memcontrol.c 154.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276 1277
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1278
	struct lruvec *lruvec;
1279

1280 1281 1282 1283
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1284

K
KAMEZAWA Hiroyuki 已提交
1285
	pc = lookup_page_cgroup(page);
1286
	memcg = pc->mem_cgroup;
1287
	/*
1288
	 * Swapcache readahead pages are added to the LRU - and
1289
	 * possibly migrated - before they are charged.
1290
	 */
1291 1292
	if (!memcg)
		memcg = root_mem_cgroup;
1293

1294
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1305
}
1306

1307
/**
1308 1309 1310 1311
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1312
 *
1313 1314
 * This function must be called when a page is added to or removed from an
 * lru list.
1315
 */
1316 1317
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1318 1319
{
	struct mem_cgroup_per_zone *mz;
1320
	unsigned long *lru_size;
1321 1322 1323 1324

	if (mem_cgroup_disabled())
		return;

1325 1326 1327 1328
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1329
}
1330

1331
/*
1332
 * Checks whether given mem is same or in the root_mem_cgroup's
1333 1334
 * hierarchy subtree
 */
1335 1336
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1337
{
1338 1339
	if (root_memcg == memcg)
		return true;
1340
	if (!root_memcg->use_hierarchy || !memcg)
1341
		return false;
1342
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 1344 1345 1346 1347 1348 1349
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1350
	rcu_read_lock();
1351
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 1353
	rcu_read_unlock();
	return ret;
1354 1355
}

1356 1357
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1358
{
1359
	struct mem_cgroup *curr;
1360
	struct task_struct *p;
1361
	bool ret;
1362

1363
	p = find_lock_task_mm(task);
1364
	if (p) {
1365
		curr = get_mem_cgroup_from_mm(p->mm);
1366 1367 1368 1369 1370 1371 1372
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1373
		rcu_read_lock();
1374
		curr = mem_cgroup_from_task(task);
1375
		css_get(&curr->css);
1376
		rcu_read_unlock();
1377
	}
1378
	/*
1379
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1380
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1381 1382
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1383
	 */
1384
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1385
	css_put(&curr->css);
1386 1387 1388
	return ret;
}

1389
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1390
{
1391
	unsigned long inactive_ratio;
1392
	unsigned long inactive;
1393
	unsigned long active;
1394
	unsigned long gb;
1395

1396 1397
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1398

1399 1400 1401 1402 1403 1404
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1405
	return inactive * inactive_ratio < active;
1406 1407
}

1408
#define mem_cgroup_from_counter(counter, member)	\
1409 1410
	container_of(counter, struct mem_cgroup, member)

1411
/**
1412
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1413
 * @memcg: the memory cgroup
1414
 *
1415
 * Returns the maximum amount of memory @mem can be charged with, in
1416
 * pages.
1417
 */
1418
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1419
{
1420 1421 1422
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1437 1438
}

1439
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1440 1441
{
	/* root ? */
1442
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1443 1444
		return vm_swappiness;

1445
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1446 1447
}

1448
/*
Q
Qiang Huang 已提交
1449
 * A routine for checking "mem" is under move_account() or not.
1450
 *
Q
Qiang Huang 已提交
1451 1452 1453
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1454
 */
1455
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1456
{
1457 1458
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1459
	bool ret = false;
1460 1461 1462 1463 1464 1465 1466 1467 1468
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1469

1470 1471
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1472 1473
unlock:
	spin_unlock(&mc.lock);
1474 1475 1476
	return ret;
}

1477
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1478 1479
{
	if (mc.moving_task && current != mc.moving_task) {
1480
		if (mem_cgroup_under_move(memcg)) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1493
#define K(x) ((x) << (PAGE_SHIFT-10))
1494
/**
1495
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1496 1497 1498 1499 1500 1501 1502 1503
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1504
	/* oom_info_lock ensures that parallel ooms do not interleave */
1505
	static DEFINE_MUTEX(oom_info_lock);
1506 1507
	struct mem_cgroup *iter;
	unsigned int i;
1508

1509
	if (!p)
1510 1511
		return;

1512
	mutex_lock(&oom_info_lock);
1513 1514
	rcu_read_lock();

T
Tejun Heo 已提交
1515 1516 1517 1518 1519
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1520 1521 1522

	rcu_read_unlock();

1523 1524 1525 1526 1527 1528 1529 1530 1531
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1532 1533

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1534 1535
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1551
	mutex_unlock(&oom_info_lock);
1552 1553
}

1554 1555 1556 1557
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1558
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1559 1560
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1561 1562
	struct mem_cgroup *iter;

1563
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1564
		num++;
1565 1566 1567
	return num;
}

D
David Rientjes 已提交
1568 1569 1570
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1571
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1572
{
1573
	unsigned long limit;
D
David Rientjes 已提交
1574

1575
	limit = memcg->memory.limit;
1576
	if (mem_cgroup_swappiness(memcg)) {
1577
		unsigned long memsw_limit;
1578

1579 1580
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1581 1582
	}
	return limit;
D
David Rientjes 已提交
1583 1584
}

1585 1586
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1587 1588 1589 1590 1591 1592 1593
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1594
	/*
1595 1596 1597
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1598
	 */
1599
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1600 1601 1602 1603 1604
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1605
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1606
	for_each_mem_cgroup_tree(iter, memcg) {
1607
		struct css_task_iter it;
1608 1609
		struct task_struct *task;

1610 1611
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1624
				css_task_iter_end(&it);
1625 1626 1627 1628 1629 1630 1631 1632
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1645
		}
1646
		css_task_iter_end(&it);
1647 1648 1649 1650 1651 1652 1653 1654 1655
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1656 1657
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1658
 * @memcg: the target memcg
1659 1660 1661 1662 1663 1664 1665
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1666
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1667 1668
		int nid, bool noswap)
{
1669
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1670 1671 1672
		return true;
	if (noswap || !total_swap_pages)
		return false;
1673
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1674 1675 1676 1677
		return true;
	return false;

}
1678
#if MAX_NUMNODES > 1
1679 1680 1681 1682 1683 1684 1685

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1686
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1687 1688
{
	int nid;
1689 1690 1691 1692
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1693
	if (!atomic_read(&memcg->numainfo_events))
1694
		return;
1695
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1696 1697 1698
		return;

	/* make a nodemask where this memcg uses memory from */
1699
	memcg->scan_nodes = node_states[N_MEMORY];
1700

1701
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1702

1703 1704
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1705
	}
1706

1707 1708
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1723
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1724 1725 1726
{
	int node;

1727 1728
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1729

1730
	node = next_node(node, memcg->scan_nodes);
1731
	if (node == MAX_NUMNODES)
1732
		node = first_node(memcg->scan_nodes);
1733 1734 1735 1736 1737 1738 1739 1740 1741
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1742
	memcg->last_scanned_node = node;
1743 1744 1745
	return node;
}
#else
1746
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1747 1748 1749 1750 1751
{
	return 0;
}
#endif

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1767
	excess = soft_limit_excess(root_memcg);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1796
		if (!soft_limit_excess(root_memcg))
1797
			break;
1798
	}
1799 1800
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1801 1802
}

1803 1804 1805 1806 1807 1808
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1809 1810
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813 1814
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1815
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1816
{
1817
	struct mem_cgroup *iter, *failed = NULL;
1818

1819 1820
	spin_lock(&memcg_oom_lock);

1821
	for_each_mem_cgroup_tree(iter, memcg) {
1822
		if (iter->oom_lock) {
1823 1824 1825 1826 1827
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1828 1829
			mem_cgroup_iter_break(memcg, iter);
			break;
1830 1831
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1832
	}
K
KAMEZAWA Hiroyuki 已提交
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1845
		}
1846 1847
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1848 1849 1850 1851

	spin_unlock(&memcg_oom_lock);

	return !failed;
1852
}
1853

1854
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1855
{
K
KAMEZAWA Hiroyuki 已提交
1856 1857
	struct mem_cgroup *iter;

1858
	spin_lock(&memcg_oom_lock);
1859
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1860
	for_each_mem_cgroup_tree(iter, memcg)
1861
		iter->oom_lock = false;
1862
	spin_unlock(&memcg_oom_lock);
1863 1864
}

1865
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1866 1867 1868
{
	struct mem_cgroup *iter;

1869
	for_each_mem_cgroup_tree(iter, memcg)
1870 1871 1872
		atomic_inc(&iter->under_oom);
}

1873
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1874 1875 1876
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879 1880 1881
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1882
	for_each_mem_cgroup_tree(iter, memcg)
1883
		atomic_add_unless(&iter->under_oom, -1, 0);
1884 1885
}

K
KAMEZAWA Hiroyuki 已提交
1886 1887
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1888
struct oom_wait_info {
1889
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1890 1891 1892 1893 1894 1895
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1896 1897
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1901
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1902 1903

	/*
1904
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1905 1906
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1907 1908
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1913
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1914
{
1915
	atomic_inc(&memcg->oom_wakeups);
1916 1917
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1918 1919
}

1920
static void memcg_oom_recover(struct mem_cgroup *memcg)
1921
{
1922 1923
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1924 1925
}

1926
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1927
{
1928 1929
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1930
	/*
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1943
	 */
1944 1945 1946 1947
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1948 1949 1950 1951
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1952
 * @handle: actually kill/wait or just clean up the OOM state
1953
 *
1954 1955
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1956
 *
1957
 * Memcg supports userspace OOM handling where failed allocations must
1958 1959 1960 1961
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1962
 * the end of the page fault to complete the OOM handling.
1963 1964
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1965
 * completed, %false otherwise.
1966
 */
1967
bool mem_cgroup_oom_synchronize(bool handle)
1968
{
1969
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1970
	struct oom_wait_info owait;
1971
	bool locked;
1972 1973 1974

	/* OOM is global, do not handle */
	if (!memcg)
1975
		return false;
1976

1977 1978
	if (!handle)
		goto cleanup;
1979 1980 1981 1982 1983 1984

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1985

1986
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2000
		schedule();
2001 2002 2003 2004 2005
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2006 2007 2008 2009 2010 2011 2012 2013
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2014 2015
cleanup:
	current->memcg_oom.memcg = NULL;
2016
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2017
	return true;
2018 2019
}

2020 2021 2022 2023 2024
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2025
 *
2026 2027 2028
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2029
 *
2030 2031 2032 2033
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2034
 *
2035 2036 2037
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2038
 *
2039 2040 2041 2042 2043
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2044
 */
2045 2046 2047
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2048 2049 2050 2051
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2052 2053 2054 2055 2056
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2057 2058 2059
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
2060
	if (unlikely(!memcg))
2061 2062 2063
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2064
	if (atomic_read(&memcg->moving_account) <= 0)
2065
		return memcg;
2066

2067
	spin_lock_irqsave(&memcg->move_lock, *flags);
2068
	if (memcg != pc->mem_cgroup) {
2069
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2070 2071 2072
		goto again;
	}
	*locked = true;
2073 2074

	return memcg;
2075 2076
}

2077 2078 2079 2080 2081 2082 2083 2084
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2085
{
2086
	if (memcg && locked)
2087
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2088

2089
	rcu_read_unlock();
2090 2091
}

2092 2093 2094 2095 2096 2097 2098 2099 2100
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2101
				 enum mem_cgroup_stat_index idx, int val)
2102
{
2103
	VM_BUG_ON(!rcu_read_lock_held());
2104

2105 2106
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2107
}
2108

2109 2110 2111 2112
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2113
#define CHARGE_BATCH	32U
2114 2115
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2116
	unsigned int nr_pages;
2117
	struct work_struct work;
2118
	unsigned long flags;
2119
#define FLUSHING_CACHED_CHARGE	0
2120 2121
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2122
static DEFINE_MUTEX(percpu_charge_mutex);
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2134
 */
2135
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2136 2137
{
	struct memcg_stock_pcp *stock;
2138
	bool ret = false;
2139

2140
	if (nr_pages > CHARGE_BATCH)
2141
		return ret;
2142

2143
	stock = &get_cpu_var(memcg_stock);
2144
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2145
		stock->nr_pages -= nr_pages;
2146 2147
		ret = true;
	}
2148 2149 2150 2151 2152
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2153
 * Returns stocks cached in percpu and reset cached information.
2154 2155 2156 2157 2158
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2159
	if (stock->nr_pages) {
2160
		page_counter_uncharge(&old->memory, stock->nr_pages);
2161
		if (do_swap_account)
2162
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2163
		css_put_many(&old->css, stock->nr_pages);
2164
		stock->nr_pages = 0;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2175
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2176
	drain_stock(stock);
2177
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2178 2179
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2191
/*
2192
 * Cache charges(val) to local per_cpu area.
2193
 * This will be consumed by consume_stock() function, later.
2194
 */
2195
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2196 2197 2198
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2199
	if (stock->cached != memcg) { /* reset if necessary */
2200
		drain_stock(stock);
2201
		stock->cached = memcg;
2202
	}
2203
	stock->nr_pages += nr_pages;
2204 2205 2206 2207
	put_cpu_var(memcg_stock);
}

/*
2208
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2209
 * of the hierarchy under it.
2210
 */
2211
static void drain_all_stock(struct mem_cgroup *root_memcg)
2212
{
2213
	int cpu, curcpu;
2214

2215 2216 2217
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2218 2219
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2220
	curcpu = get_cpu();
2221 2222
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2223
		struct mem_cgroup *memcg;
2224

2225 2226
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2227
			continue;
2228
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2229
			continue;
2230 2231 2232 2233 2234 2235
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2236
	}
2237
	put_cpu();
A
Andrew Morton 已提交
2238
	put_online_cpus();
2239
	mutex_unlock(&percpu_charge_mutex);
2240 2241
}

2242 2243 2244 2245
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2246
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2247 2248 2249
{
	int i;

2250
	spin_lock(&memcg->pcp_counter_lock);
2251
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2252
		long x = per_cpu(memcg->stat->count[i], cpu);
2253

2254 2255
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2256
	}
2257
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2258
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2259

2260 2261
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2262
	}
2263
	spin_unlock(&memcg->pcp_counter_lock);
2264 2265
}

2266
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2267 2268 2269 2270 2271
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2272
	struct mem_cgroup *iter;
2273

2274
	if (action == CPU_ONLINE)
2275 2276
		return NOTIFY_OK;

2277
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2278
		return NOTIFY_OK;
2279

2280
	for_each_mem_cgroup(iter)
2281 2282
		mem_cgroup_drain_pcp_counter(iter, cpu);

2283 2284 2285 2286 2287
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2288 2289
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2290
{
2291
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2292
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2293
	struct mem_cgroup *mem_over_limit;
2294
	struct page_counter *counter;
2295
	unsigned long nr_reclaimed;
2296 2297
	bool may_swap = true;
	bool drained = false;
2298
	int ret = 0;
2299

2300 2301
	if (mem_cgroup_is_root(memcg))
		goto done;
2302
retry:
2303 2304
	if (consume_stock(memcg, nr_pages))
		goto done;
2305

2306
	if (!do_swap_account ||
2307 2308
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2309
			goto done_restock;
2310
		if (do_swap_account)
2311 2312
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2313
	} else {
2314
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2315
		may_swap = false;
2316
	}
2317

2318 2319 2320 2321
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2337 2338
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2339

2340 2341
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2342

2343
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2344
		goto retry;
2345

2346
	if (!drained) {
2347
		drain_all_stock(mem_over_limit);
2348 2349 2350 2351
		drained = true;
		goto retry;
	}

2352 2353
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2354 2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2363
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2364 2365 2366 2367 2368 2369 2370 2371
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2372 2373 2374
	if (nr_retries--)
		goto retry;

2375 2376 2377
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2378 2379 2380
	if (fatal_signal_pending(current))
		goto bypass;

2381
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2382
nomem:
2383
	if (!(gfp_mask & __GFP_NOFAIL))
2384
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2385
bypass:
2386
	return -EINTR;
2387 2388

done_restock:
2389
	css_get_many(&memcg->css, batch);
2390 2391 2392
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2393
	return ret;
2394
}
2395

2396
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2397
{
2398 2399 2400
	if (mem_cgroup_is_root(memcg))
		return;

2401
	page_counter_uncharge(&memcg->memory, nr_pages);
2402
	if (do_swap_account)
2403
		page_counter_uncharge(&memcg->memsw, nr_pages);
2404 2405

	css_put_many(&memcg->css, nr_pages);
2406 2407
}

2408 2409
/*
 * A helper function to get mem_cgroup from ID. must be called under
2410 2411 2412
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2413 2414 2415 2416 2417 2418
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2419
	return mem_cgroup_from_id(id);
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2432
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433
{
2434
	struct mem_cgroup *memcg;
2435
	struct page_cgroup *pc;
2436
	unsigned short id;
2437 2438
	swp_entry_t ent;

2439
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2440 2441

	pc = lookup_page_cgroup(page);
2442 2443 2444 2445
	memcg = pc->mem_cgroup;

	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2446
			memcg = NULL;
2447
	} else if (PageSwapCache(page)) {
2448
		ent.val = page_private(page);
2449
		id = lookup_swap_cgroup_id(ent);
2450
		rcu_read_lock();
2451
		memcg = mem_cgroup_lookup(id);
2452
		if (memcg && !css_tryget_online(&memcg->css))
2453
			memcg = NULL;
2454
		rcu_read_unlock();
2455
	}
2456
	return memcg;
2457 2458
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2490
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2491
			  bool lrucare)
2492
{
2493
	struct page_cgroup *pc = lookup_page_cgroup(page);
2494
	int isolated;
2495

2496
	VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2497 2498 2499 2500
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2501 2502 2503 2504 2505

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2506 2507
	if (lrucare)
		lock_page_lru(page, &isolated);
2508

2509 2510
	/*
	 * Nobody should be changing or seriously looking at
2511
	 * pc->mem_cgroup at this point:
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2523
	pc->mem_cgroup = memcg;
2524

2525 2526
	if (lrucare)
		unlock_page_lru(page, isolated);
2527
}
2528

2529
#ifdef CONFIG_MEMCG_KMEM
2530 2531 2532 2533 2534 2535
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2546
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2547 2548
}

2549 2550
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2551
{
2552
	struct page_counter *counter;
2553 2554
	int ret = 0;

2555 2556
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2557 2558
		return ret;

2559
	ret = try_charge(memcg, gfp, nr_pages);
2560 2561
	if (ret == -EINTR)  {
		/*
2562 2563 2564 2565 2566 2567
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2568 2569 2570
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2571 2572 2573
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2574 2575
		 * directed to the root cgroup in memcontrol.h
		 */
2576
		page_counter_charge(&memcg->memory, nr_pages);
2577
		if (do_swap_account)
2578
			page_counter_charge(&memcg->memsw, nr_pages);
2579
		css_get_many(&memcg->css, nr_pages);
2580 2581
		ret = 0;
	} else if (ret)
2582
		page_counter_uncharge(&memcg->kmem, nr_pages);
2583 2584 2585 2586

	return ret;
}

2587 2588
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2589
{
2590
	page_counter_uncharge(&memcg->memory, nr_pages);
2591
	if (do_swap_account)
2592
		page_counter_uncharge(&memcg->memsw, nr_pages);
2593

2594
	page_counter_uncharge(&memcg->kmem, nr_pages);
2595 2596

	css_put_many(&memcg->css, nr_pages);
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2609
static int memcg_alloc_cache_id(void)
2610
{
2611 2612 2613 2614 2615 2616 2617
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2628 2629 2630 2631 2632
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2647 2648 2649 2650 2651 2652 2653 2654 2655
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2656
	memcg_limited_groups_array_size = num;
2657 2658
}

2659 2660
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2661
{
2662 2663
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2664
	struct kmem_cache *cachep;
2665 2666
	int id;

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2677 2678
		return;

2679
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2680
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2681
	/*
2682 2683 2684
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2685
	 */
2686 2687
	if (!cachep)
		return;
2688

2689
	css_get(&memcg->css);
2690
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2691

2692
	/*
2693 2694 2695
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2696
	 */
2697 2698
	smp_wmb();

2699 2700
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2701
}
2702

2703
static void memcg_unregister_cache(struct kmem_cache *cachep)
2704
{
2705
	struct kmem_cache *root_cache;
2706 2707 2708
	struct mem_cgroup *memcg;
	int id;

2709
	lockdep_assert_held(&memcg_slab_mutex);
2710

2711
	BUG_ON(is_root_cache(cachep));
2712

2713 2714
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2715
	id = memcg_cache_id(memcg);
2716

2717 2718
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2719

2720 2721 2722
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2723 2724 2725

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2726 2727
}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2759
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2760 2761
{
	struct kmem_cache *c;
2762
	int i, failed = 0;
2763

2764
	mutex_lock(&memcg_slab_mutex);
2765 2766
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2767 2768 2769
		if (!c)
			continue;

2770
		memcg_unregister_cache(c);
2771 2772 2773

		if (cache_from_memcg_idx(s, i))
			failed++;
2774
	}
2775
	mutex_unlock(&memcg_slab_mutex);
2776
	return failed;
2777 2778
}

2779
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2780 2781
{
	struct kmem_cache *cachep;
2782
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2783 2784 2785 2786

	if (!memcg_kmem_is_active(memcg))
		return;

2787 2788
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2789
		cachep = memcg_params_to_cache(params);
2790 2791
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2792
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2793
	}
2794
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2795 2796
}

2797
struct memcg_register_cache_work {
2798 2799 2800 2801 2802
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2803
static void memcg_register_cache_func(struct work_struct *w)
2804
{
2805 2806
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2807 2808
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2809

2810
	mutex_lock(&memcg_slab_mutex);
2811
	memcg_register_cache(memcg, cachep);
2812 2813
	mutex_unlock(&memcg_slab_mutex);

2814
	css_put(&memcg->css);
2815 2816 2817 2818 2819 2820
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2821 2822
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2823
{
2824
	struct memcg_register_cache_work *cw;
2825

2826
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2827 2828
	if (cw == NULL) {
		css_put(&memcg->css);
2829 2830 2831 2832 2833 2834
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2835
	INIT_WORK(&cw->work, memcg_register_cache_func);
2836 2837 2838
	schedule_work(&cw->work);
}

2839 2840
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2841 2842 2843 2844
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2845
	 * in __memcg_schedule_register_cache will recurse.
2846 2847 2848 2849 2850 2851 2852 2853
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2854
	__memcg_schedule_register_cache(memcg, cachep);
2855 2856
	memcg_resume_kmem_account();
}
2857 2858 2859

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2860
	unsigned int nr_pages = 1 << order;
2861 2862
	int res;

2863
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2864
	if (!res)
2865
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2866 2867 2868 2869 2870
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2871 2872 2873 2874
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2875 2876
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
2894
	struct kmem_cache *memcg_cachep;
2895 2896 2897 2898

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2899 2900 2901
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

2902 2903 2904
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

2905
	if (!memcg_kmem_is_active(memcg))
2906
		goto out;
2907

2908 2909 2910
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
2911
		goto out;
2912 2913
	}

2914
	/* The corresponding put will be done in the workqueue. */
2915
	if (!css_tryget_online(&memcg->css))
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2927 2928 2929
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2930
	 */
2931
	memcg_schedule_register_cache(memcg, cachep);
2932 2933 2934 2935
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
2936 2937
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2959 2960 2961 2962

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
2963 2964 2965 2966 2967 2968
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
2969 2970 2971 2972 2973 2974
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
2975 2976 2977
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

2988
	memcg = get_mem_cgroup_from_mm(current->mm);
2989

2990
	if (!memcg_kmem_is_active(memcg)) {
2991 2992 2993 2994
		css_put(&memcg->css);
		return true;
	}

2995
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3012
		memcg_uncharge_kmem(memcg, 1 << order);
3013 3014 3015 3016 3017 3018 3019 3020
		return;
	}
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
3021 3022
	struct page_cgroup *pc = lookup_page_cgroup(page);
	struct mem_cgroup *memcg = pc->mem_cgroup;
3023 3024 3025 3026

	if (!memcg)
		return;

3027
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3028

3029
	memcg_uncharge_kmem(memcg, 1 << order);
3030
	pc->mem_cgroup = NULL;
3031
}
G
Glauber Costa 已提交
3032
#else
3033
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3034 3035
{
}
3036 3037
#endif /* CONFIG_MEMCG_KMEM */

3038 3039 3040 3041
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3042 3043 3044
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3045
 */
3046
void mem_cgroup_split_huge_fixup(struct page *head)
3047
{
3048
	struct page_cgroup *pc = lookup_page_cgroup(head);
3049
	int i;
3050

3051 3052
	if (mem_cgroup_disabled())
		return;
3053

3054 3055
	for (i = 1; i < HPAGE_PMD_NR; i++)
		pc[i].mem_cgroup = pc[0].mem_cgroup;
3056

3057
	__this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3058
		       HPAGE_PMD_NR);
3059
}
3060
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3061

3062
/**
3063
 * mem_cgroup_move_account - move account of the page
3064
 * @page: the page
3065
 * @nr_pages: number of regular pages (>1 for huge pages)
3066 3067 3068 3069 3070
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3071
 * - page is not on LRU (isolate_page() is useful.)
3072
 * - compound_lock is held when nr_pages > 1
3073
 *
3074 3075
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3076
 */
3077 3078 3079 3080
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3081
				   struct mem_cgroup *to)
3082
{
3083 3084
	unsigned long flags;
	int ret;
3085

3086
	VM_BUG_ON(from == to);
3087
	VM_BUG_ON_PAGE(PageLRU(page), page);
3088 3089 3090 3091 3092 3093 3094
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3095
	if (nr_pages > 1 && !PageTransHuge(page))
3096 3097
		goto out;

3098 3099 3100 3101 3102 3103 3104
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3105 3106

	ret = -EINVAL;
3107
	if (pc->mem_cgroup != from)
3108
		goto out_unlock;
3109

3110
	spin_lock_irqsave(&from->move_lock, flags);
3111

3112
	if (!PageAnon(page) && page_mapped(page)) {
3113 3114 3115 3116 3117
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3118

3119 3120 3121 3122 3123 3124
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3125

3126 3127 3128 3129 3130
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3131

3132
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3133
	pc->mem_cgroup = to;
3134 3135
	spin_unlock_irqrestore(&from->move_lock, flags);

3136
	ret = 0;
3137 3138 3139

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3140
	memcg_check_events(to, page);
3141
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3142
	memcg_check_events(from, page);
3143 3144 3145
	local_irq_enable();
out_unlock:
	unlock_page(page);
3146
out:
3147 3148 3149
	return ret;
}

A
Andrew Morton 已提交
3150
#ifdef CONFIG_MEMCG_SWAP
3151 3152
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3153
{
3154 3155
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3156
}
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3169
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3170 3171 3172
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3173
				struct mem_cgroup *from, struct mem_cgroup *to)
3174 3175 3176
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3177 3178
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3179 3180 3181

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3182
		mem_cgroup_swap_statistics(to, true);
3183
		/*
3184
		 * This function is only called from task migration context now.
3185
		 * It postpones page_counter and refcount handling till the end
3186
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3187 3188 3189 3190 3191 3192
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3193
		 */
L
Li Zefan 已提交
3194
		css_get(&to->css);
3195 3196 3197 3198 3199 3200
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3201
				struct mem_cgroup *from, struct mem_cgroup *to)
3202 3203 3204
{
	return -EINVAL;
}
3205
#endif
K
KAMEZAWA Hiroyuki 已提交
3206

3207 3208 3209 3210 3211 3212
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3213 3214 3215 3216 3217
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3218
	if (likely(pc) && pc->mem_cgroup)
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
3236 3237
	if (pc)
		pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3238 3239 3240
}
#endif

3241 3242
static DEFINE_MUTEX(memcg_limit_mutex);

3243
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3244
				   unsigned long limit)
3245
{
3246 3247 3248
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3249
	int retry_count;
3250
	int ret;
3251 3252 3253 3254 3255 3256

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3257 3258
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3259

3260
	oldusage = page_counter_read(&memcg->memory);
3261

3262
	do {
3263 3264 3265 3266
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3267 3268 3269 3270

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3271
			ret = -EINVAL;
3272 3273
			break;
		}
3274 3275 3276 3277
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3278 3279 3280 3281

		if (!ret)
			break;

3282 3283
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3284
		curusage = page_counter_read(&memcg->memory);
3285
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3286
		if (curusage >= oldusage)
3287 3288 3289
			retry_count--;
		else
			oldusage = curusage;
3290 3291
	} while (retry_count);

3292 3293
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3294

3295 3296 3297
	return ret;
}

L
Li Zefan 已提交
3298
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3299
					 unsigned long limit)
3300
{
3301 3302 3303
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3304
	int retry_count;
3305
	int ret;
3306

3307
	/* see mem_cgroup_resize_res_limit */
3308 3309 3310 3311 3312 3313
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3314 3315 3316 3317
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3318 3319 3320 3321

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3322 3323 3324
			ret = -EINVAL;
			break;
		}
3325 3326 3327 3328
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3329 3330 3331 3332

		if (!ret)
			break;

3333 3334
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3335
		curusage = page_counter_read(&memcg->memsw);
3336
		/* Usage is reduced ? */
3337
		if (curusage >= oldusage)
3338
			retry_count--;
3339 3340
		else
			oldusage = curusage;
3341 3342
	} while (retry_count);

3343 3344
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3345

3346 3347 3348
	return ret;
}

3349 3350 3351 3352 3353 3354 3355 3356 3357
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3358
	unsigned long excess;
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3383
		spin_lock_irq(&mctz->lock);
3384
		__mem_cgroup_remove_exceeded(mz, mctz);
3385 3386 3387 3388 3389 3390

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3391 3392 3393
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3394
		excess = soft_limit_excess(mz->memcg);
3395 3396 3397 3398 3399 3400 3401 3402 3403
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3404
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3405
		spin_unlock_irq(&mctz->lock);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3423 3424 3425 3426 3427 3428
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3429 3430
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3431 3432
	bool ret;

3433
	/*
3434 3435 3436 3437
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3438
	 */
3439 3440 3441 3442 3443 3444
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3445 3446
}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3457 3458
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3459
	/* try to free all pages in this cgroup */
3460
	while (nr_retries && page_counter_read(&memcg->memory)) {
3461
		int progress;
3462

3463 3464 3465
		if (signal_pending(current))
			return -EINTR;

3466 3467
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3468
		if (!progress) {
3469
			nr_retries--;
3470
			/* maybe some writeback is necessary */
3471
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3472
		}
3473 3474

	}
3475 3476

	return 0;
3477 3478
}

3479 3480 3481
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3482
{
3483
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3484

3485 3486
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3487
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3488 3489
}

3490 3491
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3492
{
3493
	return mem_cgroup_from_css(css)->use_hierarchy;
3494 3495
}

3496 3497
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3498 3499
{
	int retval = 0;
3500
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3501
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3502

3503
	mutex_lock(&memcg_create_mutex);
3504 3505 3506 3507

	if (memcg->use_hierarchy == val)
		goto out;

3508
	/*
3509
	 * If parent's use_hierarchy is set, we can't make any modifications
3510 3511 3512 3513 3514 3515
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3516
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3517
				(val == 1 || val == 0)) {
3518
		if (!memcg_has_children(memcg))
3519
			memcg->use_hierarchy = val;
3520 3521 3522 3523
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3524 3525

out:
3526
	mutex_unlock(&memcg_create_mutex);
3527 3528 3529 3530

	return retval;
}

3531 3532
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3550 3551 3552 3553 3554 3555
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3556
		if (!swap)
3557
			val = page_counter_read(&memcg->memory);
3558
		else
3559
			val = page_counter_read(&memcg->memsw);
3560 3561 3562 3563
	}
	return val << PAGE_SHIFT;
}

3564 3565 3566 3567 3568 3569 3570
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3571

3572
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3573
			       struct cftype *cft)
B
Balbir Singh 已提交
3574
{
3575
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3576
	struct page_counter *counter;
3577

3578
	switch (MEMFILE_TYPE(cft->private)) {
3579
	case _MEM:
3580 3581
		counter = &memcg->memory;
		break;
3582
	case _MEMSWAP:
3583 3584
		counter = &memcg->memsw;
		break;
3585
	case _KMEM:
3586
		counter = &memcg->kmem;
3587
		break;
3588 3589 3590
	default:
		BUG();
	}
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3610
}
3611 3612

#ifdef CONFIG_MEMCG_KMEM
3613 3614
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3640
	mutex_lock(&memcg_create_mutex);
3641 3642
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3643 3644 3645 3646
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3647

3648
	memcg_id = memcg_alloc_cache_id();
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3661
	err = page_counter_limit(&memcg->kmem, nr_pages);
3662 3663 3664 3665 3666 3667 3668 3669 3670
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3671
out:
3672 3673 3674 3675 3676
	memcg_resume_kmem_account();
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3677
				   unsigned long limit)
3678 3679 3680
{
	int ret;

3681
	mutex_lock(&memcg_limit_mutex);
3682
	if (!memcg_kmem_is_active(memcg))
3683
		ret = memcg_activate_kmem(memcg, limit);
3684
	else
3685 3686
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3687 3688 3689
	return ret;
}

3690
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3691
{
3692
	int ret = 0;
3693
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3694

3695 3696
	if (!parent)
		return 0;
3697

3698
	mutex_lock(&memcg_limit_mutex);
3699
	/*
3700 3701
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3702
	 */
3703
	if (memcg_kmem_is_active(parent))
3704 3705
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3706
	return ret;
3707
}
3708 3709
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3710
				   unsigned long limit)
3711 3712 3713
{
	return -EINVAL;
}
3714
#endif /* CONFIG_MEMCG_KMEM */
3715

3716 3717 3718 3719
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3720 3721
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3722
{
3723
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3724
	unsigned long nr_pages;
3725 3726
	int ret;

3727
	buf = strstrip(buf);
3728 3729 3730
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3731

3732
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3733
	case RES_LIMIT:
3734 3735 3736 3737
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3738 3739 3740
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3741
			break;
3742 3743
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3744
			break;
3745 3746 3747 3748
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3749
		break;
3750 3751 3752
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3753 3754
		break;
	}
3755
	return ret ?: nbytes;
B
Balbir Singh 已提交
3756 3757
}

3758 3759
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3760
{
3761
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3762
	struct page_counter *counter;
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3777

3778
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3779
	case RES_MAX_USAGE:
3780
		page_counter_reset_watermark(counter);
3781 3782
		break;
	case RES_FAILCNT:
3783
		counter->failcnt = 0;
3784
		break;
3785 3786
	default:
		BUG();
3787
	}
3788

3789
	return nbytes;
3790 3791
}

3792
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3793 3794
					struct cftype *cft)
{
3795
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3796 3797
}

3798
#ifdef CONFIG_MMU
3799
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3800 3801
					struct cftype *cft, u64 val)
{
3802
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803 3804 3805

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3806

3807
	/*
3808 3809 3810 3811
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3812
	 */
3813
	memcg->move_charge_at_immigrate = val;
3814 3815
	return 0;
}
3816
#else
3817
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818 3819 3820 3821 3822
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3823

3824
#ifdef CONFIG_NUMA
3825
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3826
{
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3839
	int nid;
3840
	unsigned long nr;
3841
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3852 3853
	}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3869 3870 3871 3872 3873 3874
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3875 3876 3877 3878 3879
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

3880
static int memcg_stat_show(struct seq_file *m, void *v)
3881
{
3882
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3883
	unsigned long memory, memsw;
3884 3885
	struct mem_cgroup *mi;
	unsigned int i;
3886

3887
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3888
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3889
			continue;
3890 3891
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3892
	}
L
Lee Schermerhorn 已提交
3893

3894 3895 3896 3897 3898 3899 3900 3901
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3902
	/* Hierarchical information */
3903 3904 3905 3906
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3907
	}
3908 3909 3910 3911 3912
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3913

3914 3915 3916
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3917
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3918
			continue;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3939
	}
K
KAMEZAWA Hiroyuki 已提交
3940

K
KOSAKI Motohiro 已提交
3941 3942 3943 3944
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3945
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3946 3947 3948 3949 3950
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3951
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3952
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3953

3954 3955 3956 3957
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3958
			}
3959 3960 3961 3962
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3963 3964 3965
	}
#endif

3966 3967 3968
	return 0;
}

3969 3970
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3971
{
3972
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3973

3974
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3975 3976
}

3977 3978
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3979
{
3980
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3981

3982
	if (val > 100)
K
KOSAKI Motohiro 已提交
3983 3984
		return -EINVAL;

3985
	if (css->parent)
3986 3987 3988
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3989

K
KOSAKI Motohiro 已提交
3990 3991 3992
	return 0;
}

3993 3994 3995
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3996
	unsigned long usage;
3997 3998 3999 4000
	int i;

	rcu_read_lock();
	if (!swap)
4001
		t = rcu_dereference(memcg->thresholds.primary);
4002
	else
4003
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4004 4005 4006 4007

	if (!t)
		goto unlock;

4008
	usage = mem_cgroup_usage(memcg, swap);
4009 4010

	/*
4011
	 * current_threshold points to threshold just below or equal to usage.
4012 4013 4014
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4015
	i = t->current_threshold;
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4039
	t->current_threshold = i - 1;
4040 4041 4042 4043 4044 4045
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4046 4047 4048 4049 4050 4051 4052
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4053 4054 4055 4056 4057 4058 4059
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4060 4061 4062 4063 4064 4065 4066
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4067 4068
}

4069
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4070 4071 4072
{
	struct mem_cgroup_eventfd_list *ev;

4073 4074
	spin_lock(&memcg_oom_lock);

4075
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4076
		eventfd_signal(ev->eventfd, 1);
4077 4078

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4079 4080 4081
	return 0;
}

4082
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4083
{
K
KAMEZAWA Hiroyuki 已提交
4084 4085
	struct mem_cgroup *iter;

4086
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4087
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4088 4089
}

4090
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4091
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4092
{
4093 4094
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4095 4096
	unsigned long threshold;
	unsigned long usage;
4097
	int i, size, ret;
4098

4099
	ret = page_counter_memparse(args, &threshold);
4100 4101 4102 4103
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4104

4105
	if (type == _MEM) {
4106
		thresholds = &memcg->thresholds;
4107
		usage = mem_cgroup_usage(memcg, false);
4108
	} else if (type == _MEMSWAP) {
4109
		thresholds = &memcg->memsw_thresholds;
4110
		usage = mem_cgroup_usage(memcg, true);
4111
	} else
4112 4113 4114
		BUG();

	/* Check if a threshold crossed before adding a new one */
4115
	if (thresholds->primary)
4116 4117
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4118
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4119 4120

	/* Allocate memory for new array of thresholds */
4121
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4122
			GFP_KERNEL);
4123
	if (!new) {
4124 4125 4126
		ret = -ENOMEM;
		goto unlock;
	}
4127
	new->size = size;
4128 4129

	/* Copy thresholds (if any) to new array */
4130 4131
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4132
				sizeof(struct mem_cgroup_threshold));
4133 4134
	}

4135
	/* Add new threshold */
4136 4137
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4138 4139

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4140
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4141 4142 4143
			compare_thresholds, NULL);

	/* Find current threshold */
4144
	new->current_threshold = -1;
4145
	for (i = 0; i < size; i++) {
4146
		if (new->entries[i].threshold <= usage) {
4147
			/*
4148 4149
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4150 4151
			 * it here.
			 */
4152
			++new->current_threshold;
4153 4154
		} else
			break;
4155 4156
	}

4157 4158 4159 4160 4161
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4162

4163
	/* To be sure that nobody uses thresholds */
4164 4165 4166 4167 4168 4169 4170 4171
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4172
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4173 4174
	struct eventfd_ctx *eventfd, const char *args)
{
4175
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4176 4177
}

4178
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4179 4180
	struct eventfd_ctx *eventfd, const char *args)
{
4181
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4182 4183
}

4184
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4185
	struct eventfd_ctx *eventfd, enum res_type type)
4186
{
4187 4188
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4189
	unsigned long usage;
4190
	int i, j, size;
4191 4192

	mutex_lock(&memcg->thresholds_lock);
4193 4194

	if (type == _MEM) {
4195
		thresholds = &memcg->thresholds;
4196
		usage = mem_cgroup_usage(memcg, false);
4197
	} else if (type == _MEMSWAP) {
4198
		thresholds = &memcg->memsw_thresholds;
4199
		usage = mem_cgroup_usage(memcg, true);
4200
	} else
4201 4202
		BUG();

4203 4204 4205
	if (!thresholds->primary)
		goto unlock;

4206 4207 4208 4209
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4210 4211 4212
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4213 4214 4215
			size++;
	}

4216
	new = thresholds->spare;
4217

4218 4219
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4220 4221
		kfree(new);
		new = NULL;
4222
		goto swap_buffers;
4223 4224
	}

4225
	new->size = size;
4226 4227

	/* Copy thresholds and find current threshold */
4228 4229 4230
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4231 4232
			continue;

4233
		new->entries[j] = thresholds->primary->entries[i];
4234
		if (new->entries[j].threshold <= usage) {
4235
			/*
4236
			 * new->current_threshold will not be used
4237 4238 4239
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4240
			++new->current_threshold;
4241 4242 4243 4244
		}
		j++;
	}

4245
swap_buffers:
4246 4247
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4248 4249 4250 4251 4252 4253
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4254
	rcu_assign_pointer(thresholds->primary, new);
4255

4256
	/* To be sure that nobody uses thresholds */
4257
	synchronize_rcu();
4258
unlock:
4259 4260
	mutex_unlock(&memcg->thresholds_lock);
}
4261

4262
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4263 4264
	struct eventfd_ctx *eventfd)
{
4265
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4266 4267
}

4268
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4269 4270
	struct eventfd_ctx *eventfd)
{
4271
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4272 4273
}

4274
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4275
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4276 4277 4278 4279 4280 4281 4282
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4283
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4284 4285 4286 4287 4288

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4289
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4290
		eventfd_signal(eventfd, 1);
4291
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4292 4293 4294 4295

	return 0;
}

4296
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4297
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4298 4299 4300
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4301
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4302

4303
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4304 4305 4306 4307 4308 4309
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4310
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4311 4312
}

4313
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4314
{
4315
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4316

4317 4318
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4319 4320 4321
	return 0;
}

4322
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4323 4324
	struct cftype *cft, u64 val)
{
4325
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4326 4327

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4328
	if (!css->parent || !((val == 0) || (val == 1)))
4329 4330
		return -EINVAL;

4331
	memcg->oom_kill_disable = val;
4332
	if (!val)
4333
		memcg_oom_recover(memcg);
4334

4335 4336 4337
	return 0;
}

A
Andrew Morton 已提交
4338
#ifdef CONFIG_MEMCG_KMEM
4339
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4340
{
4341 4342
	int ret;

4343
	memcg->kmemcg_id = -1;
4344 4345 4346
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4347

4348
	return mem_cgroup_sockets_init(memcg, ss);
4349
}
4350

4351
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4352
{
4353
	mem_cgroup_sockets_destroy(memcg);
4354
}
4355
#else
4356
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4357 4358 4359
{
	return 0;
}
G
Glauber Costa 已提交
4360

4361 4362 4363
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4364 4365
#endif

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4379 4380 4381 4382 4383
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4384
static void memcg_event_remove(struct work_struct *work)
4385
{
4386 4387
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4388
	struct mem_cgroup *memcg = event->memcg;
4389 4390 4391

	remove_wait_queue(event->wqh, &event->wait);

4392
	event->unregister_event(memcg, event->eventfd);
4393 4394 4395 4396 4397 4398

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4399
	css_put(&memcg->css);
4400 4401 4402 4403 4404 4405 4406
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4407 4408
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4409
{
4410 4411
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4412
	struct mem_cgroup *memcg = event->memcg;
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4425
		spin_lock(&memcg->event_list_lock);
4426 4427 4428 4429 4430 4431 4432 4433
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4434
		spin_unlock(&memcg->event_list_lock);
4435 4436 4437 4438 4439
	}

	return 0;
}

4440
static void memcg_event_ptable_queue_proc(struct file *file,
4441 4442
		wait_queue_head_t *wqh, poll_table *pt)
{
4443 4444
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4445 4446 4447 4448 4449 4450

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4451 4452
 * DO NOT USE IN NEW FILES.
 *
4453 4454 4455 4456 4457
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4458 4459
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4460
{
4461
	struct cgroup_subsys_state *css = of_css(of);
4462
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463
	struct mem_cgroup_event *event;
4464 4465 4466 4467
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4468
	const char *name;
4469 4470 4471
	char *endp;
	int ret;

4472 4473 4474
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4475 4476
	if (*endp != ' ')
		return -EINVAL;
4477
	buf = endp + 1;
4478

4479
	cfd = simple_strtoul(buf, &endp, 10);
4480 4481
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4482
	buf = endp + 1;
4483 4484 4485 4486 4487

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4488
	event->memcg = memcg;
4489
	INIT_LIST_HEAD(&event->list);
4490 4491 4492
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4518 4519 4520 4521 4522
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4523 4524
	 *
	 * DO NOT ADD NEW FILES.
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4538 4539
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4540 4541 4542 4543 4544
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4545
	/*
4546 4547 4548
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4549
	 */
4550 4551
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4552
	ret = -EINVAL;
4553
	if (IS_ERR(cfile_css))
4554
		goto out_put_cfile;
4555 4556
	if (cfile_css != css) {
		css_put(cfile_css);
4557
		goto out_put_cfile;
4558
	}
4559

4560
	ret = event->register_event(memcg, event->eventfd, buf);
4561 4562 4563 4564 4565
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4566 4567 4568
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4569 4570 4571 4572

	fdput(cfile);
	fdput(efile);

4573
	return nbytes;
4574 4575

out_put_css:
4576
	css_put(css);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4589 4590
static struct cftype mem_cgroup_files[] = {
	{
4591
		.name = "usage_in_bytes",
4592
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4593
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4594
	},
4595 4596
	{
		.name = "max_usage_in_bytes",
4597
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4598
		.write = mem_cgroup_reset,
4599
		.read_u64 = mem_cgroup_read_u64,
4600
	},
B
Balbir Singh 已提交
4601
	{
4602
		.name = "limit_in_bytes",
4603
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4604
		.write = mem_cgroup_write,
4605
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4606
	},
4607 4608 4609
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4610
		.write = mem_cgroup_write,
4611
		.read_u64 = mem_cgroup_read_u64,
4612
	},
B
Balbir Singh 已提交
4613 4614
	{
		.name = "failcnt",
4615
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4616
		.write = mem_cgroup_reset,
4617
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4618
	},
4619 4620
	{
		.name = "stat",
4621
		.seq_show = memcg_stat_show,
4622
	},
4623 4624
	{
		.name = "force_empty",
4625
		.write = mem_cgroup_force_empty_write,
4626
	},
4627 4628 4629 4630 4631
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4632
	{
4633
		.name = "cgroup.event_control",		/* XXX: for compat */
4634
		.write = memcg_write_event_control,
4635 4636 4637
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4638 4639 4640 4641 4642
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4643 4644 4645 4646 4647
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4648 4649
	{
		.name = "oom_control",
4650
		.seq_show = mem_cgroup_oom_control_read,
4651
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4652 4653
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4654 4655 4656
	{
		.name = "pressure_level",
	},
4657 4658 4659
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4660
		.seq_show = memcg_numa_stat_show,
4661 4662
	},
#endif
4663 4664 4665 4666
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4667
		.write = mem_cgroup_write,
4668
		.read_u64 = mem_cgroup_read_u64,
4669 4670 4671 4672
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4673
		.read_u64 = mem_cgroup_read_u64,
4674 4675 4676 4677
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4678
		.write = mem_cgroup_reset,
4679
		.read_u64 = mem_cgroup_read_u64,
4680 4681 4682 4683
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4684
		.write = mem_cgroup_reset,
4685
		.read_u64 = mem_cgroup_read_u64,
4686
	},
4687 4688 4689
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4690 4691 4692 4693
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4694 4695
	},
#endif
4696
#endif
4697
	{ },	/* terminate */
4698
};
4699

4700 4701 4702 4703 4704
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4705
		.read_u64 = mem_cgroup_read_u64,
4706 4707 4708 4709
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4710
		.write = mem_cgroup_reset,
4711
		.read_u64 = mem_cgroup_read_u64,
4712 4713 4714 4715
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4716
		.write = mem_cgroup_write,
4717
		.read_u64 = mem_cgroup_read_u64,
4718 4719 4720 4721
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4722
		.write = mem_cgroup_reset,
4723
		.read_u64 = mem_cgroup_read_u64,
4724 4725 4726 4727
	},
	{ },	/* terminate */
};
#endif
4728
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4729 4730
{
	struct mem_cgroup_per_node *pn;
4731
	struct mem_cgroup_per_zone *mz;
4732
	int zone, tmp = node;
4733 4734 4735 4736 4737 4738 4739 4740
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4741 4742
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4743
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4744 4745
	if (!pn)
		return 1;
4746 4747 4748

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4749
		lruvec_init(&mz->lruvec);
4750 4751
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4752
		mz->memcg = memcg;
4753
	}
4754
	memcg->nodeinfo[node] = pn;
4755 4756 4757
	return 0;
}

4758
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4759
{
4760
	kfree(memcg->nodeinfo[node]);
4761 4762
}

4763 4764
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4765
	struct mem_cgroup *memcg;
4766
	size_t size;
4767

4768 4769
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4770

4771
	memcg = kzalloc(size, GFP_KERNEL);
4772
	if (!memcg)
4773 4774
		return NULL;

4775 4776
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4777
		goto out_free;
4778 4779
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4780 4781

out_free:
4782
	kfree(memcg);
4783
	return NULL;
4784 4785
}

4786
/*
4787 4788 4789 4790 4791 4792 4793 4794
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4795
 */
4796 4797

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4798
{
4799
	int node;
4800

4801
	mem_cgroup_remove_from_trees(memcg);
4802 4803 4804 4805 4806 4807

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
4819
	disarm_static_keys(memcg);
4820
	kfree(memcg);
4821
}
4822

4823 4824 4825
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4826
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4827
{
4828
	if (!memcg->memory.parent)
4829
		return NULL;
4830
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4831
}
G
Glauber Costa 已提交
4832
EXPORT_SYMBOL(parent_mem_cgroup);
4833

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4857
static struct cgroup_subsys_state * __ref
4858
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4859
{
4860
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4861
	long error = -ENOMEM;
4862
	int node;
B
Balbir Singh 已提交
4863

4864 4865
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4866
		return ERR_PTR(error);
4867

B
Bob Liu 已提交
4868
	for_each_node(node)
4869
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4870
			goto free_out;
4871

4872
	/* root ? */
4873
	if (parent_css == NULL) {
4874
		root_mem_cgroup = memcg;
4875 4876 4877
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4878
	}
4879

4880 4881 4882 4883 4884
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4885
	vmpressure_init(&memcg->vmpressure);
4886 4887
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4888 4889 4890 4891 4892 4893 4894 4895 4896

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4897
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4898
{
4899
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4900
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4901
	int ret;
4902

4903
	if (css->id > MEM_CGROUP_ID_MAX)
4904 4905
		return -ENOSPC;

T
Tejun Heo 已提交
4906
	if (!parent)
4907 4908
		return 0;

4909
	mutex_lock(&memcg_create_mutex);
4910 4911 4912 4913 4914 4915

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4916 4917 4918
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4919

4920
		/*
4921 4922
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4923
		 */
4924
	} else {
4925 4926 4927
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4928 4929 4930 4931 4932
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4933
		if (parent != root_mem_cgroup)
4934
			memory_cgrp_subsys.broken_hierarchy = true;
4935
	}
4936
	mutex_unlock(&memcg_create_mutex);
4937

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4950 4951
}

4952
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4953
{
4954
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4955
	struct mem_cgroup_event *event, *tmp;
4956 4957 4958 4959 4960 4961

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4962 4963
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4964 4965 4966
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4967
	spin_unlock(&memcg->event_list_lock);
4968

4969
	memcg_unregister_all_caches(memcg);
4970
	vmpressure_cleanup(&memcg->vmpressure);
4971 4972
}

4973
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4974
{
4975
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4976

4977
	memcg_destroy_kmem(memcg);
4978
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4979 4980
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4998 4999 5000 5001
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5002 5003
}

5004
#ifdef CONFIG_MMU
5005
/* Handlers for move charge at task migration. */
5006
static int mem_cgroup_do_precharge(unsigned long count)
5007
{
5008
	int ret;
5009 5010

	/* Try a single bulk charge without reclaim first */
5011
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5012
	if (!ret) {
5013 5014 5015
		mc.precharge += count;
		return ret;
	}
5016
	if (ret == -EINTR) {
5017
		cancel_charge(root_mem_cgroup, count);
5018 5019
		return ret;
	}
5020 5021

	/* Try charges one by one with reclaim */
5022
	while (count--) {
5023
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5024 5025 5026
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5027 5028
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5029
		 */
5030
		if (ret == -EINTR)
5031
			cancel_charge(root_mem_cgroup, 1);
5032 5033
		if (ret)
			return ret;
5034
		mc.precharge++;
5035
		cond_resched();
5036
	}
5037
	return 0;
5038 5039 5040
}

/**
5041
 * get_mctgt_type - get target type of moving charge
5042 5043 5044
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5045
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 5047 5048 5049 5050 5051
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5052 5053 5054
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5055 5056 5057 5058 5059
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5060
	swp_entry_t	ent;
5061 5062 5063
};

enum mc_target_type {
5064
	MC_TARGET_NONE = 0,
5065
	MC_TARGET_PAGE,
5066
	MC_TARGET_SWAP,
5067 5068
};

D
Daisuke Nishimura 已提交
5069 5070
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5071
{
D
Daisuke Nishimura 已提交
5072
	struct page *page = vm_normal_page(vma, addr, ptent);
5073

D
Daisuke Nishimura 已提交
5074 5075 5076 5077
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5078
		if (!move_anon())
D
Daisuke Nishimura 已提交
5079
			return NULL;
5080 5081
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5082 5083 5084 5085 5086 5087 5088
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5089
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5090 5091 5092 5093 5094 5095 5096 5097
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5098 5099 5100 5101
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5102
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5103 5104 5105 5106 5107
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5108 5109 5110 5111 5112 5113 5114
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5115

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5135 5136
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5149
#endif
5150 5151 5152
	return page;
}

5153
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5154 5155 5156 5157
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5158
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5159 5160 5161 5162 5163 5164
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5165 5166
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5167 5168

	if (!page && !ent.val)
5169
		return ret;
5170 5171 5172
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5173 5174 5175
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5176
		 */
5177
		if (pc->mem_cgroup == mc.from) {
5178 5179 5180 5181 5182 5183 5184
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5185 5186
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5187
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5188 5189 5190
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5191 5192 5193 5194
	}
	return ret;
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5209
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5210 5211 5212
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
5213
	if (pc->mem_cgroup == mc.from) {
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5230 5231 5232 5233 5234 5235 5236 5237
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5238
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5239 5240
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5241
		spin_unlock(ptl);
5242
		return 0;
5243
	}
5244

5245 5246
	if (pmd_trans_unstable(pmd))
		return 0;
5247 5248
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5249
		if (get_mctgt_type(vma, addr, *pte, NULL))
5250 5251 5252 5253
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5254 5255 5256
	return 0;
}

5257 5258 5259 5260 5261
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5262
	down_read(&mm->mmap_sem);
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5274
	up_read(&mm->mmap_sem);
5275 5276 5277 5278 5279 5280 5281 5282 5283

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5284 5285 5286 5287 5288
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5289 5290
}

5291 5292
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5293
{
5294 5295 5296
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5297
	/* we must uncharge all the leftover precharges from mc.to */
5298
	if (mc.precharge) {
5299
		cancel_charge(mc.to, mc.precharge);
5300 5301 5302 5303 5304 5305 5306
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5307
		cancel_charge(mc.from, mc.moved_charge);
5308
		mc.moved_charge = 0;
5309
	}
5310 5311 5312
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5313
		if (!mem_cgroup_is_root(mc.from))
5314
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5315

5316
		/*
5317 5318
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5319
		 */
5320
		if (!mem_cgroup_is_root(mc.to))
5321 5322
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5323
		css_put_many(&mc.from->css, mc.moved_swap);
5324

L
Li Zefan 已提交
5325
		/* we've already done css_get(mc.to) */
5326 5327
		mc.moved_swap = 0;
	}
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5341
	spin_lock(&mc.lock);
5342 5343
	mc.from = NULL;
	mc.to = NULL;
5344
	spin_unlock(&mc.lock);
5345 5346
}

5347
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5348
				 struct cgroup_taskset *tset)
5349
{
5350
	struct task_struct *p = cgroup_taskset_first(tset);
5351
	int ret = 0;
5352
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5353
	unsigned long move_charge_at_immigrate;
5354

5355 5356 5357 5358 5359 5360 5361
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5362 5363 5364
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5365
		VM_BUG_ON(from == memcg);
5366 5367 5368 5369 5370

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5371 5372 5373 5374
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5375
			VM_BUG_ON(mc.moved_charge);
5376
			VM_BUG_ON(mc.moved_swap);
5377

5378
			spin_lock(&mc.lock);
5379
			mc.from = from;
5380
			mc.to = memcg;
5381
			mc.immigrate_flags = move_charge_at_immigrate;
5382
			spin_unlock(&mc.lock);
5383
			/* We set mc.moving_task later */
5384 5385 5386 5387

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5388 5389
		}
		mmput(mm);
5390 5391 5392 5393
	}
	return ret;
}

5394
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5395
				     struct cgroup_taskset *tset)
5396
{
5397 5398
	if (mc.to)
		mem_cgroup_clear_mc();
5399 5400
}

5401 5402 5403
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5404
{
5405 5406 5407 5408
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5409 5410 5411 5412
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5413

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5424
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5425
		if (mc.precharge < HPAGE_PMD_NR) {
5426
			spin_unlock(ptl);
5427 5428 5429 5430 5431 5432 5433 5434
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5435
							pc, mc.from, mc.to)) {
5436 5437 5438 5439 5440 5441 5442
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5443
		spin_unlock(ptl);
5444
		return 0;
5445 5446
	}

5447 5448
	if (pmd_trans_unstable(pmd))
		return 0;
5449 5450 5451 5452
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5453
		swp_entry_t ent;
5454 5455 5456 5457

		if (!mc.precharge)
			break;

5458
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5459 5460 5461 5462 5463
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5464
			if (!mem_cgroup_move_account(page, 1, pc,
5465
						     mc.from, mc.to)) {
5466
				mc.precharge--;
5467 5468
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5469 5470
			}
			putback_lru_page(page);
5471
put:			/* get_mctgt_type() gets the page */
5472 5473
			put_page(page);
			break;
5474 5475
		case MC_TARGET_SWAP:
			ent = target.ent;
5476
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5477
				mc.precharge--;
5478 5479 5480
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5481
			break;
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5496
		ret = mem_cgroup_do_precharge(1);
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5509 5510 5511 5512 5513 5514 5515
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5547
	up_read(&mm->mmap_sem);
5548
	atomic_dec(&mc.from->moving_account);
5549 5550
}

5551
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5552
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5553
{
5554
	struct task_struct *p = cgroup_taskset_first(tset);
5555
	struct mm_struct *mm = get_task_mm(p);
5556 5557

	if (mm) {
5558 5559
		if (mc.to)
			mem_cgroup_move_charge(mm);
5560 5561
		mmput(mm);
	}
5562 5563
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5564
}
5565
#else	/* !CONFIG_MMU */
5566
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5567
				 struct cgroup_taskset *tset)
5568 5569 5570
{
	return 0;
}
5571
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5572
				     struct cgroup_taskset *tset)
5573 5574
{
}
5575
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5576
				 struct cgroup_taskset *tset)
5577 5578 5579
{
}
#endif
B
Balbir Singh 已提交
5580

5581 5582
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5583 5584
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5585
 */
5586
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5587 5588
{
	/*
5589
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5590 5591 5592
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5593
	if (cgroup_on_dfl(root_css->cgroup))
5594
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5595 5596
}

5597
struct cgroup_subsys memory_cgrp_subsys = {
5598
	.css_alloc = mem_cgroup_css_alloc,
5599
	.css_online = mem_cgroup_css_online,
5600 5601
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5602
	.css_reset = mem_cgroup_css_reset,
5603 5604
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5605
	.attach = mem_cgroup_move_task,
5606
	.bind = mem_cgroup_bind,
5607
	.legacy_cftypes = mem_cgroup_files,
5608
	.early_init = 0,
B
Balbir Singh 已提交
5609
};
5610

A
Andrew Morton 已提交
5611
#ifdef CONFIG_MEMCG_SWAP
5612 5613
static int __init enable_swap_account(char *s)
{
5614
	if (!strcmp(s, "1"))
5615
		really_do_swap_account = 1;
5616
	else if (!strcmp(s, "0"))
5617 5618 5619
		really_do_swap_account = 0;
	return 1;
}
5620
__setup("swapaccount=", enable_swap_account);
5621

5622 5623
static void __init memsw_file_init(void)
{
5624 5625
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5626 5627 5628 5629 5630 5631 5632 5633
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5634
}
5635

5636
#else
5637
static void __init enable_swap_cgroup(void)
5638 5639
{
}
5640
#endif
5641

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5652
	struct mem_cgroup *memcg;
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);
5663
	memcg = pc->mem_cgroup;
5664 5665

	/* Readahead page, never charged */
5666
	if (!memcg)
5667 5668
		return;

5669
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5670
	VM_BUG_ON_PAGE(oldid, page);
5671 5672
	mem_cgroup_swap_statistics(memcg, true);

5673
	pc->mem_cgroup = NULL;
5674 5675 5676 5677 5678 5679

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5680

5681 5682
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5703
		if (!mem_cgroup_is_root(memcg))
5704
			page_counter_uncharge(&memcg->memsw, 1);
5705 5706 5707 5708 5709 5710 5711
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5748
		if (pc->mem_cgroup)
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5809 5810
	commit_charge(page, memcg, lrucare);

5811 5812 5813 5814 5815
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5816 5817 5818 5819
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5861 5862 5863 5864
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5865
	unsigned long nr_pages = nr_anon + nr_file;
5866 5867
	unsigned long flags;

5868
	if (!mem_cgroup_is_root(memcg)) {
5869 5870 5871
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5872 5873
		memcg_oom_recover(memcg);
	}
5874 5875 5876 5877 5878 5879

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5880
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5881 5882
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5883 5884

	if (!mem_cgroup_is_root(memcg))
5885
		css_put_many(&memcg->css, nr_pages);
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
5910
		if (!pc->mem_cgroup)
5911 5912 5913 5914
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5915 5916
		 * pc->mem_cgroup at this point, we have fully
		 * exclusive access to the page.
5917 5918 5919 5920
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
5921 5922 5923
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5939
		pc->mem_cgroup = NULL;
5940 5941 5942 5943 5944

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5945 5946
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5947 5948
}

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

5963
	/* Don't touch page->lru of any random page, pre-check: */
5964
	pc = lookup_page_cgroup(page);
5965
	if (!pc->mem_cgroup)
5966 5967
		return;

5968 5969 5970
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5971

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5983

5984 5985
	if (!list_empty(page_list))
		uncharge_list(page_list);
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
6001
	struct mem_cgroup *memcg;
6002 6003 6004 6005 6006 6007 6008 6009
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6010 6011
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6012 6013 6014 6015 6016 6017

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
6018
	if (pc->mem_cgroup)
6019 6020
		return;

6021 6022 6023 6024 6025 6026
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
6027
	pc = lookup_page_cgroup(oldpage);
6028 6029
	memcg = pc->mem_cgroup;
	if (!memcg)
6030 6031 6032 6033 6034
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

6035
	pc->mem_cgroup = NULL;
6036 6037 6038 6039

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6040
	commit_charge(newpage, memcg, lrucare);
6041 6042
}

6043
/*
6044 6045 6046 6047 6048 6049
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6050 6051 6052 6053
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6054
	enable_swap_cgroup();
6055
	mem_cgroup_soft_limit_tree_init();
6056
	memcg_stock_init();
6057 6058 6059
	return 0;
}
subsys_initcall(mem_cgroup_init);