blk-mq.c 58.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 163
			       struct request *rq, int op,
			       unsigned int op_flags)
164
{
165
	if (blk_queue_io_stat(q))
166
		op_flags |= REQ_IO_STAT;
167

168 169 170
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
171
	rq->mq_ctx = ctx;
172
	req_set_op_attrs(rq, op, op_flags);
173 174 175 176 177 178
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
179
	rq->start_time = jiffies;
180 181
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
182
	set_start_time_ns(rq);
183 184 185 186 187 188 189 190 191 192
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

193 194
	rq->cmd = rq->__cmd;

195 196 197 198 199 200
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
201 202
	rq->timeout = 0;

203 204 205 206
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

207
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 209
}

210
static struct request *
211
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 213 214 215
{
	struct request *rq;
	unsigned int tag;

216
	tag = blk_mq_get_tag(data);
217
	if (tag != BLK_MQ_TAG_FAIL) {
218
		rq = data->hctx->tags->rqs[tag];
219

220
		if (blk_mq_tag_busy(data->hctx)) {
221
			rq->cmd_flags = REQ_MQ_INFLIGHT;
222
			atomic_inc(&data->hctx->nr_active);
223 224 225
		}

		rq->tag = tag;
226
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 228 229 230 231 232
		return rq;
	}

	return NULL;
}

233 234
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
235
{
236 237
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
238
	struct request *rq;
239
	struct blk_mq_alloc_data alloc_data;
240
	int ret;
241

242
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 244
	if (ret)
		return ERR_PTR(ret);
245

246 247
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259
		ctx = alloc_data.ctx;
260 261
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
262
	if (!rq) {
263
		blk_queue_exit(q);
264
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
265
	}
266 267 268 269

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
270 271
	return rq;
}
272
EXPORT_SYMBOL(blk_mq_alloc_request);
273

M
Ming Lin 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

299 300 301 302
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
303
	hctx = q->queue_hw_ctx[hctx_idx];
304 305 306 307
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
308 309 310 311 312
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
313 314
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
315 316 317
	}

	return rq;
318 319 320 321

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
322 323 324
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

325 326 327 328 329 330
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

331 332
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
333
	rq->cmd_flags = 0;
334

335
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337
	blk_queue_exit(q);
338 339
}

340
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 342 343 344 345
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
346 347 348 349 350 351 352 353 354 355 356

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
357
}
J
Jens Axboe 已提交
358
EXPORT_SYMBOL_GPL(blk_mq_free_request);
359

360
inline void __blk_mq_end_request(struct request *rq, int error)
361
{
M
Ming Lei 已提交
362 363
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
364
	if (rq->end_io) {
365
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
366 367 368
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
369
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
370
	}
371
}
372
EXPORT_SYMBOL(__blk_mq_end_request);
373

374
void blk_mq_end_request(struct request *rq, int error)
375 376 377
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
378
	__blk_mq_end_request(rq, error);
379
}
380
EXPORT_SYMBOL(blk_mq_end_request);
381

382
static void __blk_mq_complete_request_remote(void *data)
383
{
384
	struct request *rq = data;
385

386
	rq->q->softirq_done_fn(rq);
387 388
}

389
static void blk_mq_ipi_complete_request(struct request *rq)
390 391
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
392
	bool shared = false;
393 394
	int cpu;

C
Christoph Hellwig 已提交
395
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
396 397 398
		rq->q->softirq_done_fn(rq);
		return;
	}
399 400

	cpu = get_cpu();
C
Christoph Hellwig 已提交
401 402 403 404
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
405
		rq->csd.func = __blk_mq_complete_request_remote;
406 407
		rq->csd.info = rq;
		rq->csd.flags = 0;
408
		smp_call_function_single_async(ctx->cpu, &rq->csd);
409
	} else {
410
		rq->q->softirq_done_fn(rq);
411
	}
412 413
	put_cpu();
}
414

415
static void __blk_mq_complete_request(struct request *rq)
416 417 418 419
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
420
		blk_mq_end_request(rq, rq->errors);
421 422 423 424
	else
		blk_mq_ipi_complete_request(rq);
}

425 426 427 428 429 430 431 432
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
433
void blk_mq_complete_request(struct request *rq, int error)
434
{
435 436 437
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
438
		return;
439 440
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
441
		__blk_mq_complete_request(rq);
442
	}
443 444
}
EXPORT_SYMBOL(blk_mq_complete_request);
445

446 447 448 449 450 451
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

452
void blk_mq_start_request(struct request *rq)
453 454 455 456 457
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
458
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
459 460
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
461

462
	blk_add_timer(rq);
463

464 465 466 467 468 469
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

470 471 472 473 474 475
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
476 477 478 479
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
480 481 482 483 484 485 486 487 488

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
489
}
490
EXPORT_SYMBOL(blk_mq_start_request);
491

492
static void __blk_mq_requeue_request(struct request *rq)
493 494 495 496
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
497

498 499 500 501
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
502 503
}

504 505 506 507 508
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
509
	blk_mq_add_to_requeue_list(rq, true);
510 511 512
}
EXPORT_SYMBOL(blk_mq_requeue_request);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

540 541 542 543 544
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

569 570 571 572 573 574
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

575 576 577 578 579 580
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

601 602
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
603 604 605 606
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
607 608 609
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

610
struct blk_mq_timeout_data {
611 612
	unsigned long next;
	unsigned int next_set;
613 614
};

615
void blk_mq_rq_timed_out(struct request *req, bool reserved)
616
{
617 618
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
619 620 621 622 623 624 625 626 627 628

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
629 630
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
631

632
	if (ops->timeout)
633
		ret = ops->timeout(req, reserved);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
649
}
650

651 652 653 654
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
655

656 657 658 659 660
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
661 662 663 664
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
665
		return;
666
	}
667

668 669
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
670
			blk_mq_rq_timed_out(rq, reserved);
671 672 673 674
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
675 676
}

677
static void blk_mq_timeout_work(struct work_struct *work)
678
{
679 680
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
681 682 683 684 685
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
701 702
		return;

703
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
704

705 706 707
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
708
	} else {
709 710
		struct blk_mq_hw_ctx *hctx;

711 712 713 714 715
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
716
	}
717
	blk_queue_exit(q);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

759 760 761 762 763 764 765 766 767
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

768
	for (i = 0; i < hctx->ctx_map.size; i++) {
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

793 794 795 796 797 798 799 800 801 802 803
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
804 805
	LIST_HEAD(driver_list);
	struct list_head *dptr;
806
	int queued;
807

808
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
809 810
		return;

811 812 813
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

814 815 816 817 818
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
819
	flush_busy_ctxs(hctx, &rq_list);
820 821 822 823 824 825 826 827 828 829 830 831

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

832 833 834 835 836 837
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

838 839 840
	/*
	 * Now process all the entries, sending them to the driver.
	 */
841
	queued = 0;
842
	while (!list_empty(&rq_list)) {
843
		struct blk_mq_queue_data bd;
844 845 846 847 848
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

849 850 851 852 853
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
854 855 856
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
857
			break;
858 859
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
860
			__blk_mq_requeue_request(rq);
861 862 863 864
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
865
			rq->errors = -EIO;
866
			blk_mq_end_request(rq, rq->errors);
867 868 869 870 871
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
872 873 874 875 876 877 878

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
894 895 896 897 898 899 900 901 902 903
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
904 905 906
	}
}

907 908 909 910 911 912 913 914
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
915 916
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
917 918

	if (--hctx->next_cpu_batch <= 0) {
919
		int cpu = hctx->next_cpu, next_cpu;
920 921 922 923 924 925 926

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
927 928

		return cpu;
929 930
	}

931
	return hctx->next_cpu;
932 933
}

934 935
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
936 937
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
938 939
		return;

940
	if (!async) {
941 942
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
943
			__blk_mq_run_hw_queue(hctx);
944
			put_cpu();
945 946
			return;
		}
947

948
		put_cpu();
949
	}
950

951 952
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
953 954
}

955
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
956 957 958 959 960 961 962
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
963
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
964 965
			continue;

966
		blk_mq_run_hw_queue(hctx, async);
967 968
	}
}
969
EXPORT_SYMBOL(blk_mq_run_hw_queues);
970 971 972

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
973 974
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
975 976 977 978
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

979 980 981 982 983 984 985 986 987 988
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

989 990 991
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
992

993
	blk_mq_run_hw_queue(hctx, false);
994 995 996
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

997 998 999 1000 1001 1002 1003 1004 1005 1006
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1007
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1008 1009 1010 1011 1012 1013 1014 1015 1016
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1017
		blk_mq_run_hw_queue(hctx, async);
1018 1019 1020 1021
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1022
static void blk_mq_run_work_fn(struct work_struct *work)
1023 1024 1025
{
	struct blk_mq_hw_ctx *hctx;

1026
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1027

1028 1029 1030
	__blk_mq_run_hw_queue(hctx);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1043 1044
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1045

1046 1047
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1048 1049 1050
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1051 1052 1053
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1054
{
J
Jens Axboe 已提交
1055 1056
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1057 1058
	trace_block_rq_insert(hctx->queue, rq);

1059 1060 1061 1062
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1063
}
1064

1065 1066 1067 1068 1069
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1070
	__blk_mq_insert_req_list(hctx, rq, at_head);
1071 1072 1073
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1074
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1075
			   bool async)
1076
{
J
Jens Axboe 已提交
1077
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1078
	struct request_queue *q = rq->q;
1079 1080 1081 1082
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1083 1084 1085
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1113
		BUG_ON(rq->mq_ctx != ctx);
1114
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1115
		__blk_mq_insert_req_list(hctx, rq, false);
1116
	}
1117
	blk_mq_hctx_mark_pending(hctx, ctx);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1183

1184
	blk_account_io_start(rq, 1);
1185 1186
}

1187 1188 1189 1190 1191 1192
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1193 1194 1195
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1196
{
1197
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1198 1199 1200 1201 1202 1203 1204
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1205 1206
		struct request_queue *q = hctx->queue;

1207 1208 1209 1210 1211
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1212

1213 1214 1215
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1216
	}
1217
}
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1231 1232
	int op = bio_data_dir(bio);
	int op_flags = 0;
1233
	struct blk_mq_alloc_data alloc_data;
1234

1235
	blk_queue_enter_live(q);
1236 1237 1238
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1239
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1240
		op_flags |= REQ_SYNC;
1241

1242
	trace_block_getrq(q, bio, op);
1243
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1244
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1245
	if (unlikely(!rq)) {
1246
		__blk_mq_run_hw_queue(hctx);
1247
		blk_mq_put_ctx(ctx);
1248
		trace_block_sleeprq(q, bio, op);
1249 1250

		ctx = blk_mq_get_ctx(q);
1251
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1252
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1253
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1254 1255
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1256 1257 1258
	}

	hctx->queued++;
1259 1260 1261 1262 1263
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1264
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1275
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1276 1277 1278 1279 1280 1281 1282

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1283 1284
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1285
		return 0;
1286
	}
1287

1288 1289 1290 1291 1292 1293 1294
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1295
	}
1296 1297

	return -1;
1298 1299
}

1300 1301 1302 1303 1304
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1305
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1306
{
J
Jens Axboe 已提交
1307 1308
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1309 1310
	struct blk_map_ctx data;
	struct request *rq;
1311 1312
	unsigned int request_count = 0;
	struct blk_plug *plug;
1313
	struct request *same_queue_rq = NULL;
1314
	blk_qc_t cookie;
1315 1316 1317 1318

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1319
		bio_io_error(bio);
1320
		return BLK_QC_T_NONE;
1321 1322
	}

1323 1324
	blk_queue_split(q, &bio, q->bio_split);

1325 1326 1327
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1328

1329 1330
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1331
		return BLK_QC_T_NONE;
1332

1333
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1334 1335 1336 1337 1338 1339 1340

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1341
	plug = current->plug;
1342 1343 1344 1345 1346
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1347 1348 1349
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1350 1351 1352 1353

		blk_mq_bio_to_request(rq, bio);

		/*
1354
		 * We do limited pluging. If the bio can be merged, do that.
1355 1356
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1357
		 */
1358
		if (plug) {
1359 1360
			/*
			 * The plug list might get flushed before this. If that
1361 1362 1363
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1364 1365
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1366
				list_del_init(&old_rq->queuelist);
1367
			}
1368 1369 1370 1371 1372
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1373 1374 1375
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1376
		blk_mq_insert_request(old_rq, false, true, true);
1377
		goto done;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1391 1392
done:
	return cookie;
1393 1394 1395 1396 1397 1398
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1399
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1400
{
J
Jens Axboe 已提交
1401 1402
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1403 1404
	struct blk_plug *plug;
	unsigned int request_count = 0;
1405 1406
	struct blk_map_ctx data;
	struct request *rq;
1407
	blk_qc_t cookie;
1408 1409 1410 1411

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1412
		bio_io_error(bio);
1413
		return BLK_QC_T_NONE;
1414 1415
	}

1416 1417
	blk_queue_split(q, &bio, q->bio_split);

1418 1419 1420 1421 1422
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1423 1424

	rq = blk_mq_map_request(q, bio, &data);
1425
	if (unlikely(!rq))
1426
		return BLK_QC_T_NONE;
1427

1428
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1441 1442 1443
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1444
		if (!request_count)
1445
			trace_block_plug(q);
1446 1447 1448 1449

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1450 1451
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1452
		}
1453

1454
		list_add_tail(&rq->queuelist, &plug->mq_list);
1455
		return cookie;
1456 1457
	}

1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1467 1468
	}

1469
	blk_mq_put_ctx(data.ctx);
1470
	return cookie;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1482 1483
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1484
{
1485
	struct page *page;
1486

1487
	if (tags->rqs && set->ops->exit_request) {
1488
		int i;
1489

1490 1491
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1492
				continue;
1493 1494
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1495
			tags->rqs[i] = NULL;
1496
		}
1497 1498
	}

1499 1500
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1501
		list_del_init(&page->lru);
1502 1503 1504 1505 1506
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1507 1508 1509
		__free_pages(page, page->private);
	}

1510
	kfree(tags->rqs);
1511

1512
	blk_mq_free_tags(tags);
1513 1514 1515 1516
}

static size_t order_to_size(unsigned int order)
{
1517
	return (size_t)PAGE_SIZE << order;
1518 1519
}

1520 1521
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1522
{
1523
	struct blk_mq_tags *tags;
1524 1525 1526
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1527
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1528 1529
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1530 1531
	if (!tags)
		return NULL;
1532

1533 1534
	INIT_LIST_HEAD(&tags->page_list);

1535 1536 1537
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1538 1539 1540 1541
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1542 1543 1544 1545 1546

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1547
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1548
				cache_line_size());
1549
	left = rq_size * set->queue_depth;
1550

1551
	for (i = 0; i < set->queue_depth; ) {
1552 1553 1554 1555 1556
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1557
		while (this_order && left < order_to_size(this_order - 1))
1558 1559 1560
			this_order--;

		do {
1561
			page = alloc_pages_node(set->numa_node,
1562
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1563
				this_order);
1564 1565 1566 1567 1568 1569 1570 1571 1572
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1573
			goto fail;
1574 1575

		page->private = this_order;
1576
		list_add_tail(&page->lru, &tags->page_list);
1577 1578

		p = page_address(page);
1579 1580 1581 1582 1583
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1584
		entries_per_page = order_to_size(this_order) / rq_size;
1585
		to_do = min(entries_per_page, set->queue_depth - i);
1586 1587
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1588 1589 1590 1591
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1592 1593
						set->numa_node)) {
					tags->rqs[i] = NULL;
1594
					goto fail;
1595
				}
1596 1597
			}

1598 1599 1600 1601
			p += rq_size;
			i++;
		}
	}
1602
	return tags;
1603

1604 1605 1606
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1635 1636 1637 1638 1639
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1640 1641 1642 1643 1644
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1645
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1657 1658 1659
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1672 1673 1674 1675 1676

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1677 1678 1679 1680

	return NOTIFY_OK;
}

1681
/* hctx->ctxs will be freed in queue's release handler */
1682 1683 1684 1685
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1686 1687
	unsigned flush_start_tag = set->queue_depth;

1688 1689
	blk_mq_tag_idle(hctx);

1690 1691 1692 1693 1694
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1695 1696 1697 1698
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1699
	blk_free_flush_queue(hctx->fq);
1700 1701 1702
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1712
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1722
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1723 1724 1725
		free_cpumask_var(hctx->cpumask);
}

1726 1727 1728
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1729
{
1730
	int node;
1731
	unsigned flush_start_tag = set->queue_depth;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1743
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1744 1745 1746 1747 1748 1749

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1750 1751

	/*
1752 1753
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1754
	 */
1755 1756 1757 1758
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1759

1760 1761
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1762

1763
	hctx->nr_ctx = 0;
1764

1765 1766 1767
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1768

1769 1770 1771
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1772

1773 1774 1775 1776 1777
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1778

1779
	return 0;
1780

1781 1782 1783 1784 1785
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1786 1787 1788 1789 1790 1791
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1792

1793 1794
	return -1;
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1815 1816
		hctx = q->mq_ops->map_queue(q, i);

1817 1818 1819 1820 1821
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1822
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1823 1824 1825
	}
}

1826 1827
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1828 1829 1830 1831
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1832
	struct blk_mq_tag_set *set = q->tag_set;
1833

1834 1835 1836 1837 1838
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1839
	queue_for_each_hw_ctx(q, hctx, i) {
1840
		cpumask_clear(hctx->cpumask);
1841 1842 1843 1844 1845 1846
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1847
	for_each_possible_cpu(i) {
1848
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1849
		if (!cpumask_test_cpu(i, online_mask))
1850 1851
			continue;

1852
		ctx = per_cpu_ptr(q->queue_ctx, i);
1853
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1854

1855
		cpumask_set_cpu(i, hctx->cpumask);
1856 1857 1858
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1859

1860 1861
	mutex_unlock(&q->sysfs_lock);

1862
	queue_for_each_hw_ctx(q, hctx, i) {
1863 1864
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1865
		/*
1866 1867
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1868 1869 1870 1871 1872 1873
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1874
			hctx->tags = NULL;
1875 1876 1877
			continue;
		}

M
Ming Lei 已提交
1878 1879 1880 1881 1882 1883
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1884
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1885 1886 1887 1888 1889
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1890
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1891

1892 1893 1894
		/*
		 * Initialize batch roundrobin counts
		 */
1895 1896 1897
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1898 1899
}

1900
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1901 1902 1903 1904
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1916 1917 1918

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1919
		queue_set_hctx_shared(q, shared);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1930 1931 1932 1933 1934 1935
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1936 1937 1938 1939 1940 1941 1942 1943 1944
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1945 1946 1947 1948 1949 1950 1951 1952 1953

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1954
	list_add_tail(&q->tag_set_list, &set->tag_list);
1955

1956 1957 1958
	mutex_unlock(&set->tag_list_lock);
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1971 1972 1973 1974
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1975
		kfree(hctx);
1976
	}
1977

1978 1979 1980
	kfree(q->mq_map);
	q->mq_map = NULL;

1981 1982 1983 1984 1985 1986
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1987
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2003 2004
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2005
{
K
Keith Busch 已提交
2006 2007
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2008

K
Keith Busch 已提交
2009
	blk_mq_sysfs_unregister(q);
2010
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2011
		int node;
2012

K
Keith Busch 已提交
2013 2014 2015 2016
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2017 2018
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2019
		if (!hctxs[i])
K
Keith Busch 已提交
2020
			break;
2021

2022
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2023 2024 2025 2026 2027
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2028

2029
		atomic_set(&hctxs[i]->nr_active, 0);
2030
		hctxs[i]->numa_node = node;
2031
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2032 2033 2034 2035 2036 2037 2038 2039

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2040
	}
K
Keith Busch 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2065 2066 2067
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2068 2069
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2070
		goto err_exit;
K
Keith Busch 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2084

2085
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2086
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2087 2088 2089

	q->nr_queues = nr_cpu_ids;

2090
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2091

2092 2093 2094
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2095 2096
	q->sg_reserved_size = INT_MAX;

2097 2098 2099 2100
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2101 2102 2103 2104 2105
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2106 2107 2108 2109 2110
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2111 2112
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2113

2114
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2115

2116
	get_online_cpus();
2117 2118
	mutex_lock(&all_q_mutex);

2119
	list_add_tail(&q->all_q_node, &all_q_list);
2120
	blk_mq_add_queue_tag_set(set, q);
2121
	blk_mq_map_swqueue(q, cpu_online_mask);
2122

2123
	mutex_unlock(&all_q_mutex);
2124
	put_online_cpus();
2125

2126
	return q;
2127

2128
err_hctxs:
K
Keith Busch 已提交
2129
	kfree(q->mq_map);
2130
err_map:
K
Keith Busch 已提交
2131
	kfree(q->queue_hw_ctx);
2132
err_percpu:
K
Keith Busch 已提交
2133
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2134 2135
err_exit:
	q->mq_ops = NULL;
2136 2137
	return ERR_PTR(-ENOMEM);
}
2138
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2139 2140 2141

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2142
	struct blk_mq_tag_set	*set = q->tag_set;
2143

2144 2145 2146 2147
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2148 2149
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2150 2151
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2152 2153 2154
}

/* Basically redo blk_mq_init_queue with queue frozen */
2155 2156
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2157
{
2158
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2159

2160 2161
	blk_mq_sysfs_unregister(q);

2162
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2163 2164 2165 2166 2167 2168 2169

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2170
	blk_mq_map_swqueue(q, online_mask);
2171

2172
	blk_mq_sysfs_register(q);
2173 2174
}

2175 2176
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2177 2178
{
	struct request_queue *q;
2179 2180 2181 2182 2183 2184 2185
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2186 2187

	/*
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2203
	 */
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2214
		return NOTIFY_OK;
2215
	}
2216 2217

	mutex_lock(&all_q_mutex);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2228
	list_for_each_entry(q, &all_q_list, all_q_node) {
2229 2230
		blk_mq_freeze_queue_wait(q);

2231 2232 2233 2234 2235 2236 2237
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2238
	list_for_each_entry(q, &all_q_list, all_q_node)
2239
		blk_mq_queue_reinit(q, &online_new);
2240 2241 2242 2243

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2244 2245 2246 2247
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2302 2303 2304 2305 2306 2307
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2308 2309 2310 2311 2312 2313
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2314 2315
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2316 2317
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2318 2319
	if (!set->nr_hw_queues)
		return -EINVAL;
2320
	if (!set->queue_depth)
2321 2322 2323 2324
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2325
	if (!set->ops->queue_rq || !set->ops->map_queue)
2326 2327
		return -EINVAL;

2328 2329 2330 2331 2332
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2343 2344 2345 2346 2347
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2348

K
Keith Busch 已提交
2349
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2350 2351
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2352
		return -ENOMEM;
2353

2354 2355
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2356

2357 2358 2359
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2360
	return 0;
2361
enomem:
2362 2363
	kfree(set->tags);
	set->tags = NULL;
2364 2365 2366 2367 2368 2369 2370 2371
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2372
	for (i = 0; i < nr_cpu_ids; i++) {
2373
		if (set->tags[i])
2374 2375 2376
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2377
	kfree(set->tags);
2378
	set->tags = NULL;
2379 2380 2381
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2393 2394
		if (!hctx->tags)
			continue;
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2445 2446 2447 2448
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2449
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2450 2451 2452 2453

	return 0;
}
subsys_initcall(blk_mq_init);