAX;
			sk->sk_rcvlowat = val ? : 1;
			break;
		case SO_MARK:
			sk->sk_mark = val;
			break;
		default:
			ret = -EINVAL;
		}
L
Lawrence Brakmo 已提交
3896
#ifdef CONFIG_INET
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	} else if (level == SOL_IP) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct inet_sock *inet = inet_sk(sk);

				if (val == -1)
					val = 0;
				inet->tos = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			return -EINVAL;

		val = *((int *)optval);
		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			if (val < -1 || val > 0xff) {
				ret = -EINVAL;
			} else {
				struct ipv6_pinfo *np = inet6_sk(sk);

				if (val == -1)
					val = 0;
				np->tclass = val;
			}
			break;
		default:
			ret = -EINVAL;
		}
#endif
3941 3942
	} else if (level == SOL_TCP &&
		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3943 3944
		if (optname == TCP_CONGESTION) {
			char name[TCP_CA_NAME_MAX];
3945
			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3946 3947 3948 3949

			strncpy(name, optval, min_t(long, optlen,
						    TCP_CA_NAME_MAX-1));
			name[TCP_CA_NAME_MAX-1] = 0;
3950 3951
			ret = tcp_set_congestion_control(sk, name, false,
							 reinit);
3952
		} else {
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
			struct tcp_sock *tp = tcp_sk(sk);

			if (optlen != sizeof(int))
				return -EINVAL;

			val = *((int *)optval);
			/* Only some options are supported */
			switch (optname) {
			case TCP_BPF_IW:
				if (val <= 0 || tp->data_segs_out > 0)
					ret = -EINVAL;
				else
					tp->snd_cwnd = val;
				break;
3967 3968 3969 3970 3971 3972 3973
			case TCP_BPF_SNDCWND_CLAMP:
				if (val <= 0) {
					ret = -EINVAL;
				} else {
					tp->snd_cwnd_clamp = val;
					tp->snd_ssthresh = val;
				}
3974
				break;
3975 3976 3977
			default:
				ret = -EINVAL;
			}
3978 3979
		}
#endif
3980 3981 3982 3983 3984 3985 3986 3987
	} else {
		ret = -EINVAL;
	}
	return ret;
}

static const struct bpf_func_proto bpf_setsockopt_proto = {
	.func		= bpf_setsockopt,
3988
	.gpl_only	= false,
3989 3990 3991 3992 3993 3994 3995 3996
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
	   int, level, int, optname, char *, optval, int, optlen)
{
	struct sock *sk = bpf_sock->sk;

	if (!sk_fullsock(sk))
		goto err_clear;

#ifdef CONFIG_INET
	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
		if (optname == TCP_CONGESTION) {
			struct inet_connection_sock *icsk = inet_csk(sk);

			if (!icsk->icsk_ca_ops || optlen <= 1)
				goto err_clear;
			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
			optval[optlen - 1] = 0;
		} else {
			goto err_clear;
		}
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	} else if (level == SOL_IP) {
		struct inet_sock *inet = inet_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IP_TOS:
			*((int *)optval) = (int)inet->tos;
			break;
		default:
			goto err_clear;
		}
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
#if IS_ENABLED(CONFIG_IPV6)
	} else if (level == SOL_IPV6) {
		struct ipv6_pinfo *np = inet6_sk(sk);

		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
			goto err_clear;

		/* Only some options are supported */
		switch (optname) {
		case IPV6_TCLASS:
			*((int *)optval) = (int)np->tclass;
			break;
		default:
			goto err_clear;
		}
#endif
4047 4048 4049
	} else {
		goto err_clear;
	}
4050
	return 0;
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
#endif
err_clear:
	memset(optval, 0, optlen);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_getsockopt_proto = {
	.func		= bpf_getsockopt,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg5_type	= ARG_CONST_SIZE,
};

4068 4069 4070 4071 4072 4073
BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
	   int, argval)
{
	struct sock *sk = bpf_sock->sk;
	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;

4074
	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		return -EINVAL;

	if (val)
		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;

	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
}

static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
	.func		= bpf_sock_ops_cb_flags_set,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
};

A
Andrey Ignatov 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
EXPORT_SYMBOL_GPL(ipv6_bpf_stub);

BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
	   int, addr_len)
{
#ifdef CONFIG_INET
	struct sock *sk = ctx->sk;
	int err;

	/* Binding to port can be expensive so it's prohibited in the helper.
	 * Only binding to IP is supported.
	 */
	err = -EINVAL;
	if (addr->sa_family == AF_INET) {
		if (addr_len < sizeof(struct sockaddr_in))
			return err;
		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
			return err;
		return __inet_bind(sk, addr, addr_len, true, false);
#if IS_ENABLED(CONFIG_IPV6)
	} else if (addr->sa_family == AF_INET6) {
		if (addr_len < SIN6_LEN_RFC2133)
			return err;
		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
			return err;
		/* ipv6_bpf_stub cannot be NULL, since it's called from
		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
		 */
		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
#endif /* CONFIG_IPV6 */
	}
#endif /* CONFIG_INET */

	return -EAFNOSUPPORT;
}

static const struct bpf_func_proto bpf_bind_proto = {
	.func		= bpf_bind,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_MEM,
	.arg3_type	= ARG_CONST_SIZE,
};

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
#ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
{
	const struct sec_path *sp = skb_sec_path(skb);
	const struct xfrm_state *x;

	if (!sp || unlikely(index >= sp->len || flags))
		goto err_clear;

	x = sp->xvec[index];

	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
		goto err_clear;

	to->reqid = x->props.reqid;
	to->spi = x->id.spi;
	to->family = x->props.family;
4155 4156
	to->ext = 0;

4157 4158 4159 4160 4161
	if (to->family == AF_INET6) {
		memcpy(to->remote_ipv6, x->props.saddr.a6,
		       sizeof(to->remote_ipv6));
	} else {
		to->remote_ipv4 = x->props.saddr.a4;
4162
		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	}

	return 0;
err_clear:
	memset(to, 0, size);
	return -EINVAL;
}

static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
	.func		= bpf_skb_get_xfrm_state,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
	.arg4_type	= ARG_CONST_SIZE,
	.arg5_type	= ARG_ANYTHING,
};
#endif

4183 4184 4185 4186 4187 4188 4189 4190 4191
#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
				  const struct neighbour *neigh,
				  const struct net_device *dev)
{
	memcpy(params->dmac, neigh->ha, ETH_ALEN);
	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
	params->h_vlan_TCI = 0;
	params->h_vlan_proto = 0;
4192
	params->ifindex = dev->ifindex;
4193

4194
	return 0;
4195 4196 4197 4198 4199
}
#endif

#if IS_ENABLED(CONFIG_INET)
static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4200
			       u32 flags, bool check_mtu)
4201 4202 4203 4204 4205 4206 4207 4208
{
	struct in_device *in_dev;
	struct neighbour *neigh;
	struct net_device *dev;
	struct fib_result res;
	struct fib_nh *nh;
	struct flowi4 fl4;
	int err;
4209
	u32 mtu;
4210 4211 4212 4213 4214 4215 4216 4217

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	/* verify forwarding is enabled on this interface */
	in_dev = __in_dev_get_rcu(dev);
	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4218
		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl4.flowi4_iif = 1;
		fl4.flowi4_oif = params->ifindex;
	} else {
		fl4.flowi4_iif = params->ifindex;
		fl4.flowi4_oif = 0;
	}
	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
	fl4.flowi4_flags = 0;

	fl4.flowi4_proto = params->l4_protocol;
	fl4.daddr = params->ipv4_dst;
	fl4.saddr = params->ipv4_src;
	fl4.fl4_sport = params->sport;
	fl4.fl4_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib_table *tb;

		tb = fib_get_table(net, tbid);
		if (unlikely(!tb))
4243
			return BPF_FIB_LKUP_RET_NOT_FWDED;
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
	} else {
		fl4.flowi4_mark = 0;
		fl4.flowi4_secid = 0;
		fl4.flowi4_tun_key.tun_id = 0;
		fl4.flowi4_uid = sock_net_uid(net, NULL);

		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
	}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	if (err) {
		/* map fib lookup errors to RTN_ type */
		if (err == -EINVAL)
			return BPF_FIB_LKUP_RET_BLACKHOLE;
		if (err == -EHOSTUNREACH)
			return BPF_FIB_LKUP_RET_UNREACHABLE;
		if (err == -EACCES)
			return BPF_FIB_LKUP_RET_PROHIBIT;

		return BPF_FIB_LKUP_RET_NOT_FWDED;
	}

	if (res.type != RTN_UNICAST)
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4269 4270 4271 4272

	if (res.fi->fib_nhs > 1)
		fib_select_path(net, &res, &fl4, NULL);

4273 4274 4275
	if (check_mtu) {
		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
		if (params->tot_len > mtu)
4276
			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4277 4278
	}

4279 4280 4281 4282
	nh = &res.fi->fib_nh[res.nh_sel];

	/* do not handle lwt encaps right now */
	if (nh->nh_lwtstate)
4283
		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

	dev = nh->nh_dev;
	if (nh->nh_gw)
		params->ipv4_dst = nh->nh_gw;

	params->rt_metric = res.fi->fib_priority;

	/* xdp and cls_bpf programs are run in RCU-bh so
	 * rcu_read_lock_bh is not needed here
	 */
	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4295 4296
	if (!neigh)
		return BPF_FIB_LKUP_RET_NO_NEIGH;
4297

4298
	return bpf_fib_set_fwd_params(params, neigh, dev);
4299 4300 4301 4302 4303
}
#endif

#if IS_ENABLED(CONFIG_IPV6)
static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4304
			       u32 flags, bool check_mtu)
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
{
	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
	struct neighbour *neigh;
	struct net_device *dev;
	struct inet6_dev *idev;
	struct fib6_info *f6i;
	struct flowi6 fl6;
	int strict = 0;
	int oif;
4315
	u32 mtu;
4316 4317 4318

	/* link local addresses are never forwarded */
	if (rt6_need_strict(dst) || rt6_need_strict(src))
4319
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4320 4321 4322 4323 4324 4325 4326

	dev = dev_get_by_index_rcu(net, params->ifindex);
	if (unlikely(!dev))
		return -ENODEV;

	idev = __in6_dev_get_safely(dev);
	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4327
		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4328 4329 4330 4331 4332 4333 4334 4335 4336

	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
		fl6.flowi6_iif = 1;
		oif = fl6.flowi6_oif = params->ifindex;
	} else {
		oif = fl6.flowi6_iif = params->ifindex;
		fl6.flowi6_oif = 0;
		strict = RT6_LOOKUP_F_HAS_SADDR;
	}
4337
	fl6.flowlabel = params->flowinfo;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
	fl6.flowi6_scope = 0;
	fl6.flowi6_flags = 0;
	fl6.mp_hash = 0;

	fl6.flowi6_proto = params->l4_protocol;
	fl6.daddr = *dst;
	fl6.saddr = *src;
	fl6.fl6_sport = params->sport;
	fl6.fl6_dport = params->dport;

	if (flags & BPF_FIB_LOOKUP_DIRECT) {
		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
		struct fib6_table *tb;

		tb = ipv6_stub->fib6_get_table(net, tbid);
		if (unlikely(!tb))
4354
			return BPF_FIB_LKUP_RET_NOT_FWDED;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
	} else {
		fl6.flowi6_mark = 0;
		fl6.flowi6_secid = 0;
		fl6.flowi6_tun_key.tun_id = 0;
		fl6.flowi6_uid = sock_net_uid(net, NULL);

		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
	}

	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		return BPF_FIB_LKUP_RET_NOT_FWDED;

	if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
		switch (f6i->fib6_type) {
		case RTN_BLACKHOLE:
			return BPF_FIB_LKUP_RET_BLACKHOLE;
		case RTN_UNREACHABLE:
			return BPF_FIB_LKUP_RET_UNREACHABLE;
		case RTN_PROHIBIT:
			return BPF_FIB_LKUP_RET_PROHIBIT;
		default:
			return BPF_FIB_LKUP_RET_NOT_FWDED;
		}
	}
4381

4382 4383
	if (f6i->fib6_type != RTN_UNICAST)
		return BPF_FIB_LKUP_RET_NOT_FWDED;
4384 4385 4386 4387 4388 4389

	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
						       fl6.flowi6_oif, NULL,
						       strict);

4390 4391 4392
	if (check_mtu) {
		mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
		if (params->tot_len > mtu)
4393
			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4394 4395
	}

4396
	if (f6i->fib6_nh.nh_lwtstate)
4397
		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

	if (f6i->fib6_flags & RTF_GATEWAY)
		*dst = f6i->fib6_nh.nh_gw;

	dev = f6i->fib6_nh.nh_dev;
	params->rt_metric = f6i->fib6_metric;

	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
	 * because we need to get nd_tbl via the stub
	 */
	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
				      ndisc_hashfn, dst, dev);
4411 4412
	if (!neigh)
		return BPF_FIB_LKUP_RET_NO_NEIGH;
4413

4414
	return bpf_fib_set_fwd_params(params, neigh, dev);
4415 4416 4417 4418 4419 4420 4421 4422 4423
}
#endif

BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
	if (plen < sizeof(*params))
		return -EINVAL;

4424 4425 4426
	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
		return -EINVAL;

4427 4428 4429 4430
	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4431
					   flags, true);
4432 4433 4434 4435
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4436
					   flags, true);
4437 4438
#endif
	}
4439
	return -EAFNOSUPPORT;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
}

static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
	.func		= bpf_xdp_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
{
4455
	struct net *net = dev_net(skb->dev);
4456
	int rc = -EAFNOSUPPORT;
4457

4458 4459 4460
	if (plen < sizeof(*params))
		return -EINVAL;

4461 4462 4463
	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
		return -EINVAL;

4464 4465 4466
	switch (params->family) {
#if IS_ENABLED(CONFIG_INET)
	case AF_INET:
4467
		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4468
		break;
4469 4470 4471
#endif
#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6:
4472
		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4473
		break;
4474 4475
#endif
	}
4476

4477
	if (!rc) {
4478 4479
		struct net_device *dev;

4480
		dev = dev_get_by_index_rcu(net, params->ifindex);
4481
		if (!is_skb_forwardable(dev, skb))
4482
			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4483 4484
	}

4485
	return rc;
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
}

static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
	.func		= bpf_skb_fib_lookup,
	.gpl_only	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_PTR_TO_MEM,
	.arg3_type      = ARG_CONST_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
{
	int err;
	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;

	if (!seg6_validate_srh(srh, len))
		return -EINVAL;

	switch (type) {
	case BPF_LWT_ENCAP_SEG6_INLINE:
		if (skb->protocol != htons(ETH_P_IPV6))
			return -EBADMSG;

		err = seg6_do_srh_inline(skb, srh);
		break;
	case BPF_LWT_ENCAP_SEG6:
		skb_reset_inner_headers(skb);
		skb->encapsulation = 1;
		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
		break;
	default:
		return -EINVAL;
	}

	bpf_compute_data_pointers(skb);
	if (err)
		return err;

	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
	skb_set_transport_header(skb, sizeof(struct ipv6hdr));

	return seg6_lookup_nexthop(skb, NULL, 0);
}
#endif /* CONFIG_IPV6_SEG6_BPF */

BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
	   u32, len)
{
	switch (type) {
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
	case BPF_LWT_ENCAP_SEG6:
	case BPF_LWT_ENCAP_SEG6_INLINE:
		return bpf_push_seg6_encap(skb, type, hdr, len);
#endif
	default:
		return -EINVAL;
	}
}

static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
	.func		= bpf_lwt_push_encap,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

4558
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4559 4560 4561 4562 4563
BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
	   const void *, from, u32, len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
4564
	struct ipv6_sr_hdr *srh = srh_state->srh;
4565 4566 4567
	void *srh_tlvs, *srh_end, *ptr;
	int srhoff = 0;

4568
	if (srh == NULL)
4569 4570 4571 4572 4573 4574 4575
		return -EINVAL;

	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);

	ptr = skb->data + offset;
	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4576
		srh_state->valid = false;
4577 4578 4579 4580 4581 4582
	else if (ptr < (void *)&srh->flags ||
		 ptr + len > (void *)&srh->segments)
		return -EFAULT;

	if (unlikely(bpf_try_make_writable(skb, offset + len)))
		return -EFAULT;
4583 4584 4585
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
		return -EINVAL;
	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

	memcpy(skb->data + offset, from, len);
	return 0;
}

static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
	.func		= bpf_lwt_seg6_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

4601
static void bpf_update_srh_state(struct sk_buff *skb)
4602 4603 4604 4605 4606
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
	int srhoff = 0;

4607 4608 4609 4610 4611 4612
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
		srh_state->srh = NULL;
	} else {
		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
		srh_state->valid = true;
4613
	}
4614 4615 4616 4617 4618 4619 4620 4621 4622
}

BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
	   u32, action, void *, param, u32, param_len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
	int hdroff = 0;
	int err;
4623 4624 4625

	switch (action) {
	case SEG6_LOCAL_ACTION_END_X:
4626 4627
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4628 4629 4630 4631
		if (param_len != sizeof(struct in6_addr))
			return -EINVAL;
		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
	case SEG6_LOCAL_ACTION_END_T:
4632 4633
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4634 4635 4636
		if (param_len != sizeof(int))
			return -EINVAL;
		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4637 4638 4639
	case SEG6_LOCAL_ACTION_END_DT6:
		if (!seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4640 4641
		if (param_len != sizeof(int))
			return -EINVAL;
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654

		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
			return -EBADMSG;
		if (!pskb_pull(skb, hdroff))
			return -EBADMSG;

		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
		skb_reset_network_header(skb);
		skb_reset_transport_header(skb);
		skb->encapsulation = 0;

		bpf_compute_data_pointers(skb);
		bpf_update_srh_state(skb);
4655 4656
		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
	case SEG6_LOCAL_ACTION_END_B6:
4657 4658
		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4659 4660 4661
		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
					  param, param_len);
		if (!err)
4662 4663
			bpf_update_srh_state(skb);

4664 4665
		return err;
	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4666 4667
		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
			return -EBADMSG;
4668 4669 4670
		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
					  param, param_len);
		if (!err)
4671 4672
			bpf_update_srh_state(skb);

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		return err;
	default:
		return -EINVAL;
	}
}

static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
	.func		= bpf_lwt_seg6_action,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_MEM,
	.arg4_type	= ARG_CONST_SIZE
};

BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
	   s32, len)
{
	struct seg6_bpf_srh_state *srh_state =
		this_cpu_ptr(&seg6_bpf_srh_states);
4694
	struct ipv6_sr_hdr *srh = srh_state->srh;
4695 4696 4697 4698 4699
	void *srh_end, *srh_tlvs, *ptr;
	struct ipv6hdr *hdr;
	int srhoff = 0;
	int ret;

4700
	if (unlikely(srh == NULL))
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		return -EINVAL;

	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
			((srh->first_segment + 1) << 4));
	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
			srh_state->hdrlen);
	ptr = skb->data + offset;

	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
		return -EFAULT;
	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
		return -EFAULT;

	if (len > 0) {
		ret = skb_cow_head(skb, len);
		if (unlikely(ret < 0))
			return ret;

		ret = bpf_skb_net_hdr_push(skb, offset, len);
	} else {
		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
	}

	bpf_compute_data_pointers(skb);
	if (unlikely(ret < 0))
		return ret;

	hdr = (struct ipv6hdr *)skb->data;
	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));

4731 4732 4733
	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
		return -EINVAL;
	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4734
	srh_state->hdrlen += len;
4735
	srh_state->valid = false;
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	return 0;
}

static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
	.func		= bpf_lwt_seg6_adjust_srh,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
};
4747
#endif /* CONFIG_IPV6_SEG6_BPF */
4748 4749 4750 4751 4752 4753 4754 4755

bool bpf_helper_changes_pkt_data(void *func)
{
	if (func == bpf_skb_vlan_push ||
	    func == bpf_skb_vlan_pop ||
	    func == bpf_skb_store_bytes ||
	    func == bpf_skb_change_proto ||
	    func == bpf_skb_change_head ||
4756
	    func == sk_skb_change_head ||
4757
	    func == bpf_skb_change_tail ||
4758
	    func == sk_skb_change_tail ||
4759 4760
	    func == bpf_skb_adjust_room ||
	    func == bpf_skb_pull_data ||
4761
	    func == sk_skb_pull_data ||
4762 4763 4764 4765 4766 4767 4768
	    func == bpf_clone_redirect ||
	    func == bpf_l3_csum_replace ||
	    func == bpf_l4_csum_replace ||
	    func == bpf_xdp_adjust_head ||
	    func == bpf_xdp_adjust_meta ||
	    func == bpf_msg_pull_data ||
	    func == bpf_xdp_adjust_tail ||
4769
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4770 4771
	    func == bpf_lwt_seg6_store_bytes ||
	    func == bpf_lwt_seg6_adjust_srh ||
4772 4773 4774
	    func == bpf_lwt_seg6_action ||
#endif
	    func == bpf_lwt_push_encap)
4775 4776 4777 4778 4779
		return true;

	return false;
}

4780
static const struct bpf_func_proto *
4781
bpf_base_func_proto(enum bpf_func_id func_id)
4782 4783 4784 4785 4786 4787 4788 4789
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
4790 4791
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
4792
	case BPF_FUNC_get_smp_processor_id:
4793
		return &bpf_get_raw_smp_processor_id_proto;
4794 4795
	case BPF_FUNC_get_numa_node_id:
		return &bpf_get_numa_node_id_proto;
4796 4797
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
4798 4799
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
4800
	case BPF_FUNC_trace_printk:
4801 4802
		if (capable(CAP_SYS_ADMIN))
			return bpf_get_trace_printk_proto();
4803
		/* else: fall through */
4804 4805 4806 4807 4808
	default:
		return NULL;
	}
}

4809
static const struct bpf_func_proto *
4810
sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4811 4812 4813 4814 4815 4816 4817
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
4818 4819
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
4820 4821 4822 4823 4824
	default:
		return bpf_base_func_proto(func_id);
	}
}

A
Andrey Ignatov 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833
static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	/* inet and inet6 sockets are created in a process
	 * context so there is always a valid uid/gid
	 */
	case BPF_FUNC_get_current_uid_gid:
		return &bpf_get_current_uid_gid_proto;
A
Andrey Ignatov 已提交
4834 4835 4836 4837 4838 4839 4840 4841
	case BPF_FUNC_bind:
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_CONNECT:
		case BPF_CGROUP_INET6_CONNECT:
			return &bpf_bind_proto;
		default:
			return NULL;
		}
4842 4843
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_sock_addr_proto;
4844 4845
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
A
Andrey Ignatov 已提交
4846 4847 4848 4849 4850
	default:
		return bpf_base_func_proto(func_id);
	}
}

4851
static const struct bpf_func_proto *
4852
sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4853 4854 4855 4856
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4857 4858
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4859 4860
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4861 4862
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4863 4864 4865 4866 4867
	default:
		return bpf_base_func_proto(func_id);
	}
}

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
	default:
		return sk_filter_func_proto(func_id, prog);
	}
}

4879
static const struct bpf_func_proto *
4880
tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4881 4882 4883 4884
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
4885 4886
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
4887 4888
	case BPF_FUNC_skb_load_bytes_relative:
		return &bpf_skb_load_bytes_relative_proto;
4889 4890
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
4891 4892
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
4893 4894
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
4895 4896 4897 4898
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
4899 4900
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
4901 4902
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
4903 4904 4905 4906
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
4907 4908
	case BPF_FUNC_skb_change_proto:
		return &bpf_skb_change_proto_proto;
4909 4910
	case BPF_FUNC_skb_change_type:
		return &bpf_skb_change_type_proto;
4911 4912
	case BPF_FUNC_skb_adjust_room:
		return &bpf_skb_adjust_room_proto;
4913 4914
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
4915 4916 4917
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
4918 4919 4920 4921 4922
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
4923 4924
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
4925 4926
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
4927 4928
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
4929 4930
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
4931 4932
	case BPF_FUNC_set_hash:
		return &bpf_set_hash_proto;
4933
	case BPF_FUNC_perf_event_output:
4934
		return &bpf_skb_event_output_proto;
4935 4936
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
4937 4938
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
4939 4940
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
4941 4942
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
4943 4944
	case BPF_FUNC_fib_lookup:
		return &bpf_skb_fib_lookup_proto;
4945 4946 4947 4948
#ifdef CONFIG_XFRM
	case BPF_FUNC_skb_get_xfrm_state:
		return &bpf_skb_get_xfrm_state_proto;
#endif
4949 4950 4951 4952
#ifdef CONFIG_SOCK_CGROUP_DATA
	case BPF_FUNC_skb_cgroup_id:
		return &bpf_skb_cgroup_id_proto;
#endif
4953
	default:
4954
		return bpf_base_func_proto(func_id);
4955 4956 4957
	}
}

4958
static const struct bpf_func_proto *
4959
xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4960
{
4961 4962 4963
	switch (func_id) {
	case BPF_FUNC_perf_event_output:
		return &bpf_xdp_event_output_proto;
4964 4965
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
4966 4967
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
4968 4969
	case BPF_FUNC_xdp_adjust_head:
		return &bpf_xdp_adjust_head_proto;
4970 4971
	case BPF_FUNC_xdp_adjust_meta:
		return &bpf_xdp_adjust_meta_proto;
4972 4973
	case BPF_FUNC_redirect:
		return &bpf_xdp_redirect_proto;
4974
	case BPF_FUNC_redirect_map:
4975
		return &bpf_xdp_redirect_map_proto;
4976 4977
	case BPF_FUNC_xdp_adjust_tail:
		return &bpf_xdp_adjust_tail_proto;
4978 4979
	case BPF_FUNC_fib_lookup:
		return &bpf_xdp_fib_lookup_proto;
4980
	default:
4981
		return bpf_base_func_proto(func_id);
4982
	}
4983 4984
}

4985
static const struct bpf_func_proto *
4986
sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4987 4988 4989 4990
{
	switch (func_id) {
	case BPF_FUNC_setsockopt:
		return &bpf_setsockopt_proto;
4991 4992
	case BPF_FUNC_getsockopt:
		return &bpf_getsockopt_proto;
4993 4994
	case BPF_FUNC_sock_ops_cb_flags_set:
		return &bpf_sock_ops_cb_flags_set_proto;
4995 4996
	case BPF_FUNC_sock_map_update:
		return &bpf_sock_map_update_proto;
4997 4998
	case BPF_FUNC_sock_hash_update:
		return &bpf_sock_hash_update_proto;
4999 5000
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_sock_ops_proto;
5001 5002
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5003 5004 5005 5006 5007
	default:
		return bpf_base_func_proto(func_id);
	}
}

5008 5009
static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5010 5011 5012 5013
{
	switch (func_id) {
	case BPF_FUNC_msg_redirect_map:
		return &bpf_msg_redirect_map_proto;
5014 5015
	case BPF_FUNC_msg_redirect_hash:
		return &bpf_msg_redirect_hash_proto;
5016 5017
	case BPF_FUNC_msg_apply_bytes:
		return &bpf_msg_apply_bytes_proto;
5018 5019
	case BPF_FUNC_msg_cork_bytes:
		return &bpf_msg_cork_bytes_proto;
5020 5021
	case BPF_FUNC_msg_pull_data:
		return &bpf_msg_pull_data_proto;
5022 5023
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5024 5025 5026 5027 5028
	default:
		return bpf_base_func_proto(func_id);
	}
}

5029 5030
static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5031 5032
{
	switch (func_id) {
5033 5034
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
5035 5036
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
5037
	case BPF_FUNC_skb_pull_data:
5038
		return &sk_skb_pull_data_proto;
5039
	case BPF_FUNC_skb_change_tail:
5040
		return &sk_skb_change_tail_proto;
5041
	case BPF_FUNC_skb_change_head:
5042
		return &sk_skb_change_head_proto;
5043 5044 5045 5046
	case BPF_FUNC_get_socket_cookie:
		return &bpf_get_socket_cookie_proto;
	case BPF_FUNC_get_socket_uid:
		return &bpf_get_socket_uid_proto;
5047 5048
	case BPF_FUNC_sk_redirect_map:
		return &bpf_sk_redirect_map_proto;
5049 5050
	case BPF_FUNC_sk_redirect_hash:
		return &bpf_sk_redirect_hash_proto;
5051 5052
	case BPF_FUNC_get_local_storage:
		return &bpf_get_local_storage_proto;
5053 5054 5055 5056 5057
	default:
		return bpf_base_func_proto(func_id);
	}
}

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_skb_load_bytes:
		return &bpf_skb_load_bytes_proto;
	case BPF_FUNC_skb_pull_data:
		return &bpf_skb_pull_data_proto;
	case BPF_FUNC_csum_diff:
		return &bpf_csum_diff_proto;
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
	case BPF_FUNC_get_hash_recalc:
		return &bpf_get_hash_recalc_proto;
	case BPF_FUNC_perf_event_output:
		return &bpf_skb_event_output_proto;
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
	case BPF_FUNC_skb_under_cgroup:
		return &bpf_skb_under_cgroup_proto;
	default:
		return bpf_base_func_proto(func_id);
	}
}

static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
	case BPF_FUNC_lwt_push_encap:
		return &bpf_lwt_push_encap_proto;
	default:
		return lwt_out_func_proto(func_id, prog);
	}
}

5096
static const struct bpf_func_proto *
5097
lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
{
	switch (func_id) {
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_skb_get_tunnel_opt:
		return &bpf_skb_get_tunnel_opt_proto;
	case BPF_FUNC_skb_set_tunnel_opt:
		return bpf_get_skb_set_tunnel_proto(func_id);
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
	case BPF_FUNC_skb_change_tail:
		return &bpf_skb_change_tail_proto;
	case BPF_FUNC_skb_change_head:
		return &bpf_skb_change_head_proto;
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
	case BPF_FUNC_csum_update:
		return &bpf_csum_update_proto;
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
	case BPF_FUNC_set_hash_invalid:
		return &bpf_set_hash_invalid_proto;
	default:
5127
		return lwt_out_func_proto(func_id, prog);
5128 5129 5130
	}
}

5131 5132 5133 5134
static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
	switch (func_id) {
5135
#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5136 5137 5138 5139 5140 5141
	case BPF_FUNC_lwt_seg6_store_bytes:
		return &bpf_lwt_seg6_store_bytes_proto;
	case BPF_FUNC_lwt_seg6_action:
		return &bpf_lwt_seg6_action_proto;
	case BPF_FUNC_lwt_seg6_adjust_srh:
		return &bpf_lwt_seg6_adjust_srh_proto;
5142
#endif
5143 5144
	default:
		return lwt_out_func_proto(func_id, prog);
5145 5146 5147
	}
}

5148
static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5149
				    const struct bpf_prog *prog,
5150
				    struct bpf_insn_access_aux *info)
5151
{
5152
	const int size_default = sizeof(__u32);
5153

5154 5155
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;
5156

5157
	/* The verifier guarantees that size > 0. */
5158 5159
	if (off % size != 0)
		return false;
5160 5161

	switch (off) {
5162 5163
	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
		if (off + size > offsetofend(struct __sk_buff, cb[4]))
5164 5165
			return false;
		break;
5166 5167 5168 5169
	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5170
	case bpf_ctx_range(struct __sk_buff, data):
5171
	case bpf_ctx_range(struct __sk_buff, data_meta):
5172 5173
	case bpf_ctx_range(struct __sk_buff, data_end):
		if (size != size_default)
5174
			return false;
5175 5176
		break;
	default:
5177
		/* Only narrow read access allowed for now. */
5178
		if (type == BPF_WRITE) {
5179
			if (size != size_default)
5180 5181
				return false;
		} else {
5182 5183
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5184
				return false;
5185
		}
5186
	}
5187 5188 5189 5190

	return true;
}

5191
static bool sk_filter_is_valid_access(int off, int size,
5192
				      enum bpf_access_type type,
5193
				      const struct bpf_prog *prog,
5194
				      struct bpf_insn_access_aux *info)
5195
{
5196
	switch (off) {
5197 5198
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data):
5199
	case bpf_ctx_range(struct __sk_buff, data_meta):
5200
	case bpf_ctx_range(struct __sk_buff, data_end):
5201
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5202
		return false;
5203
	}
5204

5205 5206
	if (type == BPF_WRITE) {
		switch (off) {
5207
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5208 5209 5210 5211 5212 5213
			break;
		default:
			return false;
		}
	}

5214
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5215 5216
}

5217 5218
static bool lwt_is_valid_access(int off, int size,
				enum bpf_access_type type,
5219
				const struct bpf_prog *prog,
5220
				struct bpf_insn_access_aux *info)
5221 5222
{
	switch (off) {
5223
	case bpf_ctx_range(struct __sk_buff, tc_classid):
5224
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5225
	case bpf_ctx_range(struct __sk_buff, data_meta):
5226 5227 5228 5229 5230
		return false;
	}

	if (type == BPF_WRITE) {
		switch (off) {
5231 5232 5233
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5234 5235 5236 5237 5238 5239
			break;
		default:
			return false;
		}
	}

5240 5241 5242 5243 5244 5245 5246 5247 5248
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

5249
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5250 5251
}

A
Andrey Ignatov 已提交
5252 5253 5254 5255
/* Attach type specific accesses */
static bool __sock_filter_check_attach_type(int off,
					    enum bpf_access_type access_type,
					    enum bpf_attach_type attach_type)
5256
{
A
Andrey Ignatov 已提交
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	switch (off) {
	case offsetof(struct bpf_sock, bound_dev_if):
	case offsetof(struct bpf_sock, mark):
	case offsetof(struct bpf_sock, priority):
		switch (attach_type) {
		case BPF_CGROUP_INET_SOCK_CREATE:
			goto full_access;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_ip4):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		switch (attach_type) {
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
		default:
			return false;
		}
	case bpf_ctx_range(struct bpf_sock, src_port):
		switch (attach_type) {
		case BPF_CGROUP_INET4_POST_BIND:
		case BPF_CGROUP_INET6_POST_BIND:
			goto read_only;
5286 5287 5288 5289
		default:
			return false;
		}
	}
A
Andrey Ignatov 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
read_only:
	return access_type == BPF_READ;
full_access:
	return true;
}

static bool __sock_filter_check_size(int off, int size,
				     struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);
5300

A
Andrey Ignatov 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	switch (off) {
	case bpf_ctx_range(struct bpf_sock, src_ip4):
	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
		bpf_ctx_record_field_size(info, size_default);
		return bpf_ctx_narrow_access_ok(off, size, size_default);
	}

	return size == size_default;
}

static bool sock_filter_is_valid_access(int off, int size,
					enum bpf_access_type type,
					const struct bpf_prog *prog,
					struct bpf_insn_access_aux *info)
{
	if (off < 0 || off >= sizeof(struct bpf_sock))
5317 5318 5319
		return false;
	if (off % size != 0)
		return false;
A
Andrey Ignatov 已提交
5320 5321 5322 5323
	if (!__sock_filter_check_attach_type(off, type,
					     prog->expected_attach_type))
		return false;
	if (!__sock_filter_check_size(off, size, info))
5324 5325 5326 5327
		return false;
	return true;
}

5328 5329
static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
				const struct bpf_prog *prog, int drop_verdict)
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
{
	struct bpf_insn *insn = insn_buf;

	if (!direct_write)
		return 0;

	/* if (!skb->cloned)
	 *       goto start;
	 *
	 * (Fast-path, otherwise approximation that we might be
	 *  a clone, do the rest in helper.)
	 */
	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);

	/* ret = bpf_skb_pull_data(skb, 0); */
	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
			       BPF_FUNC_skb_pull_data);
	/* if (!ret)
	 *      goto restore;
	 * return TC_ACT_SHOT;
	 */
	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5356
	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	*insn++ = BPF_EXIT_INSN();

	/* restore: */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
	/* start: */
	*insn++ = prog->insnsi[0];

	return insn - insn_buf;
}

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static int bpf_gen_ld_abs(const struct bpf_insn *orig,
			  struct bpf_insn *insn_buf)
{
	bool indirect = BPF_MODE(orig->code) == BPF_IND;
	struct bpf_insn *insn = insn_buf;

	/* We're guaranteed here that CTX is in R6. */
	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
	if (!indirect) {
		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
	} else {
		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
		if (orig->imm)
			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
	}

	switch (BPF_SIZE(orig->code)) {
	case BPF_B:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
		break;
	case BPF_H:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
		break;
	case BPF_W:
		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
		break;
	}

	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
	*insn++ = BPF_EXIT_INSN();

	return insn - insn_buf;
}

5402 5403 5404 5405 5406 5407
static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
			       const struct bpf_prog *prog)
{
	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
}

5408
static bool tc_cls_act_is_valid_access(int off, int size,
5409
				       enum bpf_access_type type,
5410
				       const struct bpf_prog *prog,
5411
				       struct bpf_insn_access_aux *info)
5412 5413 5414
{
	if (type == BPF_WRITE) {
		switch (off) {
5415 5416 5417 5418 5419
		case bpf_ctx_range(struct __sk_buff, mark):
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
		case bpf_ctx_range(struct __sk_buff, tc_classid):
		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5420 5421 5422 5423 5424
			break;
		default:
			return false;
		}
	}
5425

5426 5427 5428 5429
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
5430 5431 5432
	case bpf_ctx_range(struct __sk_buff, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
5433 5434 5435
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
5436 5437
	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
		return false;
5438 5439
	}

5440
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5441 5442
}

5443
static bool __is_valid_xdp_access(int off, int size)
5444 5445 5446 5447 5448
{
	if (off < 0 || off >= sizeof(struct xdp_md))
		return false;
	if (off % size != 0)
		return false;
D
Daniel Borkmann 已提交
5449
	if (size != sizeof(__u32))
5450 5451 5452 5453 5454 5455 5456
		return false;

	return true;
}

static bool xdp_is_valid_access(int off, int size,
				enum bpf_access_type type,
5457
				const struct bpf_prog *prog,
5458
				struct bpf_insn_access_aux *info)
5459
{
5460 5461 5462 5463 5464 5465 5466
	if (type == BPF_WRITE) {
		if (bpf_prog_is_dev_bound(prog->aux)) {
			switch (off) {
			case offsetof(struct xdp_md, rx_queue_index):
				return __is_valid_xdp_access(off, size);
			}
		}
5467
		return false;
5468
	}
5469 5470 5471

	switch (off) {
	case offsetof(struct xdp_md, data):
5472
		info->reg_type = PTR_TO_PACKET;
5473
		break;
5474 5475 5476
	case offsetof(struct xdp_md, data_meta):
		info->reg_type = PTR_TO_PACKET_META;
		break;
5477
	case offsetof(struct xdp_md, data_end):
5478
		info->reg_type = PTR_TO_PACKET_END;
5479 5480 5481
		break;
	}

5482
	return __is_valid_xdp_access(off, size);
5483 5484 5485 5486
}

void bpf_warn_invalid_xdp_action(u32 act)
{
5487 5488 5489 5490 5491
	const u32 act_max = XDP_REDIRECT;

	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
		  act > act_max ? "Illegal" : "Driver unsupported",
		  act);
5492 5493 5494
}
EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);

A
Andrey Ignatov 已提交
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
static bool sock_addr_is_valid_access(int off, int size,
				      enum bpf_access_type type,
				      const struct bpf_prog *prog,
				      struct bpf_insn_access_aux *info)
{
	const int size_default = sizeof(__u32);

	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
		return false;
	if (off % size != 0)
		return false;

	/* Disallow access to IPv6 fields from IPv4 contex and vise
	 * versa.
	 */
	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET4_BIND:
A
Andrey Ignatov 已提交
5514
		case BPF_CGROUP_INET4_CONNECT:
A
Andrey Ignatov 已提交
5515
		case BPF_CGROUP_UDP4_SENDMSG:
A
Andrey Ignatov 已提交
5516 5517 5518 5519 5520 5521 5522 5523
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_INET6_BIND:
A
Andrey Ignatov 已提交
5524
		case BPF_CGROUP_INET6_CONNECT:
A
Andrey Ignatov 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
		case BPF_CGROUP_UDP6_SENDMSG:
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_UDP4_SENDMSG:
			break;
		default:
			return false;
		}
		break;
	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
		switch (prog->expected_attach_type) {
		case BPF_CGROUP_UDP6_SENDMSG:
A
Andrey Ignatov 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
			break;
		default:
			return false;
		}
		break;
	}

	switch (off) {
	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
A
Andrey Ignatov 已提交
5553 5554 5555
	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
A
Andrey Ignatov 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
		/* Only narrow read access allowed for now. */
		if (type == BPF_READ) {
			bpf_ctx_record_field_size(info, size_default);
			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
				return false;
		} else {
			if (size != size_default)
				return false;
		}
		break;
	case bpf_ctx_range(struct bpf_sock_addr, user_port):
		if (size != size_default)
			return false;
		break;
	default:
		if (type == BPF_READ) {
			if (size != size_default)
				return false;
		} else {
			return false;
		}
	}

	return true;
}

5582 5583
static bool sock_ops_is_valid_access(int off, int size,
				     enum bpf_access_type type,
5584
				     const struct bpf_prog *prog,
5585
				     struct bpf_insn_access_aux *info)
L
Lawrence Brakmo 已提交
5586
{
5587 5588
	const int size_default = sizeof(__u32);

L
Lawrence Brakmo 已提交
5589 5590
	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
		return false;
5591

L
Lawrence Brakmo 已提交
5592 5593 5594 5595 5596 5597
	/* The verifier guarantees that size > 0. */
	if (off % size != 0)
		return false;

	if (type == BPF_WRITE) {
		switch (off) {
5598
		case offsetof(struct bpf_sock_ops, reply):
5599
		case offsetof(struct bpf_sock_ops, sk_txhash):
5600 5601
			if (size != size_default)
				return false;
L
Lawrence Brakmo 已提交
5602 5603 5604 5605
			break;
		default:
			return false;
		}
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
	} else {
		switch (off) {
		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
					bytes_acked):
			if (size != sizeof(__u64))
				return false;
			break;
		default:
			if (size != size_default)
				return false;
			break;
		}
L
Lawrence Brakmo 已提交
5618 5619
	}

5620
	return true;
L
Lawrence Brakmo 已提交
5621 5622
}

5623 5624 5625
static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
			   const struct bpf_prog *prog)
{
5626
	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5627 5628
}

5629 5630
static bool sk_skb_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5631
				   const struct bpf_prog *prog,
5632 5633
				   struct bpf_insn_access_aux *info)
{
5634 5635 5636 5637 5638 5639
	switch (off) {
	case bpf_ctx_range(struct __sk_buff, tc_classid):
	case bpf_ctx_range(struct __sk_buff, data_meta):
		return false;
	}

5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
	if (type == BPF_WRITE) {
		switch (off) {
		case bpf_ctx_range(struct __sk_buff, tc_index):
		case bpf_ctx_range(struct __sk_buff, priority):
			break;
		default:
			return false;
		}
	}

5650
	switch (off) {
5651
	case bpf_ctx_range(struct __sk_buff, mark):
5652
		return false;
5653 5654 5655 5656 5657 5658 5659 5660
	case bpf_ctx_range(struct __sk_buff, data):
		info->reg_type = PTR_TO_PACKET;
		break;
	case bpf_ctx_range(struct __sk_buff, data_end):
		info->reg_type = PTR_TO_PACKET_END;
		break;
	}

5661
	return bpf_skb_is_valid_access(off, size, type, prog, info);
5662 5663
}

5664 5665
static bool sk_msg_is_valid_access(int off, int size,
				   enum bpf_access_type type,
5666
				   const struct bpf_prog *prog,
5667 5668 5669 5670 5671 5672 5673 5674
				   struct bpf_insn_access_aux *info)
{
	if (type == BPF_WRITE)
		return false;

	switch (off) {
	case offsetof(struct sk_msg_md, data):
		info->reg_type = PTR_TO_PACKET;
5675 5676
		if (size != sizeof(__u64))
			return false;
5677 5678 5679
		break;
	case offsetof(struct sk_msg_md, data_end):
		info->reg_type = PTR_TO_PACKET_END;
5680 5681
		if (size != sizeof(__u64))
			return false;
5682
		break;
5683 5684 5685
	default:
		if (size != sizeof(__u32))
			return false;
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
	}

	if (off < 0 || off >= sizeof(struct sk_msg_md))
		return false;
	if (off % size != 0)
		return false;

	return true;
}

5696 5697 5698
static u32 bpf_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
				  struct bpf_insn *insn_buf,
5699
				  struct bpf_prog *prog, u32 *target_size)
5700 5701
{
	struct bpf_insn *insn = insn_buf;
5702
	int off;
5703

5704
	switch (si->off) {
5705
	case offsetof(struct __sk_buff, len):
5706
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5707 5708
				      bpf_target_off(struct sk_buff, len, 4,
						     target_size));
5709 5710
		break;

5711
	case offsetof(struct __sk_buff, protocol):
5712
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5713 5714
				      bpf_target_off(struct sk_buff, protocol, 2,
						     target_size));
5715 5716
		break;

5717
	case offsetof(struct __sk_buff, vlan_proto):
5718
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5719 5720
				      bpf_target_off(struct sk_buff, vlan_proto, 2,
						     target_size));
5721 5722
		break;

5723
	case offsetof(struct __sk_buff, priority):
5724
		if (type == BPF_WRITE)
5725
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5726 5727
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5728
		else
5729
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5730 5731
					      bpf_target_off(struct sk_buff, priority, 4,
							     target_size));
5732 5733
		break;

5734
	case offsetof(struct __sk_buff, ingress_ifindex):
5735
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5736 5737
				      bpf_target_off(struct sk_buff, skb_iif, 4,
						     target_size));
5738 5739 5740
		break;

	case offsetof(struct __sk_buff, ifindex):
5741
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5742
				      si->dst_reg, si->src_reg,
5743
				      offsetof(struct sk_buff, dev));
5744 5745
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5746 5747
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
5748 5749
		break;

5750
	case offsetof(struct __sk_buff, hash):
5751
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5752 5753
				      bpf_target_off(struct sk_buff, hash, 4,
						     target_size));
5754 5755
		break;

5756
	case offsetof(struct __sk_buff, mark):
5757
		if (type == BPF_WRITE)
5758
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5759 5760
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5761
		else
5762
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5763 5764
					      bpf_target_off(struct sk_buff, mark, 4,
							     target_size));
5765
		break;
5766 5767

	case offsetof(struct __sk_buff, pkt_type):
5768 5769 5770 5771 5772 5773 5774 5775
		*target_size = 1;
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
				      PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
#endif
		break;
5776 5777

	case offsetof(struct __sk_buff, queue_mapping):
5778 5779 5780 5781
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, queue_mapping, 2,
						     target_size));
		break;
5782 5783 5784

	case offsetof(struct __sk_buff, vlan_present):
	case offsetof(struct __sk_buff, vlan_tci):
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
				      bpf_target_off(struct sk_buff, vlan_tci, 2,
						     target_size));
		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
		}
		break;
5798 5799

	case offsetof(struct __sk_buff, cb[0]) ...
5800
	     offsetofend(struct __sk_buff, cb[4]) - 1:
5801
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5802 5803 5804
		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
			      offsetof(struct qdisc_skb_cb, data)) %
			     sizeof(__u64));
5805

5806
		prog->cb_access = 1;
5807 5808 5809 5810
		off  = si->off;
		off -= offsetof(struct __sk_buff, cb[0]);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, data);
5811
		if (type == BPF_WRITE)
5812
			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5813
					      si->src_reg, off);
5814
		else
5815
			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5816
					      si->src_reg, off);
5817 5818
		break;

5819
	case offsetof(struct __sk_buff, tc_classid):
5820 5821 5822 5823 5824 5825
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);

		off  = si->off;
		off -= offsetof(struct __sk_buff, tc_classid);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct qdisc_skb_cb, tc_classid);
5826
		*target_size = 2;
5827
		if (type == BPF_WRITE)
5828 5829
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5830
		else
5831 5832
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
					      si->src_reg, off);
5833 5834
		break;

5835
	case offsetof(struct __sk_buff, data):
5836
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5837
				      si->dst_reg, si->src_reg,
5838 5839 5840
				      offsetof(struct sk_buff, data));
		break;

5841 5842 5843 5844 5845 5846 5847 5848 5849
	case offsetof(struct __sk_buff, data_meta):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_meta);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_meta);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;

5850
	case offsetof(struct __sk_buff, data_end):
5851 5852 5853 5854 5855 5856
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct bpf_skb_data_end, data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
5857 5858
		break;

5859 5860 5861
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		if (type == BPF_WRITE)
5862
			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5863 5864
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5865
		else
5866
			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5867 5868
					      bpf_target_off(struct sk_buff, tc_index, 2,
							     target_size));
5869
#else
5870
		*target_size = 2;
5871
		if (type == BPF_WRITE)
5872
			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5873
		else
5874
			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5875 5876 5877 5878 5879 5880
#endif
		break;

	case offsetof(struct __sk_buff, napi_id):
#if defined(CONFIG_NET_RX_BUSY_POLL)
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5881 5882
				      bpf_target_off(struct sk_buff, napi_id, 4,
						     target_size));
5883 5884 5885
		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
#else
5886
		*target_size = 4;
5887
		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5888
#endif
5889
		break;
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
	case offsetof(struct __sk_buff, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_family,
						     2, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_daddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_rcv_saddr,
						     4, target_size));
		break;
	case offsetof(struct __sk_buff, remote_ip6[0]) ...
	     offsetof(struct __sk_buff, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, remote_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;
	case offsetof(struct __sk_buff, local_ip6[0]) ...
	     offsetof(struct __sk_buff, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct __sk_buff, local_ip6[0]);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct __sk_buff, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_dport,
						     2, target_size));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct __sk_buff, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      bpf_target_off(struct sock_common,
						     skc_num, 2, target_size));
		break;
5990 5991 5992
	}

	return insn - insn_buf;
5993 5994
}

5995
static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5996
					  const struct bpf_insn *si,
5997
					  struct bpf_insn *insn_buf,
5998
					  struct bpf_prog *prog, u32 *target_size)
5999 6000
{
	struct bpf_insn *insn = insn_buf;
A
Andrey Ignatov 已提交
6001
	int off;
6002

6003
	switch (si->off) {
6004 6005 6006 6007
	case offsetof(struct bpf_sock, bound_dev_if):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);

		if (type == BPF_WRITE)
6008
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6009 6010
					offsetof(struct sock, sk_bound_dev_if));
		else
6011
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6012 6013
				      offsetof(struct sock, sk_bound_dev_if));
		break;
6014

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
	case offsetof(struct bpf_sock, mark):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_mark));
		break;

	case offsetof(struct bpf_sock, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					offsetof(struct sock, sk_priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
				      offsetof(struct sock, sk_priority));
		break;

6037 6038 6039
	case offsetof(struct bpf_sock, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);

6040
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6041 6042 6043 6044
				      offsetof(struct sock, sk_family));
		break;

	case offsetof(struct bpf_sock, type):
6045
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6046
				      offsetof(struct sock, __sk_flags_offset));
6047 6048
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6049 6050 6051
		break;

	case offsetof(struct bpf_sock, protocol):
6052
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6053
				      offsetof(struct sock, __sk_flags_offset));
6054 6055
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6056
		break;
A
Andrey Ignatov 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

	case offsetof(struct bpf_sock, src_ip4):
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_rcv_saddr,
				       FIELD_SIZEOF(struct sock_common,
						    skc_rcv_saddr),
				       target_size));
		break;

	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		off = si->off;
		off -= offsetof(struct bpf_sock, src_ip6[0]);
		*insn++ = BPF_LDX_MEM(
			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
			bpf_target_off(
				struct sock_common,
				skc_v6_rcv_saddr.s6_addr32[0],
				FIELD_SIZEOF(struct sock_common,
					     skc_v6_rcv_saddr.s6_addr32[0]),
				target_size) + off);
#else
		(void)off;
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock, src_port):
		*insn++ = BPF_LDX_MEM(
			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
			si->dst_reg, si->src_reg,
			bpf_target_off(struct sock_common, skc_num,
				       FIELD_SIZEOF(struct sock_common,
						    skc_num),
				       target_size));
		break;
6094 6095 6096 6097 6098
	}

	return insn - insn_buf;
}

6099 6100
static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
					 const struct bpf_insn *si,
6101
					 struct bpf_insn *insn_buf,
6102
					 struct bpf_prog *prog, u32 *target_size)
6103 6104 6105
{
	struct bpf_insn *insn = insn_buf;

6106
	switch (si->off) {
6107 6108
	case offsetof(struct __sk_buff, ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6109
				      si->dst_reg, si->src_reg,
6110
				      offsetof(struct sk_buff, dev));
6111
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6112 6113
				      bpf_target_off(struct net_device, ifindex, 4,
						     target_size));
6114 6115
		break;
	default:
6116 6117
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
6118 6119 6120 6121 6122
	}

	return insn - insn_buf;
}

6123 6124
static u32 xdp_convert_ctx_access(enum bpf_access_type type,
				  const struct bpf_insn *si,
6125
				  struct bpf_insn *insn_buf,
6126
				  struct bpf_prog *prog, u32 *target_size)
6127 6128 6129
{
	struct bpf_insn *insn = insn_buf;

6130
	switch (si->off) {
6131
	case offsetof(struct xdp_md, data):
6132
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6133
				      si->dst_reg, si->src_reg,
6134 6135
				      offsetof(struct xdp_buff, data));
		break;
6136 6137 6138 6139 6140
	case offsetof(struct xdp_md, data_meta):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, data_meta));
		break;
6141
	case offsetof(struct xdp_md, data_end):
6142
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6143
				      si->dst_reg, si->src_reg,
6144 6145
				      offsetof(struct xdp_buff, data_end));
		break;
6146 6147 6148 6149 6150 6151 6152 6153
	case offsetof(struct xdp_md, ingress_ifindex):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
				      si->dst_reg, si->dst_reg,
				      offsetof(struct xdp_rxq_info, dev));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6154
				      offsetof(struct net_device, ifindex));
6155 6156 6157 6158 6159 6160
		break;
	case offsetof(struct xdp_md, rx_queue_index):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
				      si->dst_reg, si->src_reg,
				      offsetof(struct xdp_buff, rxq));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6161 6162
				      offsetof(struct xdp_rxq_info,
					       queue_index));
6163
		break;
6164 6165 6166 6167 6168
	}

	return insn - insn_buf;
}

A
Andrey Ignatov 已提交
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
 * context Structure, F is Field in context structure that contains a pointer
 * to Nested Structure of type NS that has the field NF.
 *
 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
 * sure that SIZE is not greater than actual size of S.F.NF.
 *
 * If offset OFF is provided, the load happens from that offset relative to
 * offset of NF.
 */
#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
	do {								       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
				      si->src_reg, offsetof(S, F));	       \
		*insn++ = BPF_LDX_MEM(					       \
			SIZE, si->dst_reg, si->dst_reg,			       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
	} while (0)

#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
					     BPF_FIELD_SIZEOF(NS, NF), 0)

/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
 *
 * It doesn't support SIZE argument though since narrow stores are not
 * supported for now.
 *
 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
 * "register" since two registers available in convert_ctx_access are not
 * enough: we can't override neither SRC, since it contains value to store, nor
 * DST since it contains pointer to context that may be used by later
 * instructions. But we need a temporary place to save pointer to nested
 * structure whose field we want to store to.
 */
#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
	do {								       \
		int tmp_reg = BPF_REG_9;				       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
			--tmp_reg;					       \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
				      offsetof(S, TF));			       \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
				      si->dst_reg, offsetof(S, F));	       \
		*insn++ = BPF_STX_MEM(					       \
			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
				       target_size)			       \
				+ OFF);					       \
		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
				      offsetof(S, TF));			       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
						      TF)		       \
	do {								       \
		if (type == BPF_WRITE) {				       \
			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
							 TF);		       \
		} else {						       \
			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
				S, NS, F, NF, SIZE, OFF);  \
		}							       \
	} while (0)

#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)

static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
					const struct bpf_insn *si,
					struct bpf_insn *insn_buf,
					struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_addr, user_family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sockaddr, uaddr, sa_family);
		break;

	case offsetof(struct bpf_sock_addr, user_ip4):
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
			tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, user_port):
		/* To get port we need to know sa_family first and then treat
		 * sockaddr as either sockaddr_in or sockaddr_in6.
		 * Though we can simplify since port field has same offset and
		 * size in both structures.
		 * Here we check this invariant and use just one of the
		 * structures if it's true.
		 */
		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
			     offsetof(struct sockaddr_in6, sin6_port));
		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
						     struct sockaddr_in6, uaddr,
						     sin6_port, tmp_reg);
		break;

	case offsetof(struct bpf_sock_addr, family):
		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
					    struct sock, sk, sk_family);
		break;

	case offsetof(struct bpf_sock_addr, type):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
		break;

	case offsetof(struct bpf_sock_addr, protocol):
		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct sock, sk,
			__sk_flags_offset, BPF_W, 0);
		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
					SK_FL_PROTO_SHIFT);
		break;
A
Andrey Ignatov 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

	case offsetof(struct bpf_sock_addr, msg_src_ip4):
		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
		break;

	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
				msg_src_ip6[3]):
		off = si->off;
		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
		break;
A
Andrey Ignatov 已提交
6327 6328 6329 6330 6331
	}

	return insn - insn_buf;
}

L
Lawrence Brakmo 已提交
6332 6333 6334
static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
				       const struct bpf_insn *si,
				       struct bpf_insn *insn_buf,
6335 6336
				       struct bpf_prog *prog,
				       u32 *target_size)
L
Lawrence Brakmo 已提交
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct bpf_sock_ops, op) ...
	     offsetof(struct bpf_sock_ops, replylong[3]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
		off = si->off;
		off -= offsetof(struct bpf_sock_ops, op);
		off += offsetof(struct bpf_sock_ops_kern, op);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
					      off);
		break;

	case offsetof(struct bpf_sock_ops, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct bpf_sock_ops, local_ip4):
6384 6385
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);
L
Lawrence Brakmo 已提交
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
	     offsetof(struct bpf_sock_ops, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct bpf_sock_ops, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct bpf_sock_ops, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
6462 6463 6464 6465 6466 6467 6468 6469 6470 6471

	case offsetof(struct bpf_sock_ops, is_fullsock):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern,
						is_fullsock),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern,
					       is_fullsock));
		break;

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
	case offsetof(struct bpf_sock_ops, state):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_state));
		break;

	case offsetof(struct bpf_sock_ops, rtt_min):
		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
			     sizeof(struct minmax));
		BUILD_BUG_ON(sizeof(struct minmax) <
			     sizeof(struct minmax_sample));

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct bpf_sock_ops_kern, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct bpf_sock_ops_kern, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct tcp_sock, rtt_min) +
				      FIELD_SIZEOF(struct minmax_sample, t));
		break;

6498 6499
/* Helper macro for adding read access to tcp_sock or sock fields. */
#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6500
	do {								      \
6501 6502
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      si->dst_reg, si->src_reg,		      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
6514 6515 6516 6517
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
						       OBJ_FIELD),	      \
				      si->dst_reg, si->dst_reg,		      \
				      offsetof(OBJ, OBJ_FIELD));	      \
6518 6519
	} while (0)

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
/* Helper macro for adding write access to tcp_sock or sock fields.
 * The macro is called with two registers, dst_reg which contains a pointer
 * to ctx (context) and src_reg which contains the value that should be
 * stored. However, we need an additional register since we cannot overwrite
 * dst_reg because it may be used later in the program.
 * Instead we "borrow" one of the other register. We first save its value
 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
 * it at the end of the macro.
 */
#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
	do {								      \
		int reg = BPF_REG_9;					      \
		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		if (si->dst_reg == reg || si->src_reg == reg)		      \
			reg--;						      \
		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern,     \
						is_fullsock),		      \
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       is_fullsock));		      \
		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
						struct bpf_sock_ops_kern, sk),\
				      reg, si->dst_reg,			      \
				      offsetof(struct bpf_sock_ops_kern, sk));\
		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
				      reg, si->src_reg,			      \
				      offsetof(OBJ, OBJ_FIELD));	      \
		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
				      offsetof(struct bpf_sock_ops_kern,      \
					       temp));			      \
	} while (0)

#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
	do {								      \
		if (TYPE == BPF_WRITE)					      \
			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
		else							      \
			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
	} while (0)

6568
	case offsetof(struct bpf_sock_ops, snd_cwnd):
6569
		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6570 6571 6572
		break;

	case offsetof(struct bpf_sock_ops, srtt_us):
6573
		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6574
		break;
6575 6576 6577 6578 6579

	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
				   struct tcp_sock);
		break;
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653

	case offsetof(struct bpf_sock_ops, snd_ssthresh):
		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rcv_nxt):
		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_nxt):
		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, snd_una):
		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, mss_cache):
		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, ecn_flags):
		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_delivered):
		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, rate_interval_us):
		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, packets_out):
		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, retrans_out):
		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, total_retrans):
		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_in):
		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_in):
		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, segs_out):
		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, data_segs_out):
		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, lost_out):
		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sacked_out):
		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, sk_txhash):
6654 6655
		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
					  struct sock, type);
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
		break;

	case offsetof(struct bpf_sock_ops, bytes_received):
		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
				   struct tcp_sock);
		break;

	case offsetof(struct bpf_sock_ops, bytes_acked):
		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
		break;
6666

L
Lawrence Brakmo 已提交
6667 6668 6669 6670
	}
	return insn - insn_buf;
}

6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
	int off;

	switch (si->off) {
	case offsetof(struct __sk_buff, data_end):
		off  = si->off;
		off -= offsetof(struct __sk_buff, data_end);
		off += offsetof(struct sk_buff, cb);
		off += offsetof(struct tcp_skb_cb, bpf.data_end);
		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
				      si->src_reg, off);
		break;
	default:
		return bpf_convert_ctx_access(type, si, insn_buf, prog,
					      target_size);
	}

	return insn - insn_buf;
}

6696 6697 6698 6699 6700 6701
static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
				     const struct bpf_insn *si,
				     struct bpf_insn *insn_buf,
				     struct bpf_prog *prog, u32 *target_size)
{
	struct bpf_insn *insn = insn_buf;
Y
YueHaibing 已提交
6702
#if IS_ENABLED(CONFIG_IPV6)
6703
	int off;
Y
YueHaibing 已提交
6704
#endif
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

	switch (si->off) {
	case offsetof(struct sk_msg_md, data):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data));
		break;
	case offsetof(struct sk_msg_md, data_end):
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, data_end));
		break;
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
	case offsetof(struct sk_msg_md, family):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_family));
		break;

	case offsetof(struct sk_msg_md, remote_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_daddr));
		break;

	case offsetof(struct sk_msg_md, local_ip4):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_rcv_saddr) != 4);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
					      struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_rcv_saddr));
		break;

	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
	     offsetof(struct sk_msg_md, remote_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_daddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_daddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, local_ip6[0]) ...
	     offsetof(struct sk_msg_md, local_ip6[3]):
#if IS_ENABLED(CONFIG_IPV6)
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);

		off = si->off;
		off -= offsetof(struct sk_msg_md, local_ip6[0]);
		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common,
					       skc_v6_rcv_saddr.s6_addr32[0]) +
				      off);
#else
		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
#endif
		break;

	case offsetof(struct sk_msg_md, remote_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_dport));
#ifndef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
#endif
		break;

	case offsetof(struct sk_msg_md, local_port):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);

		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
						struct sk_msg_buff, sk),
				      si->dst_reg, si->src_reg,
				      offsetof(struct sk_msg_buff, sk));
		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
				      offsetof(struct sock_common, skc_num));
		break;
6818 6819 6820 6821 6822
	}

	return insn - insn_buf;
}

6823
const struct bpf_verifier_ops sk_filter_verifier_ops = {
6824 6825
	.get_func_proto		= sk_filter_func_proto,
	.is_valid_access	= sk_filter_is_valid_access,
6826
	.convert_ctx_access	= bpf_convert_ctx_access,
6827
	.gen_ld_abs		= bpf_gen_ld_abs,
6828 6829
};

6830
const struct bpf_prog_ops sk_filter_prog_ops = {
6831
	.test_run		= bpf_prog_test_run_skb,
6832 6833 6834
};

const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6835 6836
	.get_func_proto		= tc_cls_act_func_proto,
	.is_valid_access	= tc_cls_act_is_valid_access,
6837
	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6838
	.gen_prologue		= tc_cls_act_prologue,
6839
	.gen_ld_abs		= bpf_gen_ld_abs,
6840 6841 6842
};

const struct bpf_prog_ops tc_cls_act_prog_ops = {
6843
	.test_run		= bpf_prog_test_run_skb,
6844 6845
};

6846
const struct bpf_verifier_ops xdp_verifier_ops = {
6847 6848 6849
	.get_func_proto		= xdp_func_proto,
	.is_valid_access	= xdp_is_valid_access,
	.convert_ctx_access	= xdp_convert_ctx_access,
6850 6851 6852
};

const struct bpf_prog_ops xdp_prog_ops = {
6853
	.test_run		= bpf_prog_test_run_xdp,
6854 6855
};

6856
const struct bpf_verifier_ops cg_skb_verifier_ops = {
6857
	.get_func_proto		= cg_skb_func_proto,
6858
	.is_valid_access	= sk_filter_is_valid_access,
6859
	.convert_ctx_access	= bpf_convert_ctx_access,
6860 6861 6862
};

const struct bpf_prog_ops cg_skb_prog_ops = {
6863
	.test_run		= bpf_prog_test_run_skb,
6864 6865
};

6866 6867
const struct bpf_verifier_ops lwt_in_verifier_ops = {
	.get_func_proto		= lwt_in_func_proto,
6868
	.is_valid_access	= lwt_is_valid_access,
6869
	.convert_ctx_access	= bpf_convert_ctx_access,
6870 6871
};

6872 6873 6874 6875 6876 6877
const struct bpf_prog_ops lwt_in_prog_ops = {
	.test_run		= bpf_prog_test_run_skb,
};

const struct bpf_verifier_ops lwt_out_verifier_ops = {
	.get_func_proto		= lwt_out_func_proto,
6878
	.is_valid_access	= lwt_is_valid_access,
6879
	.convert_ctx_access	= bpf_convert_ctx_access,
6880 6881
};

6882
const struct bpf_prog_ops lwt_out_prog_ops = {
6883
	.test_run		= bpf_prog_test_run_skb,
6884 6885
};

6886
const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6887 6888
	.get_func_proto		= lwt_xmit_func_proto,
	.is_valid_access	= lwt_is_valid_access,
6889
	.convert_ctx_access	= bpf_convert_ctx_access,
6890
	.gen_prologue		= tc_cls_act_prologue,
6891 6892 6893
};

const struct bpf_prog_ops lwt_xmit_prog_ops = {
6894
	.test_run		= bpf_prog_test_run_skb,
6895 6896
};

6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
	.get_func_proto		= lwt_seg6local_func_proto,
	.is_valid_access	= lwt_is_valid_access,
	.convert_ctx_access	= bpf_convert_ctx_access,
};

const struct bpf_prog_ops lwt_seg6local_prog_ops = {
	.test_run		= bpf_prog_test_run_skb,
};

6907
const struct bpf_verifier_ops cg_sock_verifier_ops = {
6908
	.get_func_proto		= sock_filter_func_proto,
6909 6910 6911 6912
	.is_valid_access	= sock_filter_is_valid_access,
	.convert_ctx_access	= sock_filter_convert_ctx_access,
};

6913 6914 6915
const struct bpf_prog_ops cg_sock_prog_ops = {
};

A
Andrey Ignatov 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924
const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
	.get_func_proto		= sock_addr_func_proto,
	.is_valid_access	= sock_addr_is_valid_access,
	.convert_ctx_access	= sock_addr_convert_ctx_access,
};

const struct bpf_prog_ops cg_sock_addr_prog_ops = {
};

6925
const struct bpf_verifier_ops sock_ops_verifier_ops = {
6926
	.get_func_proto		= sock_ops_func_proto,
L
Lawrence Brakmo 已提交
6927 6928 6929 6930
	.is_valid_access	= sock_ops_is_valid_access,
	.convert_ctx_access	= sock_ops_convert_ctx_access,
};

6931 6932 6933 6934
const struct bpf_prog_ops sock_ops_prog_ops = {
};

const struct bpf_verifier_ops sk_skb_verifier_ops = {
6935 6936
	.get_func_proto		= sk_skb_func_proto,
	.is_valid_access	= sk_skb_is_valid_access,
6937
	.convert_ctx_access	= sk_skb_convert_ctx_access,
6938
	.gen_prologue		= sk_skb_prologue,
6939 6940
};

6941 6942 6943
const struct bpf_prog_ops sk_skb_prog_ops = {
};

6944 6945 6946 6947 6948 6949 6950 6951 6952
const struct bpf_verifier_ops sk_msg_verifier_ops = {
	.get_func_proto		= sk_msg_func_proto,
	.is_valid_access	= sk_msg_is_valid_access,
	.convert_ctx_access	= sk_msg_convert_ctx_access,
};

const struct bpf_prog_ops sk_msg_prog_ops = {
};

6953
int sk_detach_filter(struct sock *sk)
6954 6955 6956 6957
{
	int ret = -ENOENT;
	struct sk_filter *filter;

6958 6959 6960
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

6961 6962
	filter = rcu_dereference_protected(sk->sk_filter,
					   lockdep_sock_is_held(sk));
6963
	if (filter) {
6964
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
6965
		sk_filter_uncharge(sk, filter);
6966 6967
		ret = 0;
	}
6968

6969 6970
	return ret;
}
6971
EXPORT_SYMBOL_GPL(sk_detach_filter);
6972

6973 6974
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
6975
{
6976
	struct sock_fprog_kern *fprog;
6977
	struct sk_filter *filter;
6978
	int ret = 0;
6979 6980 6981

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
6982
					   lockdep_sock_is_held(sk));
6983 6984
	if (!filter)
		goto out;
6985 6986

	/* We're copying the filter that has been originally attached,
6987 6988
	 * so no conversion/decode needed anymore. eBPF programs that
	 * have no original program cannot be dumped through this.
6989
	 */
6990
	ret = -EACCES;
6991
	fprog = filter->prog->orig_prog;
6992 6993
	if (!fprog)
		goto out;
6994 6995

	ret = fprog->len;
6996
	if (!len)
6997
		/* User space only enquires number of filter blocks. */
6998
		goto out;
6999

7000
	ret = -EINVAL;
7001
	if (len < fprog->len)
7002 7003 7004
		goto out;

	ret = -EFAULT;
7005
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7006
		goto out;
7007

7008 7009 7010 7011
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
7012 7013 7014 7015
out:
	release_sock(sk);
	return ret;
}